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This study was to conduct a model based on the broad learning system (BLS) for predicting the 28-day mortality of patients
hospitalized with community-acquired pneumonia (CAP). A total of 1,210 eligible CAP cases from Chifeng Municipal
Hospital were finally included in this retrospective case-control study. Random forest (RF) and an eXtreme Gradient Boosting
(XGB) models were used to develop the prediction models. The data features extracted from BLS are utilized in RF and XGB
models to predict the 28-day mortality of CAP patients, which established two integrated models BLS-RF and BLS-XGB. Our
results showed the integrated model BLS-XGB as an efficient broad learning system (BLS) for predicting the death risk of
patients, which not only performed better than the two basic models but also performed better than the integrated model BLS-
RF and two well-known deep learning systems-deep neural network (DNN) and convolutional neural network (CNN). In
conclusion, BLS-XGB may be recommended as an efficient model for predicting the 28-day mortality of CAP patients after

hospital admission.

1. Introduction

Pneumonia is the most common respiratory disease [1].
Before the advent of antibiotics, pneumonia was one major
killer to the human health [2]. With the advances in modern
medicine, many pneumonia patients have been cured with
antibiotics and adjuvant therapy, but the mortality rate
remains high among the very young, the elderly, and those
with compromised immune functions [3]. After the initial
triage of patients with pneumonia, it is critical for emergency
medical staff to assess whether these patients require hospi-
talization [4]. Unnecessary hospitalizations not only increase
the risk of acquired infections but also drain health care
resources [5]. Several pneumonia severity scales may be used
to assess the severity of a patient’s illness, but these scales are
mainly used in the inpatients and are not suitable for emer-

gency patients [6]. Community-acquired pneumonia (CAP)
is a common infectious disease of respiratory system [7]. A
deep insight into the potential factors influencing the quality
of antibiotic use is essentially necessary to develop effective
and targeted interventions to improve care for patients with
CAP [8]. Accurate disease assessment is of great value for
the initial treatment, clinical stability, and long-term prog-
nosis [9]. Biomarkers are immune cells and immune pro-
teins that are significantly increased in the process of
microbial immunity and have auxiliary diagnostic value in
the evaluation of CAP [10].

Nowadays, artificial intelligence is already used to solve
emergent problems for medical engineering and particularly,
for predicting CAP [11]. In order to avoid the devastating
effects of the CAP on the patients’ daily lives and healthcare
systems and to control the further spread of this virus, we
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FIGURE 1: Establishment and validation of the prediction models for the 28-day mortality of CAP patients.

not only need to make an effective early diagnosis of
infected patients through effective screening but also need
to predict the risk of death in CAP patients [12, 13]. A series
of models and algorithms were proposed to search for opti-
mal hidden-layer architectures, connectivity, and training
parameters for deep learning systems for predicting the
CAP risk among patients with respiratory complaints, but
the efficiency of these models and algorithms in predicting
the death risk of patients hospitalized with CAP needs a fur-
ther investigation, and meanwhile, novel approaches are
quite necessary [14, 15].

Our objectives in the present studies are (1) to develop
an efficient model based on the previous models and algo-
rithms for predicting the risk of the 28-day mortality in
patients hospitalized with CAP, using the random forest
(RF) and eXtreme Gradient Boosting (XGB) models [16];
(2) to utilize the broad learning system (BLS) extract the fea-
tures and evaluate the importance of BLS features in predict-
ing the 28-day mortality of patients [17]; and (3) to compare
the performance of the proposed model with two well-
known deep learning systems-deep neural network (DNN)
and convolutional neural network (CNN).

2. Materials and Methods

2.1. Study Design and Population. This was a retrospective
case-control study. The information of a total of 1,397
CAP patients was collected from the Chifeng Municipal
Hospital between August 2019 and December 2020. After
excluding cases with age < 18 years (n = 58), having recently
received chemotherapy (n=24), advanced liver disease
(n=67), and the serum creatinine level > 1.5 mg/dl (n = 38),
1,210 eligible patients were finally included in this study.
This study was approved by the Institutional Review Board
(IRB) of Chifeng Municipal Hospital (approval number:
no. 2019_24).

The inclusion criteria were as follows: (1) age>18
years old, (2) patients diagnosed with CAP according to
Chinese Guidelines for Diagnosis and Treatment of Adult
Community-acquired Pneumonia, and (3) available infor-
mation of 28-day mortality or survival after hospital
admission.

