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Abstract

A better fundamental understanding of human induced pluripotent stem cell-derived cardio-

myocytes (hiPSC-CMs) has the potential to advance applications ranging from drug discov-

ery to cardiac repair. Automated quantitative analysis of beating hiPSC-CMs is an important

and fast developing component of the hiPSC-CM research pipeline. Here we introduce

“Sarc-Graph,” a computational framework to segment, track, and analyze sarcomeres in

fluorescently tagged hiPSC-CMs. Our framework includes functions to segment z-discs and

sarcomeres, track z-discs and sarcomeres in beating cells, and perform automated spatio-

temporal analysis and data visualization. In addition to reporting good performance for sar-

comere segmentation and tracking with little to no parameter tuning and a short runtime, we

introduce two novel analysis approaches. First, we construct spatial graphs where z-discs

correspond to nodes and sarcomeres correspond to edges. This makes measuring the net-

work distance between each sarcomere (i.e., the number of connecting sarcomeres sepa-

rating each sarcomere pair) straightforward. Second, we treat tracked and segmented

components as fiducial markers and use them to compute the approximate deformation gra-

dient of the entire tracked population. This represents a new quantitative descriptor of

hiPSC-CM function. We showcase and validate our approach with both synthetic and exper-

imental movies of beating hiPSC-CMs. By publishing Sarc-Graph, we aim to make auto-

mated quantitative analysis of hiPSC-CM behavior more accessible to the broader research

community.

Author summary

Heart disease is the leading cause of death worldwide. Because of this, many researchers

are studying heart cells in the lab and trying to create artificial heart tissue. Recently, there

has been a growing focus on human induced pluripotent stem cell-derived cardiomyo-

cytes (hiPSC-CMs). These are cells that are safely sampled from living humans, for exam-

ple from the blood or skin, that are then transformed into human heart muscle cells. One
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active research goal is to use these cells to repair the damaged heart. Another active

research goal is to test new drugs on these cells before testing them in animals and

humans. However, one major challenge is that hiPSC-CMs often have an irregular inter-

nal structure that is difficult to analyze. At present, their behavior is far from fully under-

stood. To address this, we have created software to automatically analyze movies of

beating hiPSC-CMs. With our software, it is possible to quantify properties such as the

amount and direction of beating cell contraction, and the variation in behavior across dif-

ferent parts of each cell. These tools will enable further quantitative analysis of hiPSC-

CMs. With these tools, it will be easier to understand, control, and optimize artificial heart

tissue created with hiPSC-CMs, and quantify the effects of drugs on hiPSC-CM behavior.

This is a PLOS Computational Biology Software paper.

Introduction

Quantitative analysis of movies of beating cardiomyocytes is a compelling approach for con-

necting cell morphology to dynamic cell function [1, 2]. In particular, connecting structure

and function is a crucial step towards a better fundamental understanding of human induced

pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) [3, 4]. In stark contrast to sarco-

mere chains in mature cardiomyocytes which have a highly ordered regular structure [5], sar-

comere chains in hiPSC-CMs are typically immature and disordered [6]. This irregular

structure, combined with large variation between cells, makes developing tools for quantitative

analysis both more difficult and more pressing [7]. Robust quantitative analysis frameworks

for analyzing beating hiPSC-CMs will help enable technological advances in drug discovery,

genetic cardiac disease, and cardiac repair [8–10]. In this work, we aim to make automated

quantitative analysis of hiPSC-CM contractile behavior more accessible to the broader

research community.

At present, there are multiple different methods available in the literature for analyzing the

morphology of both mature cardiomyocytes and hiPSC-CMs. However, most of these meth-

ods are designed for still images (often of fixed cells) rather than dynamic movies of beating

cells. Recently Morris et al. 2020 [11] developed the structural assay “ZlineDetection,” a

computational tool to segment and analyze sarcomeric z-discs. Sutcliffe et al. 2018 [12] devel-

oped “SarcOmere Texture Analysis” (SOTA), a computational tool for quantifying sarcomere

structure using Haralick texture features. And, Pasqualini et al. 2015 [6] defined 11 metrics for

describing sarcomere structure (sarcomere length, total energy, sarcomeric energy, sarcomeric

packing density, orientational order parameter (OOP), sarcomeric OOP, nonsarcomeric

OOP, Z-disc relative presence, weighted OOP, coverage quality control, and coherency quality

control). In the second two examples, filter operations are applied to each image and single

quantities of interest are extracted for the entire field of view [6, 12]. Though it is possible to

analyze a movie as a sequence of images and compare average changes, none of these tools

have built in functionality for tracking individual sarcomere motion and length changes

between image frames.

