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Abstract

West Nile virus (WNV) is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States.
There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based
vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce
B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid
DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI)
covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice.
Mice were immunized twice (prime – boost regime) with the WNV DNA vaccine formulated with lPEI-mannose using
different administration routes (intramuscular, intradermal and topical). In parallel a heterologous boost with purified
recombinant WNV envelope (E) protein was evaluated. While no significant E-protein specific humoral response was
generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing
antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8+

specific IFN-c expression was observed by flow cytometry. Challenge experiments using the heterologous immunization
regime revealed protective immunity to homologous and virulent WNV infection.
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Introduction

West Nile virus (WNV) is a single-stranded positive polarity

enveloped RNA virus and member of the Flavivirus genus of the

Flaviviridae family. WNV is transmitted in a natural cycle between

birds and mosquitoes [1] and causes morbidity and mortality in

birds, horses, humans and some other vertebrate animals. In

humans, WNV infections usually remains asymptomatic or causes

a mild undifferentiated febrile illness called West Nile fever [2].

However, in some individuals, mainly in the immunocompromised

or elderly [3], WNV infection can develop into severe, potentially

life-threatening neuroinvasive disease. WNV has circulated in the

United States since 1999 [4] and subsequently spread across

continental North America, the Caribbean and South America

[5]. It was soon recognized as one of the most widely distributed

flaviviruses, with its geographic range including Africa [6], the

Middle East [6] western Asia [6], Europe [6] and Australia [7].

Several vaccines, including conventional killed [8], DNA plasmid

[9] and recombinant vectored vaccines [10,11], are commercially

available to prevent WNV infection of horses and exotic birds. So

far, no vaccine has been approved for human use and mosquito

control is the only available strategy to combat the spread of this

disease in humans. Since there is also no treatment for WNV

infection available, there is an urgent need for effective vaccines to

prevent WNV infection in humans.

DNA vaccines were introduced more than 20 years ago [12]

and have been applied to a range of infectious and malignant

diseases. Developments in this field have advanced greatly over the

years, and DNA vaccines against various pathogens (influenza
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[13,14], HPV [15,16], HIV [17]) have entered human phase I and

II clinical trials [18]. Importantly, like live vaccines, DNA vaccines

induce a combined humoral and cellular immunity against

pathogens. In addition, DNA vaccines can circumvent many of

the problems associated with recombinant protein-based vaccines,

such as high cost of production, difficulties in purification,

incorrect folding of antigen and poor induction of CD8+ cells.

However the efficacy of genetic vaccines in vivo has not always

been satisfactory. Many approaches have been used in an attempt

to improve the efficacy of DNA vaccines such as codon and

promoter optimization [19–21], addition of adjuvants [22,23],

formulation with cationic liposomes [24] or polymers [25] and the

use of heterologous prime-boost regimes [26,27]. Previously, the

group of Schneeweiss et al. [28] designed a pDNA vaccine that

expressed only the E-protein ectodomain. In a preliminary study

they showed that the pDNA vaccine was protective against WNV

strain IS-98-ST1 after a single intramuscular electrogene transfer

in mice. They also demonstrated that it was possible to boost the

immunogenicity of the electroporated DNA vaccine with recom-

binant domain III of the E-protein. This domain is important for

induction of neutralizing antibodies in mice but the human

antibody response is skewed away from DIII towards less-

neutralizing epitopes in domains I and II and therefore E-protein,

which is used in this work, is more appropriate for boosting. In the

preliminary experiment of Schneeweiss et al., the immune

response was only briefly monitored and electroporation was used

to deliver the pDNA vaccine [28]. Since electroporation requires

specialized equipment this administration method is not practical

for vaccination of humans on a large scale. Therefore, we explored

the use of mannose modified linear polyethyleneimine (lPEIm also

called DermaVir) as carrier for this WNV DNA vaccine.

DermaVir has been designed for topical application of DNA

based vaccines [29]. Currently, there is no information on the

immune response of DermaVir based DNA vaccines after other

administration routes. In this study DermaVir was used to

formulate the WNV pDNA vaccine and the resulting WNV-

DermaVir nanoparticles were administered topically, intrader-

mally or intramuscularly.

A DNA prime/DNA boost and also a DNA prime/protein

boost vaccination schedule were evaluated. For successful DNA

vaccination, the selected delivery system must deliver the DNA

efficiently into the target tissue and cells with the least toxicity and

without inducing a harmful immune response. Cationic polymers

are promising gene-delivery vehicles [30,31] and among them

polyethylenimine (PEI) is one of the most widely used [32].