The exclusion criteria were (1) patients who have
recently received chemotherapy, corticosteroids, or other
immunosuppressants; (2) exposure to antibiotics within 14
days before entering the group; (3) patients with advanced
liver disease; (4) being undergoing hemodialysis; (5) patients
with serum creatininelevel > 1.5mg/dl; (6) patients with
severe infection; and (7) patients with immune dysfunction.

2.2. Data Collection. The demographic and clinical informa-
tion of CAP patients were collected, including gender, age,
nationality, history of diseases (allergy, hypertension, diabe-
tes, lung disease malignant tumor, heart failure (HF)),
history of surgery, smoking, drinking, systolic blood pres-
sure (SBP), diastolic blood pressure (DBP), respiratory rate,
heart rate (HR), white blood cell (WBC) counts, red blood
cell (RBC) counts, hemoglobin (Hb) level, platelet (PLT)
counts, aspartate aminotransferase (AST) level, serum
albumin (ALB) level, blood urea nitrogen (BUN) level, cre-
atinine (Cr) level, blood glucose (Glu) level, porcine calcito-
nin (PCT) level, and C-reactive protein (CRP) level. The
outcome was the 28-day mortality of patients hospitalized
with CAP.

2.3. Establishment and Validation of the Prediction Models.
All CAP patients were randomly grouped into the training
and testing sets with a ratio of 6:4. The balance test was car-
ried out between the two sets. Six prediction models were
conducted using the training set (Figure 1). The logistic
regression, RF, DNN, and CNN analyses were used to estab-
lish four models to predict the risk of 28-day mortality in
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FIGURE 2: Establishment of the BLS-RF model for predicting the 28-day mortality of CAP patients.

patients hospitalized with CAP, respectively. All study vari-
ables entered the BLS to generate 106 features. Then, the
two models (BLS-RF and BLS-XGB) based on the 106 fea-
tures were established using RF and XGB analyses, respec-
tively. Figure 2 displayed the establishment of the BLS-RF
model. The area under the curve (AUC), accuracy, sensitiv-
ity, specificity, positive predict value (PPV), and negative
predict value (NPV) evaluated the predictive performance
of the six models. Internal validation of the six prediction
models was conducted using the testing set. Receiver operat-
ing characteristic (ROC) curves of the BLS-RF, BLS-XGB,
CNN, and DNN models for predicting the 28-day mortality
of CAP patients were shown in Figure 3.

DNN consists of three layers, input layer, hidden layer,
and output layer. Each layer is fully connected. Using the
original data as the input layer, the sample features are
obtained progressively through the hidden layer, and then
the features in the output layer are predicted. For deep learn-
ing processes, 30 hidden layers are used.

CNN’s full name is convolutional neural network, which
includes three convolutional layer for feature extraction and
max pooling layer for down sampling. And Fully Connected
Layer for classification’Features are extracted by the convo-
lutional layer, useless features are excluded by the pooling
layer, and finally features in the output layer are classified
and predicted by the full connection layer. In this study, four
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ROC curve for BLS-RF testing data
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ROC curve for DNN training data
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FIGURe 3: (a) ROC curves based on the integrated models. (b) ROC curves based on CNN and DNN.

convolutional layers, one pooling layer, and one full connec-
tion layer are adopted.

2.4. Statistical Analysis. The normality test for measurement
data was assessed by Shapiro test. The continuous variables
with normal distribution were analyzed using T test and
expressed by mean + standard deviation (Mean + SD). Non-
normally distributed measurement data were analyzed by
Mann-Whitney U test and represented by median and
quartile (M[Q1, Q3]). Categorical data were evaluated utiliz-
ing y* test or Fisher’s exact probability method, with the
number of cases and the composition ratio (N (%)). All
missing data were filled by random forest analysis. The sen-

sitivity analysis was carried out. All statistical analyses were
performed using Python software. P < 0.05 was considered
as a statistical difference.

3. Results and Discussion

3.1. Characteristics of Patients Hospitalized with CAP. A total
of 1,210 eligible CAP patients were finally included in this
study, with the mean age of 63.58 + 15.36 years. Of which,
120 cases suffered from death during hospitalization. All
patients were randomly grouped into the training (n = 726)
and testing (n = 484) sets according to 6:4. There were no
differences in gender, age, nationality, history of diseases
(allergy, hypertension, diabetes, lung disease malignant
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TasBLE 1: The characteristics of patients hospitalized with CAP.