In well aligned and synchronously beating cardiomyocytes, Fast Fourier Transforms (FFT)

can be used to determine sarcomere length in a chain of sarcomeres with a (often manually)
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defined axis [2]. We note that this is readily available as “SarCoptiM,” an ImageJ plugin [2, 13].

However, because sarcomere chains in hiPSC-CMs are often not in alignment and individual

sarcomeres often do not deform in sync, these methods are not necessarily suitable for robust

automated analysis of hiPSC-CM movies. Recently, Ribeiro et al. 2017 [8] developed a multi-

imaging (brightfield, fluorescent beads, and an actin stain) based assay to quantify the mechan-

ical contractile output of hiPSC-CMs. For this method, cells are seeded onto a micropatterned

deformable polyacrylamide substrates containing fluorescent microbeads. This setup makes it

possible to not only image dynamic cell deformation, but also measure the contractile forces

that the cell is exerting on the substrate. Though the authors explored multiple different

approaches for calculating sarcomere length, sarcomeres were not explicitly tracked between

frames. Finally, Toepfer et al. 2019 [10] developed “SarcTrack,” a tool for segmentation and

tracking of individual sarcomeres in movies of beating hiPSC-CMs. With this software, sarco-

meres are fitted with Morlet wavelets, and assumed to contract following a periodic sawtooth

function. Because individual sarcomeres are tracked, it is possible to report quantities of inter-

est such as sarcomere contraction and relaxation time and sarcomere shortening on an indi-

vidual sarcomere basis.

Movies of fluorescently labeled hiPSC-CMs contracting are incredibly information rich

[10]. Fig 1A shows a hiPSC-CM with fluorescently labeled z-discs. Critically, with dynamic

data it is possible to not only measure structure but also measure aspects of how the structural

components functionally interact [4, 14–17]. The focus of this work is on extracting structural

and functional information from movies of beating hiPSC-CMs with fluorescently labeled z-

discs. Here, we provide analysis tools beyond the scope of SarcTrack [10], the current state of

the art software for sarcomere segmentation and tracking. In addition, we provide an alterna-

tive approach to both sarcomere segmentation and tracking that may be more effective in

some scenarios. Notably, our code has the practical benefits of requiring little to no manual

parameter tuning and implementation in the open source Python programming language.

To extract biologically relevant quantitative information from these movies, we focus pri-

marily on segmenting, tracking, and analyzing individual sarcomeres. This would not be possi-

ble with alternative approaches where one average metric is computed per image. Each movie

will typically have over 100 frames, and each frame will contain 100s of sarcomeres. Therefore,

it is infeasible to perform segmentation and tracking by hand at scale. In the first component

Fig 1. Analyzing movies of contracting human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs): (a) Still image of a beating hiPSC-CM movie. As

per the schematic, z-discs, which define the ends of an� 2 μm sarcomere, are fluorescently labeled; (b) Movie still with a schematic illustration of deformation gradient

Favg and tracked sarcomeres overlaid, sarcomere color corresponds to contraction level with red indicating the highest level of contraction; (c) Magnitudes of average

principal stretches (λ1, λ2) computed from Favg with respect to the movie frame number; (d) Average normalized sarcomere length with respect to the movie frame

number. We note that the definitions of Favg, λ1, and λ2 are introduced in this text.

https://doi.org/10.1371/journal.pcbi.1009443.g001
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of our computational framework, we introduce a procedure for automated sarcomere segmen-

tation and tracking that explicitly captures individual sarcomeres. Example results from seg-

mentation and tracking are shown in Fig 1B.