Polyethylenimine (PEI) is a cationic polymer containing repeating

units of ethyleneimine (-CH2CH2NH-). Linear polyethyleneimines

(lPEI) contain secondary and primary (at the ends) amines, in

contrast to branched PEIs which contain primary, secondary and

tertiary amino groups. lPEI electrostatically condenses nucleic

acids and forms stable nanoparticles so-called polyplexes [33]. Its

free amine groups can be used to conjugate cell binding ligands

such as mannose [34–36], which binds to the mannose receptor

present on the surface of antigen presenting cells (APCs) e.g.

dendritic cells (DCs) and macrophages and liver endothelial cells

[37]. In addition, mannose binding lectin, which belongs to the

family of calcium-dependent collagenous lectins (collectins), is an

important protein of the innate immune system that activates the

complement system [38]. Therefore, as our WNV-DermaVir

nanoparticles contain mannose they may activate the lectin

pathway of the complement and undergo complement-mediated

phagocytosis. However, Lorincz et al. investigated the activation of

the complement and they could not detect nor exclude comple-

ment activation by DermaVir [39]. In this study, we demonstrate

that DNA vaccination using lPEI-mannose (LPEIm) as delivery

vehicle failed to induce a measurable humoral immune response

by itself, but upon protein boosting we noticed a marked increase

in overall and neutralizing antibody titers against WNV.

Importantly, boosted mice were fully protected against a lethal

challenge with WNV.

Materials and Methods

WNV DNA Vaccine, Control Plasmid and E-protein
The construction of the WNV DNA vaccine, pT-WNV-E, has

been described previously [28]. To generate a control plasmid, the

sequence coding for the E-ectodomain in pT-WNV-E was

replaced by the coding sequence for EGFP. The WNV E

ectodomain (amino acid residues 1 to 404) of the New York

1999 strain was amplified from an infectious cDNA clone, and

cloned into the pET21a bacterial expression plasmid. WNV E

protein was expressed in Escherichia coli and purified by using an

oxidative refolding protocol, as described in detail previously [40].

Figure 1. A graphical scheme with a timeline of the mice experiments.
doi:10.1371/journal.pone.0087837.g001

Table 1. Particle size and zeta potential of three batches of
DermaVir nanoparticles containing the WNV DNA vaccine.

Average size (nm) ±
SD (nm)

Average zeta potential (mV) ±
SD (mV)

NP1 11263 10.662.6

NP2 11367 9.465.1

NP3 11763 4.462.2

Total
average

114±5 8.2±4.2

Abbreviations: SD, standard deviation; NP,nanoparticle. Three samples were
measured per batch.
doi:10.1371/journal.pone.0087837.t001
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Recombinant WNV domain DIII was produced as described in

[30].

Preparation and Characterization of the WNV-DermaVir
Nanoparticles

Linear polyethyleneimine-mannose (lPEIm) was prepared as

previously reported by Lorincz [39] covalently coupling of 3%

mannose (calculated on the nitrogen content of the polymer) to

22 kDa lPEI (manufactured by Genetic Immunity). DNA/PEIm

nanoparticles containing the WNV DNA vaccine were prepared at

a N/P ratio of 4 as described earlier [39]. Briefly, one volume of

WNV DNA vaccine was mixed with 3 volumes of TEAM buffer

(10% mannitol containing 10 mM triethanolamine buffer pH 7.6),

and 1 volume lPEIm was mixed with 3 volumes of TEAM buffer.

Subsequently, the diluted PEIm was mixed with an equal volume of

the diluted WNV DNA vaccine. Nanoparticle formation was

allowed to proceed for 30 minutes after mixing. The final WNV

DNA vaccine concentration in the lPEIm-DNA nanoparticles

(WNV-DermaVir) was 0.125 mg/ml. After the preparation of the

nanoparticles the following quality control assays were performed.

The nanoparticles as well as the individual components were

measured by UV-Vis spectrophotometry (Jasco V-630 UV-vis

spectrophotometer) against purified water. Hyperchromicity of the

nanoparticle was calculated following the equation : Hyperchro-

micity % = 1006(A260DermaVir – gA260components*)/(gA260compo-

nents) with *gA260components = A260pDNA+A260PEIm+A260TEAM.

Additionally, the particle size was measured via dynamic light

scattering after diluting the samples with purified water using the

ZetaPALS instrument (Brookhaven). Zeta potential was measured

via electrophoretic light scattering using the same instrument as for

the particle size measurements.

Mice
Specified pathogen-free female BALB/c mice were obtained

from Janvier Labs (Le genest-Saint-Isle, France) and immunized at

the age of eight weeks. The animals were housed in a temperature-

controlled environment with 12 h light/dark cycles, and received

food and water ad libitum. All animal experiments were

authorized by the Institutional Ethics Committee on Experimental

Animals and performed under conditions specified by law

(European Directive and Belgian Royal Decree of November 14,

1993). The protocol was approved by the ethics committee of the

faculty of Veterinary Medicine of Ghent University (Permit

Number: EC2012/124). All manipulations were performed under

isoflurane anesthesia, and all efforts were made to minimize

suffering.

Vaccination Procedures
A graphical scheme with a timeline of the mice experiments is

shown in Figure 1. One microgram of plasmid pTWNV-E or

Table 2. Vaccination regime and BALB/c mice groups.

