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Abstract

Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must
detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The
dissociation of these endothelial capillaries is driven partially by platelets’ release of growth factors and cytokines,
particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly
mediated by increased transcellular contractility, the protein kinase c-d/myosin light chain-2 (PKCd/MLC-2) signaling axis
becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCd activation induces
contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and
VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition
to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib
malate) and/or PKCd inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is
dependent on PKCd regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is
mechano-responsive, was upregulated after PKCd inhibition. This study suggests that growth factor regulation of PKCd may
be involved in CXCL4-mediated dissociation of endothelial cords.
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Introduction

Wounds prevent skin from acting as a barrier between the body

and external harsh environment, a vital function that must be

quickly re-established during wound repair. This repair requires a

healthy vascular system for both tissue generation and subsequent

maintenance. Blood vessels are compromised during wounding

which require angiogenesis from the tips of severed vessels for

regeneration. This is driven by pro-angiogenic growth factors

released first by platelets and then by macrophages in the wound.

Endothelial cells that are involved in angiogenesis require initial

signals to ‘dedifferentiate’ and separate from the existing severed

vessels prior to subsequent inductive signals to migrate into the

wound bed. These early wound response signals to initiate

angiogenesis are mediated through platelets during clotting

including the chemokine CXCL4 and growth factors VEGF,

PDGF, HB-EGF, and TGF [1].

Many of the intracellular signaling pathways that drive

fibroblasts and endothelial cells to migrate are known. Down-

stream of growth factor receptor activation, PLCc1 signaling

triggers PKCd to regulate cell motility via increasing transcellular

contractility in fibroblasts and endothelial cells [2–8]. Growth

factor and matrikine signaling through the epidermal growth

factor receptor (EGFR) initiates motility via phosphorylation and

activation of PLCc1 at the membrane [3]. Activated PLCc1 then

catalyzes the hydrolysis of PIP2 (primarily at the leading edge of

the membrane) and generates diacylglycerol (DAG) and IP3

[9,10]. Increased levels of DAG at the leading edge [11] synergizes

the effect of PKCd to the membrane [12]. DAG subsequently

stabilizes the activation of PKCd through direct binding of its N-

terminal C1 domain [13–15] Furthermore, PKCd localization

behind the leading edge allows it to propel the cell body towards

the extended lamellipodium and also mediate isometric force

associated with motility [16]. It has also been previously

demonstrated that downstream of PKCd signaling, an intermedi-

ate kinase, specifically myosin light chain kinase (MLCK), relays

signaling to MLC through direct phosphorylation [8]. Further

supporting EGFR induced regulation of contractility, it was

demonstrated that reduced activation of PLCc1 delayed subse-

quent activation of PKCd and downstream MLC-2 [8]. These

data have shown that EGFR triggers contractile responses

efficiently and quickly through the PLCc1/PKCd pathway.

These findings led us to ask whether such a pathway could also

account for the initial retraction of severed vessels prior to

angiogenic sprouting. Increased PKCd activation has also been

shown to increase vascular permeability [17–19], consistent with

cell-cell de-adherence. Inhibition of PKCd results in downregu-

lation of stress fibers and focal adhesions in endothelial cells [20].

In addition, steady-state activation of stress fiber tension by PKCd
has been found to strengthen the endothelial cell barrier [21,22].

All of these data implicate biphasic PKCd regulation in

maintaining vascular permeability. Furthermore, MLCK that is

downstream of PKCd is involved in endothelial retraction through
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MLC-2 phosphorylation. These signals initiating endothelial

retraction may be essential for the initial phases of endothelial

cell separation from damaged vessels prior to angiogenic

sprouting. However, the mechanism in which PKCd mediates

endothelial cell retraction has not been determined.

Therefore, we hypothesized that PKCd regulates the tension of

endothelial cords by promoting cell retraction during neo-

angiogenesis through VEGFR signaling in addition to CXCL4

mediated retraction.