Variables Total (n=1210) Testing (n = 484) Training (n = 726) Statistics P

Gender (female), 1 (%) 475 (39.26) 185 (38.22) 290 (39.94) ¥ =0.361 0.548
Age, years, mean + SD 63.58 +15.36 63.86 +15.20 63.40 +£15.48 t=0.51 0.612
Nationality (Han), n (%) 1060 (87.60) 431 (89.05) 629 (86.64) x> =1.554 0213
Allergy (yes), n (%) 110 (9.09) 46 (9.50) 64 (8.82) ¥ =0.167 0.683
Surgery (yes), n (%) 325 (26.86) 140 (28.93) 185 (25.48) ¥ =1.753 0.186
Hypertension (yes), n (%) 480 (39.67) 205 (42.36) 275 (37.88) Xz =2.432 0.119
Diabetes (yes), n (%) 140 (11.57) 52 (10.74) 88 (12.12) x> =0.538 0.463
Smoking (yes), n (%) 395 (32.64) 171 (35.33) 224 (30.85) XZ =2.647 0.104
Drinking (yes), n (%) 315 (26.03) 129 (26.65) 186 (25.62) XZ =0.161 0.688
Lung disease (yes), n (%) 160 (13.22) 74 (15.29) 86 (11.85) XZ =3.001 0.083
Malignant autumn, # (%) 50 (4.13) 23 (4.75) 27 (3.72) XZ =0.782 0.376
HEF (yes), n (%) 35 (2.89) 15 (3.10) 20 (2.75) ¥ =0.123 0.726
SBP, mmHg, mean + SD 129.71 £20.07 129.50 £ 20.01 129.84 £ 20.11 t=-0.29 0.772
DBP, mmHg, mean + SD 80.70 £13.24 80.68 +13.12 80.71 £13.33 t=-0.04 0.972
Respiratory rate, beats/minute, mean + SD 20.81+2.43 20.85+2.52 20.77 £2.38 t=0.55 0.579
HR, beats/minute, mean + SD 89.56 +18.13 89.59 +£18.90 89.54 +£17.61 t=0.04 0.966
WBC counts, 10°/L, M(Q;, Q;) 8.23 (6.31, 11.81) 8.46 (6.33, 11.50) 8.14 (6.26,12.02) Z=0579 0562
RBC counts, 10'*/L, mean + SD 4.29+0.73 4.31+0.70 4.28+0.74 t=0.74 0.459
Hb, g/L, mean + SD 128.09 £21.78 128.98 £21.11 127.50 £22.22 t=1.16 0.246
PLT counts, 10°/L, M(Q;, Q3) 244.55 (193.00, 320.30) 244.55 (195.40, 328.00) 244.55 (190.00, 314.00) Z=1.013 0.311
AST, u/L, M(Q,, Q;) 21.61 (16.00, 33.00)  21.00 (16.00, 32.00)  22.00 (16.00, 34.00) Z=-0.433 0.665
ALB, /L, mean = SD 35.48 +5.84 35.67 +5.99 35.35+5.74 t=0.93 0.350
BUN, mmol/L, M(Q,, Q;) 5.30 (4.10, 7.30) 5.35 (4.10, 7.30) 5.20 (4.10, 7.26) Z=0.561 0.575
Cr, pmol/L, mean + SD 64.16 +20.92 63.28 +20.90 64.75+20.93 t=-1.19 0.233

Glu, mmol/L, M(Q,, Q;)
PCT, ug/L, M(Q,, Q;)
CRP, mg/L, M(Q,, Q;)

5.90 (5.00, 7.26)
0.10 (0.05, 0.34)
50.20 (11.90, 114.00)

Survival state, n (%)

1090 (90.08)
120 (9.92)

Survival
Death

43.00 (11.50, 108.00)

Z=-1.203 0229
Z=-0.343 0.732
Z=-1.073 0.283
¥ =0.617 0432

5.80 (4.99, 7.17)
0.10 (0.06, 0.31)

5.99 (5.00, 7.30)
0.10 (0.05, 0.36)
54.15 (12.20, 115.00)

432 (89.26)
52 (10.74)

658 (90.63)
68 (9.37)

CAP: community-acquired pneumonia; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate; WBC: white blood cell; RBC: red blood
cell; Hb: hemoglobin; PLT: platelet; AST: aspartate aminotransferase; ALB: albumin; BUN: blood urea nitrogen; Cr: creatinine; Glu: blood glucose; PCT:

porcine calcitonin; CRP: C-reactive protein.

tumor, and HF), history of surgery, smoking, drinking, SBP,
DBP, respiratory rate, HR, WBC counts, RBC counts, Hb
level, PLT counts, AST level, ALB level, BUN level, Cr level,
Glu level, PCT level, and CRP level (all P > 0.05). It was indi-
cated that the data was balanced between the two sets. The
characteristics of CAP patients in the training and testing
sets were shown in Table 1.