Prime-boost DNA prime (day 1) DNA boost (day 28) protein boost (day 28)

IM-IM 5 mice IM 1 mg 5 mice IM 1 mg /

IM-E 5 mice IM 1 mg / 5 mice 10 mg E+Matrix-M1

Top-IM 5 mice top 1 mg 5 mice IM 1 mg /

Top-E 5 mice top 1 mg / 5 mice 10 mg E+Matrix-M1

ID-ID 4 mice ID 1 mg 4 mice ID 1 mg

ID-E 4 mice ID 1 mg / 4 mice 10 mg E+Matrix-M1

2/E No prime / 5 mice 10 mg E+Matrix-M1

Abbreviations; IM: intramuscular, Top: topical, ID: intradermal, E: WNV E-protein (ectodomain).
doi:10.1371/journal.pone.0087837.t002

Figure 2. Detection of serum antibodies to the E-protein. IgG1 (A) and IgG2a (B) titers of mice that were ID (4 mice), IM (5 mice), Topically (5
mice) or not primed (2/bE, 5 mice) with WNV-DermaVir nanoparticles and boosted either with WNV-DermaVir nanoparticles (IM) or E-protein
combined with Matrix-M1 adjuvant (s.c.). IgG1 (A) and IgG2a (B) titers were determined by ELISA. Abbreviations: bE: boost E-protein, bDNA: boost
WNV-DermaVir nanoparticles.
doi:10.1371/journal.pone.0087837.g002
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eGFP control plasmid was formulated with lPEIm. The resulting

nanoparticles, called WNV-DermaVir nanoparticles, were subse-

quently administered intradermally (ID), intramuscularly (IM) or

topically to the mice. For topical application, the hair of the

dorsum was removed by shaving and the skin was exfoliated with a

sponge as previously described [29]. Finally, tape stripping was

performed and 80 ml WNV-DermaVir nanoparticles (containg

1 mg pTWNV-E) was applied on the entire tape stripped area.

After air-drying, mice were returned to the corresponding cages.

Mice were boosted four weeks later either via an IM injection of

the same dose of WNV-DermaVir nanoparticles or via sub-

cutanous (s.c.) injection of recombinant E-protein ([28]) formulat-

ed with Matrix-M1 (a kind gift from Linda Stertman (Isconova

AB)).

Determination of Serum Antibody Levels and Virus
Neutralization Antibody Titers

Two weeks after the boost, blood samples were collected by

cardiac puncture. Blood was allowed to clot for 60 min at 37uC,

and serum was obtained by combining the supernatant from two

successive centrifugations. The titers of E- and DIII-specific IgG1

and IgG2a antibodies in the serum were determined by ELISA in

96-well Maxisorp immuno-plates (Nunc) coated overnight with

recombinant E-protein or DIII (1 mg/ml in carbonate buffer,

100 ml/well, 4uC) ([28]). After coating, the plates were washed

three times with phosphate buffered saline (PBS) containing 0.1%

Tween-20 and blocked with 3% skim milk in PBS. Next, three-fold

serial dilutions of mouse serum, starting with a 1/100 dilution,

were incubated for 1 h while shaking at room temperature. After

washing goat-derived anti-mouse serum conjugated with horse-

radish peroxidase specific for mouse isotypes IgG1 or IgG2a

(Southern Biotechnology Associates) and tetramethylbenzidine

substrate (BD Biosciences) were used to determine specific

antibody titers. Antibody titers are defined as the reciprocal of

the highest dilution with an OD450 that is at least double the

OD450 of preimmune serum samples. The titer of neutralizing

antibody in serum against WNV was quantitated by a focus

reduction neutralization assay in Vero cells as described previously

[41].

Detection of Mouse IL-4 T Cell Responses by ELISPOT
This analysis was performed with splenocytes isolated 14 days

after boosting. The spleens of four to five mice per group were

isolated aseptically and single-cell suspensions were prepared.

Splenocyte suspensions were depleted of red blood cells using

ammonium chloride hypotonic lysis and passed through a 70-mm

cell strainer. For ELISPOT analysis, sterile 96-well Maxisorp

immuno-plates were coated with anti-IL-4 monoclonal antibodies

(Biolegend) and blocked with sterile PBS containing 1% BSA for

1 h at 37uC. Next, 36105 splenocytes were plated in 100 ml of

culture medium and stimulated during 16 h with culture medium

only (negative control), 5 mg/mL Phytohemagglutinin (PHA,

positive control IL-4, Sigma–Aldrich), 4 mg/mL Concanavalin A

(ConA, positive control IFN-c, Sigma–Aldrich) or 2 mg/ml of

purified E-protein. After stimulation the plates were washed two

times with PBS and four times with PBS containing 0,05% Tween-

20. IL-4 trapped on the plates was detected by a biotinylated

monoclonal anti-IL-4 antibody (Biolegend). Subsequent incuba-

tion with GABA-conjugated streptavidin (U-Cytech Biosciences)