Results

CXCL4+VEGF-induced dissociation is VEGFR-dependent
To investigate endothelial CXCL4-mediated dissociation, we

used human microvascular endothelial cells (HMEC-1) plated on

Matrigel. Cell cords were given 24 hours to form and then

subsequently induced to dissociate with CXCL4 and VEGF, two

factors released by platelets during the initial stages of hemostasis.

Inhibition of VEGFR/PDGFR signaling using sunitinib (2.5 uM)

inhibited dissociation, as demonstrated by longer cord length

(Fig. 1). In addition, CXCL4 had a more pronounced effect than

VEGF on mediating tube dissociation (Fig 1).

VEGFR/CXCL4-induced dissociation is partially PKCd-
dependent

Tube dissociation involves the separation of cell-cell contacts,

we therefore investigated whether transcellular contractility

involves PKCd, a key signaling nexus in contractility and tension

[7,8]. Dissociation was blunted by downregulation of PKCd.

Formed cords were stimulated to dissociate with CXCL4 and

VEGF in the presence or absence of antisense towards PKCd.

Endothelial cord length reduction by CXCL4/VEGF was

partially rescued by antisense against PKCd (Fig. 2a). PKCd
downregulation attenuated cord dissociation to a significantly

lesser degree. In addition, the antisense decreased PKCd and

MLC-2 levels that are downstream of PKCd regulation (Fig. 2b,
Fig 2c). In addition, adult primary endothelial cells were

investigated, as we found that MLC-2 was also down regulated

through rottlerin inhibition, a PKCd inhibitor (Fig. 2d). In

response to VEGF/CXCL4, ppMLC-2 levels in adult primary

endothelial cells were increased, in contrast to CXCL4 only

treatment (Fig. 2d). To further investigate endothelial cords

themselves for increased contractility, HMEC-1 endothelial cord

lysates were analyzed in which showed increased MLC-2 levels in

response to VEGF/CXCL4 (Fig. 2e). These data indicate that

PKCd affects MLC-2 expression in a VEGF-dependent manner,

which in turn correlates with its regulation of stress fibers.

Dynamics of endothelial cords/capillaries tension require
PKCd-dependent motility of cords and individual cells

Cell motility is critical for vessel formation and vessel regression

[23]. To further investigate the role of PKCd activation during

VEGF/CXCL4 mediated dissociation, adult primary endothelial

cords were induced to dissociate in the presence of rottlerin

(500 nM). Cord motion that is a part of the process of vessel

maturation was observed in both groups, however PKCd
inhibition through rottlerin reduced cord mobility (Fig 3, Sup.

Movie 1,2). According to these data, dissociation was mediated by

the motility of the cells and PKCd-dependent regulation of

cytoskeleton/isometric contractions.

We further investigated cord dissociation/mobility and found

increased mobility and contractions in cords that were treated with

Figure 1. VEGFR inhibition decreases CXCL4-induced cord dissociation. a) Representative phase contrast images of HMEC cells treated with
indicated treatments are shown. Images were taken of live cords after 24 hours. Disruption in webbed patterning of cells indicates increased
dissociation. b) Images described in (Fig 1a) were quantified as described in methods using Metamorph analysis software (N at least 4; mean 6 SD,
** P,0.05), Shown are representative of 3 experiments.
doi:10.1371/journal.pone.0093968.g001
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CXCL4/VEGF (Movies S3, S4). In addition, increased force

was exerted onto the Matrigel by the endothelial cells, as shown by

the deformation of the substratum noted in live cell imaging via

phase contrast microscopy. Individual endothelial cells at their

junctions were compressed and spheroid as this morphology

appeared to enable the necessary movements for increased

mobility for subsequent cord collapse (Movie S4).

Activation of PKCd is increased during CXCL4/VEGF-
induced dissociation of endothelial cords

To further investigate whether PKCd was activated during

dissociation, levels of PKCd and activated (or phosphorylated)

PKCd were measured in endothelial cords. In CXCL4+VEGF-

induced cells, this ratio was increased at junctions with increased

phosphorylated PKCd at junction edges and decreased PKCd in

the inner part of the junction (Fig. 4a). In addition, in CXCL4

only- and CXCL4+VEGF-mediated dissociation, endothelial cells

with a spheroid morphology and increased levels of activated

PKCd were also observed. Although PKCd has been shown in

previous literature to mediate apoptosis [24,25]}, it seems that

these cells may actually alter their mesenchymal phenotype to

incorporate into the cords and to actively mediate tension at

junctions (Fig 4b, Movie S4). This would be consistent with our

finding that PKCd directing cell contractility [7]. These data imply

that activation of PKCd is associated with force generation and

possibly force mechanics in endothelial cord dissociation.