3.2. The Predictive Performance of the Models for the 28-Day
Mortality of CAP Patients. The AUC values of the BLS-RF
model for predicting the 28-day mortality of CAP patients
were 0.979 (95% CI: 0.963-0.996) and 0.962 (95% CI:

0.936-0.988) in the training and testing sets, respectively.
The AUC values of the BLS-XGB model were 0.958 (95%
CIL: 0.928-0.0988) and 0.943 (95% CI: 0.905-0.980) in the
training and testing sets, respectively. The AUC of DNN
used in training set is 0.968 (95% CI: 0.947-0.990), and the
AUC in test set is 0.907 (95% CI: 0.860-0.955). The AUC
of CNN in training set was 0.980 (95% CI: 0.967-0.993),
and AUC in testing set was 0.938 (95% CI: 0.910-0.966).
Using the basic prediction model, the AUC of RF in the
training set is 0.900 (95% CI: 0.861-0.939), and the AUC
in the testing set is 0.786 (95% CI: 0.727-0.846). The AUC
of logistic model was 0.832 (95% CI: 0.785-0.879) in training
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set and 0.714 (95% CI: 0.649-0.780) in testing set. Finally,
BLS is used to learn and output features, and random forest
prediction is used, as shown in Figures 3 and 4.

From the AUC, we can find that the AUC of the two
training models based on BLS is similar in the testing set
(P=0.414). However, there was no significant difference
between the AUC of DNN and CNN in the testing set
(P =0.270). There is no significant difference between the
AUC of the two basic prediction models Logistic and Ran-
dom Forest in the testing set (P =0.371). The AUC of the
testing set of BLS-based stochastic forest model is better than
that of DNN (P =0.047). The AUC of integrated models in
the testing set not only is better than those of basic model
RF and logistic in the testing set.

3.3. Importance Diagram of the BLS-Based Features. As
stated in Section 2, BLS is used to learn and output features,
and random forest prediction is used. Among the BLS out-
put features, the features with the highest feature importance
are the 60th, 65, 74, 9, 84, 45, 18, 102, 75, and 49 among the
top 10 features with the highest model importance, BLS60 is
the most important, followed by BLS65, BLS49 is the lowest,
see details in Figure 4.

Machine learning analysis with text representation has
been utilized in some previous studies, such as early detection
of readmission risk for decision support based on clinical
notes, discovering the predictive value of clinical notes, deep
learning approaches in chest radiograph, and deep learning
techniques on chest X-ray and CT scan [18, 19]. But a further
investigation on applications in predicting the death risk of
CAP among hospitalized patients with respiratory com-

plaints is still required, and a novel approach to improve
the model performance is also quite necessary [20-23].

3.4. Comparison for the Prediction Models. The accuracy,
sensitivity, specificity, PPV, and NPV of the two prediction
models are established by using BLS to learn and output fea-
tures, which is a brain-inspired model [24]. And then using
the random forest and XGB to extract features from BLS is
the highest among all models. Hence, two integrated models
BLS-RF and BLS-XGB are established. The sensitivity and
NPV of the BLS — RF model using the training set are
0.970 (95% CI: 0.929-1.000) and 0.997 (95% CI: 0.992-
1.000), and those using the testing set are 0.925 (95% CI:
0.853-0.996) and 0.989 (95% CI: 0.979-1.000), respectively.
In the training set the accuracy specificity, and PPV of the
BLS-XGB model are 0.959 (95% CI: 0.944-0.973), 0.967
(95% CI: 0.953-0.980), and 0.728 (95% CI: 0.632-0.825),
respectively. In the testing set, the accuracy, specificity, and
PPV of the BLS-XGB model are 0.932 (95% CI: 0.909-
0.954), 0.958 (95% CI: 0.939-0.977), and 0.679 (95% CI:
0.565-0.801), as shown in Figure 5.