Building on effective segmentation and tracking, the second contribution of our computa-

tional framework is tools for automated analysis of hiPSC-CM contractile behavior. To accom-

plish this, we first draw inspiration from recent literature on defining summary metrics for

describing cardiomyocyte structure and cytoskeletal structure [11, 18] and mechanical defor-

mation in multiple cell types [19, 20]. Specifically, we treat the tracked sarcomeres as fiducial

markers and quantify the principal directions and magnitudes of average cell contraction for

each movie frame. An example of applying this approach is shown in Fig 1C, with Fig 1D for

comparison. Then, we move beyond average metrics and extend our framework to readily per-

form spatiotemporal analysis of sub-cellular sarcomere contraction. Specifically, we treat the

structurally disordered and complex hiPSC-CMs as spatial graphs where z-discs are repre-

sented as nodes and sarcomeres are represented as edges. With a spatial graph defined, per-

forming spatial statistics based analysis is straightforward. For example, it is possible to

examine the correlation between individual sarcomere contraction time series using both

Euclidean and network distances.

In conjunction with segmentation, tracking, and analysis, our computational framework—

Sarc-Graph—also contains multiple visualization tools. The remainder of this paper is focused

on describing key components of the framework. We note that all code is available free and

open source on GitHub: https://github.com/elejeune11/Sarc-Graph. The code is designed in a

modular way such that making major alterations to one component or performing only a sub-

set of the segmentation, tracking, and analysis steps should be straightforward when appropri-

ate. Looking forward, we anticipate that this work is a starting point for a major effort in

quantification and statistical analysis of hiPSC-CM contractile behavior.

Materials and methods

Data

In general, it is infeasible to perform segmentation and tracking by hand at scale for movies of

hiPSC-CMs with fluorescently labeled z-discs. To address the lack of “ground truth” data we

invest significant effort in realistic synthetic data generation to validate the segmentation and

tracking components of our computational framework. In addition, we show the results of

applying our framework to a selection of real experimental movies.

Synthetic data for software validation. In Fig 2, we show the critical components of the

synthetic data generation pipeline. The first step is illustrated in Fig 2A where we show an

example of generating the three-dimensional (3D) skeleton of z-disc and sarcomere geometry

for each movie frame. First, a baseline geometry is defined. Then, the baseline geometry is

deformed in space such that each sarcomere is associated with a ground truth function for

contraction (shown here as fractional change in length) with respect to time. By starting with

this 3D skeleton geometry, it is straightforward to include examples with inhomogeneous con-

traction, out of plane orientation and deformation, and sarcomere chains that appear to inter-

sect when projected into two-dimensional (2D) space.

Given the 3D skeleton geometry in Fig 2A, we then render each frame as illustrated in Fig

2B–2D. First, each z-disc is treated as an oriented cylinder with an associated height and

radius. We note that with this approach it is straightforward to include multiple z-disc sizes in

the same image. Then, the domain is converted into a voxel array such that the resolution is

representative of the experimental images of interest. The voxel array, a 3D matrix, is then

sliced around the simulated focal plane and projected into 2D. Both image noise and blur can
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be added at the voxel array step, 2D image step, or both. In the representative examples shown

here, we add Gaussian blur to the voxel array [21] and Perlin noise to the 2D image [22]. We

note that the entire synthetic data generation pipeline is available on GitHub. All code is writ-

ten in Python with heavy use of the numpy and matplotlib packages [23, 24].

Experimental data for software demonstration. The first two examples of experimental

data included with this paper (E1 and E2) were previously made available in a publication by

Toepfer et al. [10]. The protocol to introduce green fluorescent protein (GFP) onto z-disc pro-

tein titin (TTN-GFP) in hiPSC-CMs is reported in [26]. Video imaging was conducted on

small clusters of hiPSC-CMs using a 100X objective of a fluorescent microscope with a mini-

mum acquisition rate of 30 frames per second. The three additional examples included with

this publication were selected to showcase the general applicability of Sarc-Graph. Cells in E3,

E4, and E5 were fluorescently labeled using lentiviral constructs lenti-GFP-actinin-2 or lenti-

mApple-actinin-2 as described in [25], and were electrically stimulated at 1Hz using the

IonOptix C-Pace EP Culture Pacer (IonOptix) during imaging. Time-lapse videos of cell con-

traction were acquired at 30 frames per second using a 40x objective on a Nikon Eclipse Ti

(Nikon Instruments, Inc.) with an Evolve EMCCD Camera (Photometrics) or on a Zeiss Axio-

vert 200M inverted spinning disk microscope with an ORCA-100 Camera (Hamamatsu),

equipped with a temperature and CO2 equilibrated environmental chamber. We note that

substantial additional detail on the experimental protocol has been provided in previous

Fig 2. Creating synthetic data to test the image analysis code: (a) Define the geometry of z-discs (points) and sarcomeres (line segments) in three-dimensional (3D)

space and prescribe the ground truth deformation for each sarcomere; (b) Approximate each z-disc as an oriented cylinder in 3D space; (c) Convert the 3D geometry

into a voxel array with higher resolution in the x and y directions than the z direction; (d) Slice and project the voxel array to obtain a two-dimensional (2D) image.