Figure 2. PKCd inhibition decreases CXCL4-induced cord dissociation. a) Cords that were induced to dissociate were quantified using
Metamorph as in (Fig. 1b). HMEC cells were allowed to form cords. Following 24 hours, 20 uM of antisense/sense oligonucleotides were added to
cords as described in methods and allowed to dissociate with inhibition of PKCd for 24 hours. Cords and cord length were measured (N at least 4;
mean 6 SD ** P,0.05); blots shown are representative of 3 experiments. b) Immunoblot analysis of HMEC monolayer lysates during a 24 hour
addition of CXCL4 (10 nM) and VEGF (2.5 nM) in the presence of antisense inhibition. GAPDH was used as a loading control. c) MLC expression was
analyzed from (Fig 2b) with either PKCd antisense or sense in response to CXCL4 (10 nM) and VEGF (2.5 nM) (N = 3; mean 6 SD ** P,0.05). d)
Primary adult dermal human microvascular endothelial cells were treated with indicated CXCL4 (10 nM) and VEGF (2.5 nM) in the presence and
absence of PKCd inhibitor (Rottlerin 500 nM) for 24 hours. Cell lysates were analyzed using immunoblot analysis. GAPDH was used as a loading
control, as the control representative of the two blots shown. e) HMEC-1 cells were plated on Matrigel to form cords in a 6-well plate. After cords were
formed, cells were treated with CXCL4 (10 nM) and VEGF (2.5 nM) for 24 hours. Western blot analysis was performed on lysates of both endothelial
cords and Matrigel. GAPDH was used as a loading control.
doi:10.1371/journal.pone.0093968.g002
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Mechanotransduction of VEGF/CXCL4 induced cord
dissociation is PKCd-dependent

Cord dissociation involves multiple intercellular forces which

coordinate the subsequent collapse of capillaries. To confirm that

force impacts the endothelial cords molecularly, focal adhesions/

junctions were examined as cellular locations affected by CXCL4/

VEGF induced dissociation. As a focal adhesion protein, the zyxin

protein has been previously found regulated in response to

vascular stretch. In this study, zyxin was used to investigate

mechanosensory input into the cords as they dissociate. The

investigation of zyxin showed that its expression is linked to PKCd
activity, as inhibition of PKCd caused increased zyxin expression

in 2D monolayer (Fig 5a). Furthermore, downregulation of PKCd
with antisense oligonucleotides in formed endothelial cords led to

increased zyxin expression (Fig 5b). These data suggest focal

adhesions are dynamically regulated when force is induced.

Furthermore, PKCd that is inhibited by a dominant negative

construct causes focal adhesions to stabilize, thus contributing to

inhibition of cord dissociation.

These data suggest that force signaling through VEGFR is

applied during cord dissociation through motility signaling via

PKCd. Signaling through VEGFR causes PKCd to elicit both

static and dissociative regulation of force for endothelial capillary

stability and dissociation, respectively.