Figure 3. Detection of serum antibody to DIII of the E-protein. IgG1 (A) and IgG2a (B) titers of mice primed ID (4 mice), IM (5 mice), Topically
(5 mice) or not primed (2/bE, 5 mice) with WNV-DermaVir nanoparticles and boosted either with WNV-DermaVir nanoparticles (IM) or E-protein
combined with Matrix-M1 adjuvant (s.c.). IgG1 (A) and IgG2a (B) titers were determined by ELISA against recombinant DIII. Abbreviations: bE: boost E-
protein, bDNA: boost WNV-DermaVir nanoparticles.
doi:10.1371/journal.pone.0087837.g003

Figure 4. Detection of virus neutralizing antibodies. Five mice
were vaccinated IM or topically with WNV-DermaVir nanoparticles and
boosted either with WNV-DermaVir nanoparticles (IM) or E-protein
combined with Matrix-M1 adjuvant (s.c.). Virus neutralization titers were
determined by a focus reduction neutralization assay. Abbreviations:
bE: boost E-protein, bDNA: boost WNV-DermaVir nanoparticles.
doi:10.1371/journal.pone.0087837.g004
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was used to develop silver spots at places were immune cells

secreted IL-4 during stimulation with E-protein or ConA.

Splenocytes from each mouse were analyzed in triplicate and

the spots were counted using the Bioreader 5000 (BIO-SYS).

Intracellular Cytokine Staining (ICS)
Splenocytes were prepared as described above. Subsequently,

the splenocytes of four to five mice per treatment group were

pooled and incubated for 6 h at 37uC with 2 mg E-protein,

medium or conA in the presence of 5 mg/ml brefeldin A

(Biolegend). After incubation the cells were washed and blocked

with Fc block (anti-mouse FccRI/III; BD Pharmingen, BD

Biosciences) and incubated 30 min in the presence of a saturating

dose of surface antibodies against CD4 or CD8. After washing, the

cells were fixed and permeabilized, and an antibody against IFN-c

was added for 30 min. After washing, the cells were resuspended

in staining solution (Biolegend) and analyzed using the Accuri C6

(BD Biosciences). Flow cytometry analysis was performed by

collecting 56104 events and gates were set on lymphocyte

population based on forward and side scatter, followed by marker

positioning to denote fluorescence greater than that of control

stained or unstained cells.

Histopathology and Toxicology
Fourteen days after the priming, mice that received WNV-

DermaVir nanoparticles topically were euthanized and skin

samples were collected, fixed in 4% paraformaldehyde, embedded

in paraffin wax, sectioned at 5 mm, and stained with hematoxylin-

eosin. Slides were examined in a blinded fashion using an

Figure 5. Induction of WNV-E specific IL-4 response by
vaccination with WNV-DermaVir nanoparticles followed by a
WNV-E protein boost. WNV-E specific IL-4 responses were deter-
mined by IL-4 ELISPOT. Splenocytes obtained two weeks after the boost
were stimulated with WNV-E protein and the numbers of cells
producing IL-4 per 36105 cells were determined in triplicate. Mice
were primed ID (4 mice), IM (5 mice), topically (top, 5 mice) or not (2/, 5
mice) with WNV-DermaVir nanoparticles and boosted s.c. with E-protein
combined with Matrix-M1.
doi:10.1371/journal.pone.0087837.g005

Figure 6. Intracellular IFN-c production in CD4+ (A) and CD8+ (B) splenocytes. Five mice were IM or Topically primed with WNV-DermaVir
nanoparticles and boosted IM with WNV-DermaVir nanoparticles or s.c. with WNV-E protein combined with Matrix-M1. Splenocytes were pooled per
group. Cells were stained for cytokines and surface markers (as indicated in the Methods) and analyzed by flow cytometry. Abbreviations: bE: boost E-
protein, bDNA: boost WNV-DermaVir nanoparticles.
doi:10.1371/journal.pone.0087837.g006

Figure 7. Heterologous prime (WNV-DermaVir nanoparticles) -
boost (WNV-E protein) protect mice against a lethal WNV
challenge. Two groups of 10 BALB/c mice were vaccinated IM or
topically (top) with WNV-DermaVir nanoparticles and boosted with
WNV-E protein combined with Matrix-M1 four weeks later. Nine control
mice were vaccinated with WNV-DermaVir nanoparticles containing an
egfp control plasmid. Two weeks after the boost, the mice were
challenged i.p. with a lethal dose of WNV. Abbreviations: bE: boost E-
protein.
doi:10.1371/journal.pone.0087837.g007
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Olympus BX 50 microscope (Olympus) and micrographs were

made.

Serum alanine transaminase (ALT) and total serum bilirubin

levels were determined by using commercial kits produced by Bioo

Scientific following the manufacturer’s instruction. Serum samples

were analyzed two weeks after priming.