Image noise and blur can be added to the voxel array, 2D image, or both.

https://doi.org/10.1371/journal.pcbi.1009443.g002
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literature [25, 26]. Key details are summarized in Table 1. Though not included as examples

with this publication, our computational framework has also been tested on additional beating

hiPSC-CM movies obtained by different researchers with subtly different experimental set

ups. The examples E3, E4, and E5 were deliberately chosen as diverse examples to challenge

the performance of Sarc-Graph for multiple setups. We also note that for all examples shown

in the main body of this paper, both experimental and synthetic, our framework does not

require any parameter tuning. All input parameters are identical across all cases. To comple-

ment these data, we also analyze previously released data from other groups [6, 12] in the S1

and S2 Texts. Though these examples are of images rather than movies, they provide an addi-

tional opportunity to showcase the capabilities of Sarc-Graph on image segmentation under

more diverse conditions and compare the performance of Sarc-Graph to other already estab-

lished approaches. Further details are given in the S1 and S2 Texts.

Code

Sarc-Graph is divided into seven modular components: file_pre_processing, seg-
mentation, tracking, time_series, spatial_graph, analysis_tools, and

functional_metrics. The first, file_pre_processing, is simply used to convert

each movie into a series of 2D numpy arrays [23], one for each frame of the movie converted

to grayscale. The code is designed such that the only new step required to support a previously

unsupported movie file format is a function to convert each frame into a 2D numpy array. The

remainder of the code can loosely be grouped as segmentation which is necessary for

extracting spatial data, tracking and time_series which are necessary for extracting

temporal data, and spatial_graph, analysis_tools, and functional_metrics
which are necessary for synthesizing and interpreting the spatial and temporal data.

Segmentation. Within the segmentation script, the function segmentation_all
(folder_name, gaussian_filter_size) will segment all z-discs and all sarco-

meres from each frame. The first parameter, “folder_name” specifies the folder that the

data is in. The second parameter, “gaussian_filter_size” specifies the standard devia-

tion for the Gaussian kernel applied to the image during z-disc segmentation [30]. The default

value for gaussian_filter_size = 1 and that is the value for all data shown in this

paper. In our experience, a value of 2 may be more appropriate for movies of hiPSC-CMs that

have high levels of irregular fluctuating background signal, and thus it is left as a potential tun-

able parameter with a default value of 1. The key steps of segmentation are illustrated in Fig 3.

z-disc segmentation is conducted by computing the Laplacian of the image [27], applying a

Gaussian filter to the Laplacian [30], and then using the scikit-image “measure.

Table 1. Summary of experimental examples included in this paper (E1, E2, E3, E4, and E5). We note that Examples E1 and E2 have already been published and made

publicly available at https://github.com/HMS-IDAC/SarcTrack [10].

key information on the experimental data key Sarc-Graph analysis

challenges

additional

info

E1 hiPSC-CMs cultured on a fibronectin coated glass substrate, vertically aligned fibers. large deformation [10]

E2 hiPSC-CMs cultured on a fibronectin coated glass substrate, tangentially aligned fibers. large deformation [10]

E3 Single paced hiPSC-CM constrained on a micropatterned island (2000 μm2) with fibronectin coating on top of

soft polyacrylamide hydrogel (7.9 kPa). The method for making the hydrogel is described in [25].

low spatial resolution, large

deformation

[25, 26]

E4 Monolayer of paced hiPSC-CMs cultured on a fibronectin-coated glass substrate. substantial background signal [25, 26]

E5 Single paced hiPSC-CMs cultured on a fibronectin-coated glass substrate. low spatial resolution, small

deformation

[25, 26]

https://doi.org/10.1371/journal.pcbi.1009443.t001
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find_contours()” function [31] to identify contours with a level matching a scalar

threshold computed via Otsu’s method [28]. We note briefly that a global threshold deter-

mined with Otsu’s method is sufficient (i.e., an adaptive threshold is not required) because

thresholding is performed on the Laplacian rather than the original image. As illustrated in Fig

3C, each contour represents a segmented z-disc and the properties of each z-disc are computed

algorithmically from the contours. Of note, contour position is computed as the mean position

of each pixel in the contour, contour length is computed as the maximum possible distance

between two pixels in the contour, and contour endpoints are the locations of the pixels that

correspond to the maximum distance.