Discussion

The CXCL4 receptor, CXCR3, primarily regulates endothelial

capillary dissociation through calcium regulation. When calcium

channels are stretch-activated, u-calpain is activated that results in

cleavage of focal adhesions leading to cell de-adherence and

subsequent anoikis/apoptosis [26]. In this study, we investigated

VEGFR signaling to PKCd as a non-direct molecular mediator of

CXCL4-induced cord/capillary dissociation. Based on the results

of this study, PKCd that is activated downstream of VEGFR\tyr-

osine kinase signaling plays a role in endothelial cell dissociation

(Fig. 1). Attenuation of cord dissociation through inhibition of

VEGFR and PKCd indicates that, for full dissociation of cords on

Matrigel, VEGFR signaling through PKCd is required (Fig. 1a,

Fig. 1b). VEGFR regulation also mediates increased regulation of

PKCd, as seen in our data when PKCd levels were upregulated

(Fig. 1d). PKCd regulation of contractility through MLC-2 was

observed in data where PKCd antisense and PKCa antisense

caused MLC-2 downregulation after CXCL4-VEGF treatment

(Fig. 1d). However, the effect of PKCa antisense was lower, and

may affect PKCd activity indirectly through an unknown

mechanism. We further inhibited the dissociation response using

the pharmacological agent rottlerin and by causing the cell cords

to become static and non-motile (Movie S1, S2, Fig. 3). Since

motility is essential for cord formation, our data also highlight the

importance of cord integrity (Movie S3), which translates to cord

retraction and dissociation (Movie S4).

PKCd activation was also investigated during cord dissociation.

The ratio of activated PKCd to PKCd was increased at junctions

in CXCL4-VEGF-treated cells (Fig. 4). Moreover, some cells that

were activated with PKCd were circular and were centrally

located within junctions (Fig 4). It is interesting to consider

whether these cells are functionally important in integrating cord

force as the cords dissociate or move. Further experiments are

needed to fully test this hypothesis. If further investigation supports

this idea, it would offer new insight into how PKCd regulates

motility and force in microvasculature.

We further showed that cord motility and dissociation are

directly linked to PKCd regulation. PKCd seems to contribute to

dissociation more by affecting the plasticity of active movement

than by disrupting intracellular junctions mediated by calpains

(Fig 1). In this investigation, we show that PKCd regulates

dissociation through VEGFR to PLCc1 signaling. However, it

remains unknown whether force signaling is directing the

dissociation, or recursively responding to force regulation. Both

situations require PKCd, but in a different context. These results

also demonstrate that motility mechanisms seen in 2D migration

play an important role in multi-cellular tissue. Increased calcium

signaling perpetuates increased contraction and de-adhesion, while

VEGFR signaling is also mediating and directing contractions

through PKCd signaling.

After dissociation has occurred, stabilization of PKCd may still

mediate further contraction of cords in the right context

[21,22,27]. As cords shift to a more stabilized and quiescent

cellular state, signaling from VEGFR and other receptors with

intrinsic tyrosine kinase activity continues in order to further

activate downstream mediators of PKCd. These events fine-tune

the development of a normal vascular structure and help stabilize

autocrine signaling. Alternately, angiogenic driven VEGF stimu-

lation induces upregulation of PKCd that would result in

destabilization of the vasculature, with the separated endothelial

cells now being responsive to motile signaling. This is combined

with extracellular signaling of other molecular mediators and

regulation by the stroma, allowing for remodeling of the wound

bed. Lastly, pericytes also regulate the microvasculature with force

regulation [28,29]. Studies investigating how pericytes regulate

cord stability/dissociation would further elucidate how force

signaling is modulated in vivo. Such studies represent the next step

in discerning the function of cord mobility in vascular regener-

ation.

Methods

HMEC-1 cell culture
HMEC-1 (human dermal microvascular endothelial cells) were

obtained from CDC, Atalanta, Georgia, originally described by

Ades et al [30]. Endothelial cells were grown in MCDB 131

(Gibco) media with 10 mM L-glutamine supplemented with 10%

fetal bovine serum. For stable expression of the zyxin protein,

Fiogure 3. PKCd inhibition limits the mobilization/tension on
the cords. Quantification of cord motion in supplemental movies 1
and 2. Live cell imaging of cords as they move were quantified with
metamorph analysis (Sup. Movie 1/2), as each cord excluding branches
were tracked and quantified as average distance displacement for 309
(N = 14 cords measured; mean 6 SD **P,0.01).
doi:10.1371/journal.pone.0093968.g003
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HMEC-1 cells were transfected with 4 ug of GFP-Zyxin plasmid

(obtained from Origene) with 10 uL of lipofectamine in 6 well dish

with subconfluent cells. Stable selection of Zyxin focal adhesion

markers in HMEC-1 cells was established with neomycin selection

(350 ng/mL) as cells were passaged.