WNV Challenge in Mice
To evaluate the protective efficacy of the vaccine, mice were

challenged with a lineage 1 West Nile virus (Italy/2009) two weeks

after boosting. The Italy/2009 strain was isolated in Vero cells in

2009 from an asymptomatic blood donor screened by nucleic acid

testing for WNV infection, who was resident in Rovigo, Italy. The

full genome of the Italy/2009 isolate (GenBank accession number

GU011992.2) had 99% nucleotide sequence identity with other

WNV isolates collected during the outbreaks that occurred in the

Po river area in northern Italy in 2008 and 2009 [42]. The Italy/

2009 stock used in the experiments reported in this study was

passage 2, cultured in Vero E6 cells. Pathogenicity of the Italy/

2009 isolate was compared with that of other European WNV

lineage 1 and lineage 2 strains in a mouse model, which

demonstrated that the Italy/2009 strain is highly neurovirulent

and lethal [43]. The challenge dose (104 TCID50) was adminis-

tered intraperitoneally in a volume of 200 ml to the mice. Mice

were monitored at least daily for 20 days with a scoring system

based on loss of body weight, physical condition and behavior.

They were monitored daily and twice daily if abnormalities were

observed in the morning. Animals were euthanized once they

reached a certain scoring number.

Determination of Viral RNA Levels in Blood and Brain
Blood was collected two days after WNV challenge. Mice from

each group were euthanized at their endpoint or 20 days after

challenge. The brains were removed and homogenized in lysis

buffer and proteinase K at 56uC for 2 h. The extracts were

transferred to centrifuge tubes and cell debris was pelleted for

10 min at 400 g and 4uC. The levels of viral RNA were

determined by real-time RT-PCR using the oligonucleotide

primers and TaqMan probe targeting the WNV E-gene designed

by Lanciotti et al. (32). For detection of WNV RNA in blood,

nucleic acids were purified from plasma samples by using a

MagNA Pure 96 System (Roche) and eluted in a final volume of

100 ml. Then, 10 microliters of RNA was combined with

Superscript(r) One Step RT-PCR System reagents (Agpath-IDTM,

Life Technologies), primers and probe in a 20-ml total reaction

volume and amplified in a 7900HT Real-Time PCR System (Life

Technologies,).

Statistical Analysis
Survival curves were plotted and evaluated statistically accord-

ing to Kaplan–Meier by using the GraphPad Prism 5 software.

Morbidity parameters and antibody titers between more than two

experimental groups were compared with Tukey’s test for multiple

comparison of means. The statistical package SPSS was used.

Results

Characterization of WNV-DermaVir Nanoparticles
Linear PEI (lPEI) possesses DNA binding and condensing

activity together with a high pH buffering capacity that is believed

to protect DNA from degradation and to enhance escape from the

endosomal compartment. In addition, by employing mannose-

lPEI conjugates we can direct the delivery of DNA vaccine

towards dendritic cells. The size and the zeta potential of the

WNV-DermaVir nanoparticles containing the WNV DNA

vaccine ranged around 114 nm and 8 mV, respectively (Table 1).

The percentage hyperchromicity, which is a measure of the degree

of pDNA compaction, ranged around 3.2% [39].

Immunization with WNV-DermaVir Nanoparticles
Followed by a Protein Boost Generate Titers of Th2
E-protein Specific Antibodies

One of the parameters that play a role in the immune response

elicited by nanoparticle based delivery systems for DNA vaccines is

the route of administration. To study the effect of the adminis-

tration route on the immunogenicity, mice were vaccinated with

the WNV-DermaVir nanoparticles via three different routes:

intramuscular, intradermal and topical (Table 2).

At 28 days, serum was collected. Subsequently several of the

animals were boosted homologously or heterologously with WNV-

DermaVir nanoparticles or E-protein respectively. Two weeks

after the boost, serum samples were collected for determining

levels of anti-E antibody by ELISA.

The anti-WNV levels of virus-specific IgG1 and IgG2a

antibodies in serum were measured by ELISA. Notably, at 28

days, we failed to detect anti-E antibodies in mice primed with

WNV-DermaVir nanoparticles. After boosting these mice with

WNV-DermaVir nanoparticles, we still did not detect anti-E

antibodies in their sera (Figure 2). In contrast, mice primed with

WNV-DermaVir nanoparticles and boosted with E-protein

developed measurable IgG1 (Figure 2A) and IgG2a (Figure 2B)

titers against the WNV-E protein. Mice primed with WNV-

DermaVir nanoparticles and boosted with the E-protein also

showed a T-helper (Th)-2 skewed response. Indeed, the IgG1/

IgG2a ratio’s for ID, IM and Top administration were respectively

3, 1.7 and 2.1. The highest antibody titers were obtained in the

groups primed IM or topically with the nanoparticles. The mean

difference between the ID vaccinated group and the IM

vaccinated group was significant at the 0.05 level (Tukey’s test).

When a single vaccination with E-protein (without priming) was

given, the IgG1 (Figure 2A) and IgG2a (Figure 2B) titers were

lower and a Th1 shifted response was induced. The titers of the

unprimed mice were statistical significantly lower compared to the

titers obtained for the IM primed mice (P,0.05, Tukey’s test).