In Section 3.2, we utilized the BLS to construct better
hidden-layer architectures and connectivity to extract the
data features, and in this section, we further trained parame-
ters in the integrated broad learning system and compare the
efficiency of the integrated models with previous algorithms
by performance in predicting the death risk of patients with
acquired pneumonia after 28-day hospitalization.

As shown in Table 2, experimental results show that
the integrated model BLS-XGB (training accuracy = 95.9%,
testing accuracy = 93.2%) as an efficient BLS for predicting
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TaBLE 2: The predictive performance of the models for the 28-day mortality of CAP patients.

Prediction models Accuracy Sensitivity

Specificity PPV NPV

Training set

0.906 (0.884-0.928)
0.967 (0.953-0.980)
0.942 (0.924-0.960)

0.512 (0.425-0.599
0.728 (0.632-0.825

0.997 (0.992-1.000)
0.988 (0.979-0.996)
0.992 (0.985-0.999)

BLS-RF 0.912 (0.891-0.932) 0.970 (0.929-1.000)
BLS-XGB 0.959 (0.944-0.973) 0.881 (0.803-0.958)
DNN 0.941 (0.924-0.958) 0.926 (0.864-0.989)
CNN 0.930 (0.911-0.948) 0.941 (0.885-0.997)
Logistic 0.789 (0.758-0.818) 0.941 (0.885-0.997)
RF 0.791 (0.761-0.820) 0.853 (0.769-0.937)
Testing set
BLS-RF 0.872 (0.842-0.902) 0.925 (0.853-0.996)
BLS-XGB 0.932 (0.909-0.954) 0.717 (0.596-0.838)
DNN 0.903 (0.877-0.929) 0.808 (0.701-0.915)
CNN 0.897 (0.890-0.924) 0.769 (0.655-0.884)
Logistic 0.779 (0.739-0.815) 0.885 (0.798-0.971)
RF 0.756 (0.718-0.794) 0.615 (0.483-0.748)

(
(
(
0.929 (0.909-0.948)

0.774 (0.742-0.806)
0.784 (0.753-0.816)

0.865 (0.833-0.898)
0.958 (0.939-0.977)
0.914 (0.888-0.941)
0.912 (0.885-0.939)
0.766 (0.726-0.806)
0.773 (0.734-0.813)

0.577 (0.485-0.668
0.300 (0.239-0.362
0.290 (0.227-0.353)

)
)
0.624 (0.529-0.718)
)
)

0.458 (0.364-0.552
0.679 (0.565-0.801
0.532 (0.422-0.642
0.513 (0.402-0.624
0.313 (0.238-0.388)
0.246 (0.172-0.320)

T O — —

(
(
(
0.993 (0.987-1.000)

0.992 (0.985-1.000)
0.981 (0.969-0.993)

0.989 (0.979-1.000)
0.965 (0.948-0.982)
0.975 (0.960-0.990)
0.938 (0.910-0.966)
0.982 (0.968-0.996)
0.944 (0.919-0.968)

CAP: community-acquired pneumonia; BLS: broad learning system; RF: random forest; XGB: eXtreme Gradient Boosting; DNN: deep neural network; CNN:
convolutional neural network; PPV: positive predictive value; NPV: negative predictive value.

the death risk of patients, which not only performs better than
the two basic models RF (training accuracy = 79.1%, testing
accuracy = 75.6%) and the integrated model BLS-RF
(training accuracy = 95.9%, testing accuracy = 93.2%) but also
performs better than BLS-RF (trainingaccuracy = 91.2%,
testing accuracy = 87.2%) and two well-known deep learning

systems-DNN  (training accuracy = 94.1%, testing accuracy
=90.3%) and CNN (trainingaccuracy = 93.0%, testing
accuracy = 89.7%), and the competitiveness of the proposed
model is further proved. Suggest the integrated model BLS-
XGB as an efficient BLS for predicting the death risk of
patients.
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This study was to develop a prediction model for the risk
of the 28-day mortality in patients hospitalized with CAP,
which is essentially significant for emergent treating system
in intelligent decisions for modern hospitals [24-28]. The
potential engineering applications of our proposed model
will not be limited to the patients hospitalized with CAP
[29-32]. We used RF and XGB methods after learning the
sample characteristics of the data by BLS [33-38]. This
approach is novel compared to the previous studies on
predicting the risk of death among CAP cases [39-43].
Accuracy of the integrated model is more than 90%, indicat-
ing a robust prediction. Our model also makes prediction
according to various indicators of patients. At the same time,
compared with the method of the previous basic models and
other competitive models, the integrated model has signifi-
cantly improved the performance accuracy in practical
applications. The unresolved issues are also the main chal-
lenges in treating pneumonia is that a patient’s condition
can deteriorate suddenly, and therefore, the subsequent
emergent treatment for saving personal patients needs a
further utilization of other methods in medicine and artifi-
cial intelligence.