Once z-discs are segmented, sarcomeres are procedurally identified from the segmented z-

discs with a custom algorithm schematically illustrated in Fig 3F. In brief, the steps of the algo-

rithm are as follows:

1. Compute the distance between the center of each z-discs and the center of its nearest

neighbor.

Fig 3. Segmenting and tracking the z-discs and sarcomeres: (a) An example of a raw synthetic two-dimensional (2D) input image; (b) The Laplacian of the input

image is used to detect the high gradients present at the edge of every z-disc [27]; (c) z-discs are identified as closed contours where the value of the Laplacian exceeds

the threshold computed with Otsu’s method [28]; (d) Sarcomeres are procedurally identified from the segmented z-discs; (e) Sarcomeres and z-discs are tracked

independently between frames with the Python trackpy package [29]; (f) The algorithm to segment sarcomeres is based on linking the approximately parallel z-discs to

their closest neighbors in the direction perpendicular to the z-disc; (g) Sarcomere properties are computed from the pair of associated z-discs; (h) Tracking each

sarcomere leads to multiple spatially resolved time series.

https://doi.org/10.1371/journal.pcbi.1009443.g003
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2. Define median_neigh as the median distance between a z-disc and its nearest neighbor.

3. For each z-disc, define a line that goes through the center of the z-disc and is perpendicular

to the axis defined by the contour endpoints. Then, define the two points on the line that

are median_neigh/2 distance from the z-disc center. These points are referred to as

“ghost_points.” This is illustrated in Fig 3F.

4. Find the nearest neighbor for each point in ghost_points.

5. If there is a two-way nearest neighbor match between a pair in ghost_points, the pair

of z-discs will correspond to a segmented sarcomere.

As illustrated in Fig 3F, this algorithm links approximately parallel z-discs. In order to flexi-

bly accommodate potential image artifacts, the criteria for “approximately parallel” is not

strictly defined. However, in most cases, there will not be a persistent two way nearest neigh-

bor match unless z-discs bound a convex quadrilateral, ideally a trapezoid. If necessary, addi-

tional match rejection criteria could be integrated into the algorithm. Once a sarcomere is

identified, its properties are computed from the properties of the corresponding paired z-

discs. This is illustrated in Fig 3G. Of note, sarcomere width is computed as the mean length of

the two z-discs, sarcomere length is computed as the distance between the two z-disc centers,

and sarcomere angle is computed as the angle of the vector connecting the two z-disc centers.

For the examples shown in this paper, the segmentation step takes order of 10s of seconds

to a few minutes to run on a single laptop. We also note that users working with still images

rather than movies can still segment z-discs and sarcomeres from a single frame, and can still

create a spatial graph with their data and perform several aspects of the spatial analysis

described in this paper. For generality, all length data is reported in units of pixels.

Tracking and processing time series data. The tracking component of Sarc-Graph is

for independently tracking all z-discs and all sarcomeres. Tracking the sarcomeres is necessary

for reporting the relative length change from frame to frame. Without tracking, it is only possi-

ble to report population average relative length change which is substantially less information

rich because the sarcomeres do not necessarily contract in perfect synchrony, and are not nec-

essarily of identical lengths. We track the z-discs and sarcomeres independently because we

use this information to construct a spatial graph, described later in the text. Tracking is per-

formed by calling the “run_all_tracking(folder_name,tp_depth)” function. As

stated previously, “folder_name” specifies the folder that the data is in. The second param-

eter, “tp_depth” specifies the farthest distance in pixels that a tracked entity can travel

between frames [29]. The default value for tp_depth = 4 and that is the value for all data

shown in this paper. In some cases, particularly for movies with lower spatial resolution, it is

necessary to change to tp_depth = 3. Particle tracking is performed with the Python package

trackpy which is based on the Crocker–Grier algorithm [29, 32]. We note that we do not use

trackpy for feature detection, instead we convert each segmented z-disc and sarcomere to a

pandas DataFrame for compatibility with the trackpy framework [33]. The outcome of run-

ning run_all_tracking() is a unique ID for each particle that is tracked for over 10% of

the movie. With this information, it is possible to locate each tracked particle in space across

multiple frames, as illustrated in Fig 3E where the position of each sarcomere across all frames

is plotted.