Adult-Dermal Human Microvascular Endothelial Cell
culture

Primary human endothelial cells were obtained from (Life

Technologies) and were grown in EGM-2MV Media, (Lonza).

Cells were grown 5 passages prior to incubating cells in quiescent

media for 24 hour before experiment.

Matrigel tube formation assay
Cells were grown to 50% confluency prior to seeding onto

Matrigel. Growth Factor Reduced (GFR) Matrigel (BD Biosci-

ences) was seeded onto a u-chamber slide at 10 ul per well or 120

uL per well on a 24-well plate and incubated for 30 minutes at

37uC for polymerization. Cells were then re-plated onto Matrigel

at 75,000 cells per well (on the 24-well plate) or 15,000 cells per

well (on the u-chamber slide, Ibidi) for 24 hours. Cords were

grown overnight in quiescent media 0.5% FBS. Afterwards,

endothelial cords were allowed to dissociate with VEGF-165

Recombinant growth factor and Recominbnat CXCL4 (Pepro-

Tech), which were added at 2.5 nM and 100 nM respectively after

24 hours (or as indicated by the time points given in figure/movie).

Some experiments were quantified for cord length by adding

2.5 uM Cell Tracker Green for better quantification.

Antisense inhibition
DNA oligonucleotides sequences targeting PKCd and PKCa

were obtained from the literature [31,32] and ordered from IDT;

phospho-thioate bonds were added to the end nucleotides.

Oligonucleotides sense and anti-sense of human PKCd are

GTGGCATGATGGAGCCTTTT and 59TTTTCCGAGG-

TAGTACCGTG-39, respectively. Oligonucleotide sense and

antisense PKCa are 59-CGGGCAACGACTCCACGGCG-39

and ‘5-CGC CGT GGA GTC GTT GCC CG-3’, respectively.

DNA oligonucleotides at 20 uM were added after HMEC cords

were formed in quiescence media, and additional antisense was

added to the cells via lipofectamine (10 uL) for 0.5 ug of DNA in

500 uL of OPTI medium per sample in 6 well plate. DNA/

Lipofectamine was added to quiescent media overnight prior to

growth factor/cytokine treatment.

Live cell imaging
HMEC-1/Primary endothelial cells were grown and plated in a

6 well glass bottom plate on Matrigel at 75,000 cells per well and

incubated in quiescent media overnight. Endothelial cords that

formed were treated with indicated treatments and immediately

added to live cell chamber with 5% O2, 5% CO2, or 90% N2 at

37uC. Primary endothelial cells (Fig. 3, Movie S1, Movie S2) were

imaged for 7 hours and HMEC-1 cells were imaged for 1 hour

and 20 minutes at 5 minute intervals (Movie S3 and Movie S4).

Images were taken of endothelial cords on top of Matrigel with a

Nikon Eclipse Ti live cell imaging microscope at 106 and 206
objective respectively as size bars are indicated in live cell imaging

movies.

Figure 4. PKCd is activated during cord dissociation. a/b) Immunostaining of HMEC endothelial cells formed into cords onto Matrigel treated
with indicated treatments for 24 hours after cords are formed. a) Merged representative images of activated PKCd (red) and PKCd (green) for
indicated treatments. b) Representative image of CXCL4 100 nM/VEGF 2.5 nM treated cord that was immunostained with PKCd and phospho-PKCd
indicated in green and orange separate images. Cells were also stained for nuclei with DAPI staining represented as blue and actin with phalloidin
staining (Alexa-633) represented in pseudo-color yellow. Representative image of a larger cord indicates increased effects of force translated in the
ratio of activated PKCd to PKCd. Arrows of increased phosphorylated PKCd expressing cells indicates positioning of possibly active cells at branch
points of cords.
doi:10.1371/journal.pone.0093968.g004