In mice, monoclonal antibodies that map to the lateral ridge of

domain III (DIII) of the E protein comprise a dominantly

neutralizing epitope [40,44]. As such, we determined the antibody

levels against D III after boosting the mice. Intramuscular priming

with WNV-DermaVir nanoparticles modestly enhanced the IgG1

titers against DIII as compared to the topical primed mice,

although the difference was not statistically significant (Figure 3A).

However, the IgG1 titers were resp. 9- and 3-fold higher after IM

or topical priming compared to no priming. In comparison,

similar IgG2a (Figure 3B) titers against DIII following either IM or

topical priming with WNV-DermaVir nanoparticles were ob-

served and they were resp. 19- and 13-fold higher compared to

mice that were not primed with WNV-DermaVir nanoparticles.

As expected, no antibody response was detected when mice were

given a boost with WNV-DermaVir nanoparticles.

Next, virus neutralizing titers, which are very important for

protection against infection, were determined after vaccination via

the best administration routes in mice vaccinated (IM and topical).

All the mice primed with WNV-DermaVir nanoparticles and

boosted with E-protein had detectable virus neutralizing antibod-

ies while none (topical priming) or three out of five mice (IM

priming) raised virus neutralizing antibodies after boosting with

WNV-DermaVir nanoparticles (Figure 4).

WNV-DermaVir NPs Improve Immune Response
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Vaccination with WNV-DermaVir Nanoparticles Induces
Cellular Immune Responses

To determine whether the vaccination regimes induced a

cellular immune response we collected splenocytes two weeks after

boosting with WNV-E protein. WNV-E protein specific IL-4 and

IFN-c responses were measured via ELISA and intracellular

cytokine staining (ICS), respectively. Mice that were Top or IM

primed with WNV-DermaVir nanoparticles had a higher

percentage of IL-4 producing splenocytes than mice that received

the WNV-DermaVir nanoparticles prime via an ID injection

(Figure 5). The difference between the topical group and the ID

group was statistically significant (P,0.016, Tukey test). Mice

receiving a single injection with E protein (without priming,

Figure 4) and mice boosted with WNV-DermaVir nanoparticles

(data not shown) did not produce IL-4 positive spots.

Next, the amount of IFN-c producing CD4+ and CD8+

splenocytes was determined. The percentage of CD4+ cells that

produced IFN-c was 2 to 2,5-fold higher in the mice boosted with

WNV-DermaVir nanoparticles compared to the mice boosted

with WNV-E protein (Figure 6A). In comparison, in the CD8+

population mice boosted with WNV-E protein showed the highest

amount of IFN-c positive cells, and their relative numbers were

higher than their respective relative numbers of IFN-c positive

CD4+ cells (Figure 6B).

Heterologous Vaccination Protects against Lethal WNV
Infection

Protection against a lethal WNV infection was studied with the

two most potent vaccination regimes, i.e. intramuscular or topical

priming with WNV-DermaVir nanoparticles followed by subcu-

taneous boosting with WNV-E protein. All mice primed by either

route survived the infection (Figure 7). The survival rates of these

groups were significantly higher than that of the control group

vaccinated with egfp-DermaVir nanoparticles, in which all of the

Figure 8. Heterologous prime (WNV-DermaVir nanoparticles) - boost (WNV-E protein) protect mice against morbidity after a lethal
WNV challenge. Two groups of 10 BALB/c mice were vaccinated IM or topically (top) with WNV-DermaVir nanoparticles and boosted with WNV-E
protein combined with Matrix-M1 four weeks later. In addition, nine control mice were vaccinated with WNV-DermaVir nanoparticles containing an
egfp control plasmid. Two weeks after the boost, the mice were challenged i.p. with a lethal dose of WNV. Individual illness scores of mice vaccinated
with (A) egfp control plasmid, (B) IM with and (C) topically with WNV-DermaVir nanoparticles. (D) Body weight in percent of individual baseline mean
after challenge. Abbreviations: bE: boost E-protein.
doi:10.1371/journal.pone.0087837.g008

Table 3. Virus load in blood and brain post-infection in
vaccinated (10 mice per group) and nine control mice.

Vaccination regime Blood Brain

IM-E ,80 ,80

Top-E ,80 ,80

Control 9322611081 1.31610863.326108

BALB/c mice were immunized IM or topical with WNV-DermaVir nanoparticles
and four weeks later boosted s.c. with WNV-E protein formulated with Matrix-
M1. Two weeks after the boost, the mice were challenged i.p. with a lethal dose
of WNV. Two days after the challenge virus titers were determined in blood.
Viral load in the brain was determined at the day of euthanasia of the moribund
animal or at the end of the experiment in the surviving animals (i.e. 20 days
post challenge). The number of WNV RNA copies/sample were determined via
RT-PCR.
doi:10.1371/journal.pone.0087837.t003
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mice succumbed to the infection (P,0.001, Kaplan–Meier). All

nine control animals challenged with WNV developed severe

disease. There individual total illness scores started to rise by day 7

requiring sacrifice in the following days (Figure 8A). In the WNV-

DermaVir vaccinated groups a much lower total score (maximum

score of 1) was obtained during the first week after challenge

(Figures 8B and 8C). Correspondingly, morbidity as measured by

weight loss was observed in the control animals from day 6 until

death and was significantly different from the two WNV-

DermaVir nanoparticles vaccinated groups on days 7 and 8 (P,

0.001, Tukey test) (Figure 8D). However, there was no apparent

difference in severity of infection between the two WNV-

DermaVir nanoparticles vaccinated groups.