4. Conclusion

BLS offers an alternative way of learning in deep structure
and in the present study, after being integrated with XGB,
the experiments indicate a robust prediction for control the
28-day mortality risk of CAP patients after hospital admis-
sion. The integrated model BLS-XGB was selected as an effi-
cient model to control the 28-day mortality of patients
hospitalized with CAP. For subsequent studies, we encour-
age other researchers to extend potential engineering appli-
cations of our proposed model (not be limited to the
patients hospitalized with CAP). Another next research pri-
ority is to find accompanied methods in medicine and artifi-
cial intelligence for the emergent treatment for saving
personal patients after the death risk is predicted.

Data Availability

The data utilized to support the findings are available from
the corresponding authors upon request.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

This research was supported by the Shanghai High-Level
Base-Building Project for Industrial Technology Innovation
(1021GN204005-A06).

References

[1] W. Yates, “A review of infectious bovine rhinotracheitis, ship-
ping fever pneumonia and viral-bacterial synergism in respira-
tory disease of cattle,” Revue canadienne de medecine
comparee, vol. 46, no. 3, pp- 225-263, 1982.

[2] H. K. Eslamy and B. Newman, “Pneumonia in normal and
immunocompromised children: an overview and update,”
Radiologic Clinics of North America, vol. 49, no. 5, pp. 895-
920, 2011.

[3] T. Lancet, “Pleuropneumonia-like organisms in the human
vagina,” Annals of Botany, vol. 109, no. 7, pp. 1263-1275, 2011.

[4] S. M. Brown, J. P. Jones, D. Aronsky, B. E. Jones, M. J. Lanspa,
and N. C. Dean, “Relationships among initial hospital triage,
disease progression and mortality in community-acquired
pneumonia,” Respirology, vol. 17, no. 8, pp. 1207-1213, 2012.

[5] H. Uematsu, K. Yamashita, S. Kunisawa, T. Otsubo, and
Y. Imanaka, “Prediction of pneumonia hospitalization in
adults using health checkup data,” PLoS One, vol. 12, no. 6,
article e0180159, 2017.

[6] J. M. Baren, P. L. Henneman, and R. J. Lewis, “Primary vari-
cella in adults: pneumonia, pregnancy, and hospital admis-
sion,” Annals of Emergency Medicine, vol. 28, no. 2, pp. 165-
169, 1996.

[7] J. D. Heffelfinger, S. F. Dowell, J. H. Jorgensen et al., “Manage-
ment of community-acquired pneumonia in the era of pneu-
mococcal resistance: a report from the drug-resistant
Streptococcus pneumoniae therapeutic working group,”
Archives of Internal Medicine, vol. 160, no. 10, pp. 1399-
1408, 2000.

[8] J. A. Schouten, M. E. Hulscher, B. J. Kullberg et al., “Under-
standing variation in quality of antibiotic use for
community-acquired pneumonia: effect of patient, profes-
sional and hospital factors,” Journal of Antimicrobial Chemo-
therapy, vol. 56, no. 3, pp. 575-582, 2005.

[9] J. Hedlund, “Community-acquired pneumonia requiring hos-
pitalisation. Factors of importance for the short- and long-
term prognosis,” Scandinavian Journal of Infectious Diseases,
vol. 97, no. 97, pp. 1-60, 1995.

[10] M. Christ-Crain and S. M. Opal, “Clinical review: the role of
biomarkers in the diagnosis and management of community-
acquired pneumonia,” Critical Care, vol. 14, no. 1, pp. 203-
211, 2010.

[11] P.S. Heckerling, B. S. Gerber, T. G. Tape, and R. S. Wigton,
“Use of genetic algorithms for neural networks to predict
community-acquired pneumonia,” Artificial Intelligence in
Medicine, vol. 30, no. 1, pp. 71-84, 2004.

[12] E. Garcia-Vazquez, S. Soto, J. Gémez, and J. A. Herrero, “Sim-
plificacion de los criterios para valorar el riesgo de mortalidad
en pacientes con neumonia adquirida en la comunidad,” Med-
icina Clinica, vol. 131, no. 6, pp. 201-204, 2008.