Figure 5. The tension-sensor zyxin is elevated in the absence of PKCd. a) Immunoblot of HMEC monolayer transfected with Dominant
negative PKCd DNA vector (4 ug/lipofectamine[10 ul]) prior to treatment with CXCL4/VEGF in quiescence media for 24 hours. b) Live cell fluorescent
images of Zyxin-expressing HMEC cells that have formed cords. After cords were formed, cells were incubated for 5 days with 20 uM PKCd-sense or
PKCd-anti-sense in VEGF 2.5 nM/CXCL4 100 nM. Shown are representative of 3 experiments.
doi:10.1371/journal.pone.0093968.g005
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Immunostaining/confocal microscopy
HMEC-1 cells cultured and plated onto 15 well u-chamber

slides (Ibidi) as previously described. After selected treatments, cells

were fixed in 2% formaldehyde in PBS for 10 minutes. Cells were

then permeabilized with 0.1% Triton-X-100 in PBS (wash buffer)

for 10 minutes. Afterwards, cells were washed for 30 minutes (36
washes) prior to incubation with antibodies. Antibodies were

diluted (1:50) for anti-phospho-PKC-theta/delta(S643/S676)(Cell

Signaling) polyclonal rabbit and (1:100) anti-PKCd (polyclonal

anti-mouse) in wash buffer with 30 mg of bovine serum albumin.

Cells were immunostained overnight at 4uC. Cells were then

washed for 15 minutes (36) and incubated with secondary

antibody at (1:100) (Alexa-488-antimouse and Alexa-594-antirab-

bit- LifeTechnologies) in wash buffer/30 mg of BSA/5% goat

serum, as secondary antibodies were goat. Antibodies were

incubated onto cells for 1 hour at room temperature before cells

were washed (36). Alexafluor-633 phalloidin (1:40) in PBS and

DAPI (1:10000) was added to cells. Afterwards, cells were

desiccated for 609 at RT to decrease matrigel depth (z) above

180 um in micro-chamber slide. PBS was added to cells for 30

minutes prior to imaging and were imaged on an Olympus

Fluoview FV1000 confocal IX81 microscope.

Metamorph analysis
Total cord length was measured using Metamorph analysis

software. Mininimum cord length was set at 1 um or 1 pixel and

max cord width was set to 30 um. The track object function in

metamorph was used to track cord motion.

Statistical Analysis
One-way ANOVA was performed (Fig. 1) with significance

being determined at p,0.05. Two sample Student’s T test was

performed for all other experiments with significance being

determined at p,0.05.

Supporting Information

Movie S1 Representative movie of adult primary der-
mal human microvascular endothelial cords in quies-
cent media. After cords were formed rottlerin (500 nM) was

added to group (Movie S2) immediately before imaging. Cell

tracker orange was added at 2.5 uM concentration for better

observation of groups immediately before imaging. Endothelial

cords were imaged 7 hours for 30 minutes per frame, as movie

represents merged images of red fluorescence and phase. Scale bar

of 50 um is indicated on lower right hand corner; images were

taken at 106 objective lens.

(AVI)

Movie S2 Representative movie of adult primary der-
mal human microvascular endothelial cords in quies-
cent media. After cords were formed rottlerin (500 nM) was

added to group (Movie S2) immediately before imaging. Cell

tracker orange was added at 2.5 uM concentration for better

observation of groups immediately before imaging. Endothelial

cords were imaged 7 hours for 30 minutes per frame, as movie

represents merged images of red fluorescence and phase. Scale bar

of 50 um is indicated on lower right hand corner; images were

taken at 106 objective lens.

(AVI)

Movie S3 Representative movies of HMEC-1 endotheli-
al cords were taken in either quiescent media or with
CXCL4 (100 nM)/VEGF (2.5 nM) added immediately
before imaging (Movie S4). Phase contrast images were taken

for a duration of 1 hour 20 minutes at 5 minutes per frame. Scale

bar of 50 um is indicated.

(AVI)

Movie S4 Representative movies of HMEC-1 endotheli-
al cords were taken in either quiescent media or with
CXCL4 (100 nM)/VEGF (2.5 nM) added immediately
before imaging (Movie S4). Phase contrast images were taken

for a duration of 1 hour 20 minutes at 5 minutes per frame. Scale

bar of 50 um is indicated on lower right hand corner; images were

taken at 206 objective lens.

(AVI)
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