The effect of vaccination on the viral load in blood and brain

also was assessed. No viral RNA could be detected in the WNV-

DermaVir nanoparticles vaccinated animals whereas varying

levels of WNV RNA were detected in all control animals (Table 3).

Safety and Toxicological Evaluation of the WNV-DermaVir
Nanoparticles

The outermost layer of the epidermis, the stratum corneum, acts

as the major skin barrier and limits ingress of foreign agents into

the skin. Therefore, before the topical application of the WNV-

DermaVir nanoparticles we removed the stratum corneum via

tape stripping. Macroscopically, erythema with focal exudation

could be noticed shortly after tape stripping and WNV-DermaVir

application (figure 9A). No bleeding was observed. After a few days

the exudate ceased, the erythema decreased and by two weeks

later no macroscopic lesions remained. Additionally, also no long-

lasting microscopic lesions or infection were observed two weeks

after the topical application of the WNV-DermaVir nanoparticles

(Figure 9B and 9C).

A preliminary toxicity study was performed with the WNV-

DermaVir nanoparticles using total serum bilirubin and serum

alanine transaminase (ALT) levels as markers. Table 4 shows the

total serum bilirubin and ALT level 14 days after intramuscular or

topical application of the WNV-DermaVir nanoparticles. The

concentration of both ALT and total serum bilirubin fell in the

normal range for mice [45].

Discussion

Vaccination remains the single most effective method for the

prevention of infectious diseases. Despite this, there still exists no

licensed human WNV vaccine although effective vaccines are

available commercially for horses and exotic birds. In this study,

we condensed a plasmid DNA encoding a secreted form of the

ectodomain of the WNV-E protein with linear polyethyleneimine

that contained covalently bound mannose residues (lPEIm). We

called the resulting nanoparticles WNV-DermaVir nanoparticles

and they had an average size of 114 nm and a slightly positive zeta

potential of about 8 mV. The low zeta potential of these

nanoparticles is most likely due their low N/P ratio, i.e. 4. These

WNV-DermaVir nanoparticles combine the strong compaction

capacity and intrinsic endosomolytic activity of lPEI [32] with an

APC targeting ligand, mannose [36]. WNV-DermaVir nanopar-

ticles were administered by three different routes (ID, IM or

topical) to mice, and the humoral and cellular immune response

was evaluated. WNV-DermaVir nanoparticles alone did not

induce a humoral immune response by themselves. A similar

observation was found by Lisziewicz et al, who failed to detect

antibody responses in macaques despite five repeated immuniza-

tions with DermaVir nanoparticles encoding HIV-antigens [29].

However, using a heterologous DNA prime/protein boost

immunization strategy, we showed that antibody titers against

the E-protein can be induced using these WNV-DermaVir

nanoparticles. The antibody levels obtained via this strategy were

higher compared to those in mice receiving a single injection of

E-protein. This demonstrates that memory B cells were pre-

sensitized by the WNV-DermaVir nanoparticles, although appar-

ently few short-lived or long-lived antibody-secreting plasma cells

were generated after priming. It is possible that the antigen

expression in the local somatic cells (e.g. myocytes, keratinocytes),

which serve as antigen reservoirs for conventional DNA vaccines,

was too low to induce a strong high-affinity antibody response but

Figure 9. Macro- and microscopical analysis of the skin after topical application of WNV-DermaVir nanoparticles. Panel A shows the
macroscopic lesions observed on the back of two representative mice one day after the topical application of the WNV-DermaVir nanoparticles. Panel
B and C are H&E- stained skin biopsies of a control animal (B) and an animal that received WNV-DermaVir nanoparticles via topical application. The
skin biopsies were taken from the treated area 14 day after topical application of the WNV-DermaVir nanoparticles. The different structures of the skin
are noted : epidermis (e), dermis (d), panniculus adiposus (pa) and the panniculus carnosus (pc).
doi:10.1371/journal.pone.0087837.g009

Table 4. Toxicity markers measured after IM or topical
application of WNV-DermaVir nanoparticles.