[13] O. Leroy, P. Devos, B. Guery et al., “Simplified prediction
rule for prognosis of patients with severe community-
acquired pneumonia in ICUs,” Chest, vol. 116, no. 1,
pp. 157-165, 1999.

[14] S. Singh, “Pneumonia detection using deep learning,” in 2021
4th Biennial International Conference on Nascent Technologies
in Engineering (ICNTE), NaviMumbai, India, 2021.

[15] D. Hussein, D. M. Ibrahim, N. M. Elshennawy, and A. M. Sar-
han, “Deep-chest: multi-classification deep learning model for
diagnosing COVID-19, pneumonia, and lung cancer chest dis-
eases,” Computers in Biology and Medicine, vol. 132, article
104348, 2021.

[16] L. Akter and N. Akhter, “Ovarian cancer prediction from
ovarian cysts based on TVUS using machine learning algo-

rithms,” Proceedings of the International Conference on Big
Data, IoT, and Machine Learning, M. S. Arefin, M. S.



10

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

Kaiser, A. Bandyopadhyay, M. A. R. Ahad, and K. Ray,
Eds., Springer, Singapore, 2022.

C. L. P. Chen and Z. Liu, “Broad learning system: an effective
and efficient incremental learning system without the need
for deep architecture,” IEEE Transactions on Neural Networks
& Learning Systems, vol. 29, no. 1, pp. 10-24, 2018.

S. Bellens, P. Vandewalle, and W. Dewulf, “Deep learning
based porosity segmentation in X-ray CT measurements of
polymer additive manufacturing parts,” Procedia CIRP,
vol. 96, no. 2, pp. 336-341, 2021.

R. K. Gupta, Y. Sahu, N. Kunhare, A. Gupta, and D. Prakash,
“Deep learning-based mathematical model for feature extrac-
tion to detect corona virus disease using chest X-ray images,”
International  Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 29, no. 6, pp. 921-947, 2021.

L. Ryan, S. Mataraso, A. Lynn-Palevsky et al., “371: a machine
learning approach to predict deep venous thrombosis among
hospitalized patients,” Critical Care Medicine, vol. 49, no. 1,
pp. 175-175, 2021.

P. A. Koul and G. Investigators, “Aspiration risk factors,
microbiology, and empiric antibiotics for patients hospitalized
with community-acquired pneumonia,” Chest, vol. 159, no. 1,
pp. 58-72, 2021.

L. Ryan, S. Mataraso, A. Siefkas et al., “A machine learning
approach to predict deep venous thrombosis among hospital-
ized patients,” Clinical and Applied Thrombosis/Hemostasis,
vol. 27, no. 23, 2021.

C.L.Wu,M.J. Wu, L. C. Chen et al., “AEP-DLA: adverse event
prediction in hospitalized adult patients using deep learning
algorithms,” IEEE Access, vol. 9, pp. 55673-55689, 2021.

W. F. Wang, X. Y. Deng, L. Ding, and L. Zhang, “Brain-
inspired intelligence and visual perception: the brain and
machine eyes,” Springer, 2020.

L. Eigner and F. Bodendorf, “An intelligent decision support

system for readmission prediction in healthcare,” Information
Technology, vol. 60, no. 4, pp. 195-205, 2018.

R. Summers and E. R. Carson, “Evaluation of intelligent deci-
sion aids for application in critical care medicine,” in Proceed-
ings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society Volume 13:
1991, Orlando, FL, USA, 1991.

R. M. Meneghini, “Resource reallocation during the COVID-
19 pandemic in a suburban hospital system: implications for
outpatient hip and knee arthroplasty,” The Journal of Arthro-
plasty, vol. 35, no. 7, pp. S15-S18, 2020.

E. Kalantar, A. Kurd, K. Kabir, P. Afrogh, S. Mohammadji, and
M. H. Naseh, “Extreme antibiotic resistant acinetobacter
baumannii-related pneumonia in a regional hospital,” Infec-
tion Epidemiology and Medicine, vol. 2, no. 4, pp. 29-31, 2016.

M. A. Dimopoulos, E. Terpos, M. Boccadoro et al., “Daratu-
mumab plus pomalidomide and dexamethasone versus poma-
lidomide and dexamethasone alone in previously treated
multiple myeloma (APOLLO): an open- label, randomised,
phase 3 trial,” The Lancet Oncology, vol. 22, no. 6, pp. 801-
812, 2021.

R. J. Tarpey and M. T. Mullarkey, “Engineering innovative
clinical resource management by design: a guided emergent
search through a complex adaptive system of systems,” IEEE
Transactions on Engineering Management, pp. 1-15, 2021.

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

(43]

Computational and Mathematical Methods in Medicine

Y. M. Sakti and R. N. Khadafi, “Emergent spine surgery during
COVID-19 pandemic: 10 months experience in Dr. Sardjito
general hospital, Indonesia a case series,” Annals of Medicine
and Surgery, vol. 67, no. 18, article 102513, 2021.

S. Rajendiran, S. Thahir, Y. Veloo et al., “Environmental sur-
face sampling of SARS-CoV-2 in selected hospitals in Malay-
sia,” Tropical Biomedicine, vol. 38, no. 3, pp. 462-468, 2021.

P. V. Opia and R. R. Corpuz, “Suitability mapping of small
farm reservoirs using K-nearest neighbors and random forest
algorithms,” International Journal of Scientific & Technology
Research, vol. 10, no. 3, pp. 78-80, 2021.

P. Shanmugam, J. Raja, and R. Pitchai, “An automatic recogni-
tion of glaucoma in fundus images using deep learning and
random forest classifier,” Applied Soft Computing, vol. 109,
no. 6, article 107512, 2021.

W. P. Zhao, J. Li, J. Zhao, D. Zhao, J. Lu, and X. Wang, “XGB
model: research on evaporation duct height prediction based
on XGBoost algorithm,” Radioengineering, vol. 29, no. 1,
pp. 81-93, 2020.

W. B. Chang, Y. L. Liu, X. Y. Wu, Y. Xiao, S. Zhou, and
W. Cao, “A new hybrid XGBSVM model: application for
hypertensive heart disease,” IEEE Access, vol. 7, pp. 175248-
175258, 2019.

C. Chen and Z. Liu, “Broad Learning System: A New Learning
Paradigm and System without Going Deep,” in 2017 32nd
Youth Academic Annual Conference of Chinese Association of
Automation (YAC), Hefei, China, 2017.

W. F. Wang, H. J. Cai, X. Y. Deng, C. Lu, and L. Zhang, Inter-
disciplinary evolution of the machine brain, Springer, 2021.

T. T. Bauer, S. Ewig, R. Marre, N. Suttorp, T. Welte, and THE
CAPNETZ STUDY GROUP, “CRB-65 predicts death from
community-acquired pneumonia,” Journal of Internal Medi-
cine, vol. 260, no. 1, pp. 93-101, 2006.

S. Kruger, S. Ewig, R. Marre et al.,, “Procalcitonin predicts
patients at low risk of death from community-acquired pneu-
monia across all CRB-65 classes,” European Respiratory Jour-
nal, vol. 31, no. 2, pp. 349-355, 2008.

N. Kokturk, A. Kanbay, N. Bukan, and N. Ekim, “The value of
serum procalcitonin in differential diagnosis of pulmonary
embolism and community-acquired pneumonia,” Clinical ¢
Applied Thrombosis/Hemostasis, vol. 17, no. 5, pp. 519-525,
2011.

N. Daneman, D. E. Low, A. McGeer, K. A. Green, and D. N.
Fisman, “At the threshold: defining clinically meaningful resis-
tance thresholds for antibiotic choice in community-acquired
pneumonia,” Clinical Infectious Diseases, vol. 46, no. 8,
pp. 1131-1138, 2008.

J. Gamble, D. T. Eurich, T. J. Marrie, and S. R. Majumdar,
“Admission hypoglycaemia portends a substantially increased
risk of mortality in patients with community- acquired pneu-
monia: population-based cohort study,” Canadian Journal of
Diabetes, vol. 33, no. 3, pp. 185-185, 2009.



	A Broad Learning System to Predict the 28-Day Mortality of Patients Hospitalized with Community-Acquired Pneumonia: A Case-Control Study
	1. Introduction
	2. Materials and Methods
	2.1. Study Design and Population
	2.2. Data Collection
	2.3. Establishment and Validation of the Prediction Models
	2.4. Statistical Analysis

	3. Results and Discussion
	3.1. Characteristics of Patients Hospitalized with CAP
	3.2. The Predictive Performance of the Models for the 28-Day Mortality of CAP Patients
	3.3. Importance Diagram of the BLS-Based Features
	3.4. Comparison for the Prediction Models

	4. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