ALT (IU/l) Total bilirubin (mg/dl)

IM 3465 1.760.9

Top 4165 1.560.3

Normal range 17–77 0.1–1.9

The serum ALT and total serum bilirubin levels were determined 14 days after
intramuscular or topical administration of the WNV-DermaVir nanoparticles in
five mice per group.
doi:10.1371/journal.pone.0087837.t004
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was sufficient to establish non-antibody secreting memory B cells,

which then could be readily activated after homologous antigen

boost with a potent adjuvant. The difference in immune response

between the ID and topical administration, two delivery routes

that target the skin as immunization site, might be due to the fact

that topical application resulted in greater skin injury and local

inflammation as seen in figure 7. This has been shown to stimulate

the recruitment of Langerhans cells from skin to draining lymph

nodes [46,47] and result in the production of cytokines [48]. In

this way, the physical stress associated with the delivery method

acts as a type of immunological adjuvant. In addition, protein

expression after ID administration may be lower than after

injection into the muscle, which might explain the difference in

antibody titers between both administration routes. Since the most

potent inhibitory antibodies recognize neutralizing epitopes on

DIII [49,50], we also examined whether DIII-specific antibodies

accumulated in serum from protein boosted mice that received the

DNA prime topical or IM. Indeed, we detected antibodies directed

against DIII of the E-protein regardless of the route of priming but

only after a protein boost.

The ratio of IgG1/IgG2a for each administration route

indicated that a Th2-like response was induced. Intradermal

injection and topical applications have been shown to elicit a

humoral response characterized by a Th2-type response [51]

whereas injection into the muscle results more in a Th1 response

[52,53]. We also found the lowest IgG1/IgG2a ratio when the

WNV-DermaVir nanoparticles prime was given IM. This result

was confirmed by IL-4 and IFN-c cytokine assays. A moderate

(topical priming) to weak (IM priming) IL-4 response was observed

after DNA prime/protein boost vaccination. In addition, only a

very weak CD4+ IFN- c production was observed in the same

groups. On the contrary, the mice that received twice WNV-

DermaVir nanoparticles developed no IL-4 response, but dem-

onstrated a higher IFN- c production by CD4+ cells than mice that

were vaccinated via the DNA prime/protein boost approach.

Smitha et al., who vaccinated mice via topical application of lPEIm

nanoparticles containing a plasmid DNA encoding a Fasciola

gigantica fatty acid binding protein, also found significant

expression of IFN-c but insignificant levels of IL-4 [54].

Next, we analyzed the IFN-c expression by CD8+ T cells. We

mainly observed a IFN-c response in the groups boosted with

adjuvanted E-protein. Since the plasmid in the vaccine encodes for

secreted ectodomain of the E-protein it was not unexpected to find

a relatively weak CD8+ response. Indeed, by comparing three

different OVA plasmids encoding a secreted form, a cytoplasmatic

form and a membrane-bound form, Boyle et al found that the

secreted form was more potent than other forms in imitating

humoral immune responses, whereas the cytoplasmatic form was

most potent to induce CTL responses [55]. The CD8+ response

that we detected after protein boost might be attributed largely to

the adjuvant Matrix-M1. This adjuvant is related to another

saponin-based adjuvant named ISCOMATRIX, which has been

shown to promote CD8+ T cell cross-priming. Indeed, MHC class

I cross-presentation by CD8a+ DCs was enhanced up to 100-fold

when antigen was formulated with ISCOMATRIX adjuvant [56].

Cross-presentation enable DCs to activate CD8+ T cells by uptake,

processing and MHC class-I restricted epitope presentation of

exogenous antigen e.g. soluble proteins, immune complexes and

pathogen-associated antigens.

The importance of an antibody response against WNV to

control WNV infections has been described [57]. IgM associated

antibodies limit viral dissemination in the host early after onset of

clinical signs [58]. IgG appear a few days later and they effectively

clear the virus and mediate long-term protective immunity [59]. In

addition, the T cell response also plays a crucial role in recovery,

particular in virus clearance [60]. As our heterologous prime-boost

generated both humoral and cellular immune response, we

evaluated its efficacy in a challenge model in mice. The

heterologous vaccination regime resulted in a complete virus

clearance in the blood and brain of immunized animals. Mice

were fully protected against a lethal infection and in addition never

demonstrated body weight loss during the 20 days observation

period after challenge.

To ensure the safe administration of vaccines to humans,

vaccines are evaluated in preclinical safety assessment studies that

aim at identifying the potential toxicities associated with their

administration. Therefore we determined in mice the total serum

bilirubin and serum Alanine Transaminase (ALT) levels. The

determination of serum bilirubin is an important marker for the

diagnosis of several diseases; elevated levels of bilirubin are

strongly associated with hemolysis, blockage of the biliary tract,

and liver disease [61]. Elevation of ALT levels is an indication of

liver damage and has been associated with liver injury [61].

Importantly, we did not observe elevations in serum levels of both

toxicity indicators.

In conclusion, our data suggests that DNA priming with WNV-

DermaVir nanoparticles and boosting with adjuvanted WNV-E

protein enhanced protective antibody and CD8+ T cell responses

and therefore appears an excellent safe candidate for further

studies in other animals.
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