The time_series component of our computational framework processes the results

from tracking so that there is time series data describing the length, normalized length

ðL � �LÞ=�L, width, angle, and position for each tracked sarcomere. This is accomplished by

running the function “timeseries_all(folder_name, keep_thresh)” where

keep_thresh represents the fraction of movie frames that a tracked sarcomere must be
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present in to get processed. We recommend keep_thresh = 0.75 for quantitative analysis

of time series data and keep_thresh>1/k for visualization, where k is the approximate

number of times the cell contracts during one movie. To process the results from tracking,

Gaussian process regression is used to interpolate data across frames which temporarily lose

signal [34]. Gaussian process regression is implemented through python scikit-learn with a

radial basis function (RBF) and white noise kernel [35]. In addition to interpolating between

lost frames, Gaussian process regression has the added benefit of adaptively smoothing the

data without a need for additional dataset-specific input parameters. The main result of run-

ning the timeseries_all function is illustrated in Fig 3H where normalized sarcomere

length is plotted with respect to frame number. Even with this synthetic data example, the indi-

vidual recovered time series deviate from the ground truth. This is for two main reasons. First,

for the ground truth geometry that we specified, some sarcomeres are angled out of the image

z-plane and are thus not perfectly captured by a 2D image. Second, the limited resolution of

the images introduces artifacts where lengths less than 1 pixel cannot be perfectly captured.

However, the mean of all time series curves illustrated in Fig 3H is a near perfect fit to the

ground truth.

For the examples shown in this paper, the tracking step takes order of 10s of seconds to

a minute to run on a single laptop. The time_series step takes on the order of 10s of sec-

onds to a few minutes to run. The time_series step will output several user friendly text

files describing sarcomere properties with respect to time where each row corresponds to a

tracked sarcomere and each column corresponds to a movie frame. The normalized length

data can be automatically plotted with the function plot_normalized_tracked_ti-
meseries() from the analysis_tools file. For generality, all time data is reported in

units of frames.

Computing average deformation (Favg). Developing methods to describe data rich

images and movies of cells with a tractable set of output parameters is an active area of research

[11, 36]. In this paper specifically, we draw inspiration from recent work on summarizing data

from traction force microscopy experiments [20] and agent based model simulations [37, 38]

and propose a method to compute the mean deformation gradient of each domain with

respect to time. First, we define the standard continuum mechanics deformation gradient F as

follows:

F dX ¼ dx ð1Þ

where dX is a vector in the initial configuration, dx is the vector in the deformed configuration,

and F is the mapping between them [39]. In the context of analyzing movies of contracting

hiPSC-CMs, we first define a set of n vectors v that connect each potential pair of tracked fidu-

cial markers, as illustrated in Fig 4A. The direction and magnitude of each vector v will change

as the fiducial markers move between movie frames. With this definition, we can set up the

over-determined system of equations:

FavgΛ0 ¼ Λ where Λ0 ¼ ½v01; v02; . . . ; v0n� and Λ ¼ ½v1; v2; . . . ; vn� ð2Þ

where Favg is a 2 × 2 matrix, Λ0 is a 2 × n matrix of vectors in the initial (reference) configura-

tion movie frame, and Λ is a 2 × n matrix of vectors in the current (deformed) configuration

movie frame. Note that when the initial frame and the current frame are identical, Λ0 = Λ and

Favg = I. The initial configuration can be defined as either the first frame of the movie, or a

selected movie frame where the cell is known to be in a relaxed state. Then, we can use the
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normal equation to solve for the best fit average deformation gradient as:

Favg ¼ ΛΛT
0
½Λ0Λ

T
0
�
� 1
: ð3Þ

Once computed, the components of Favg can be plotted directly, or Favg can be manipulated

to provide information that is more convenient to compare and interpret. For example, we can

write

Favg ¼ RavgUavg ð4Þ

where Ravg is a rotation tensor and Uavg is a symmetric positive definite tensor that represents

stretch. In the numerical setting, Ravg and Uavg are computed with the scipy polar decomposi-

tion function [30]. We can also compute the eigenvalues and eigenvectors of Uavg, l
avg
1

, l
avg
2

,

uavg
1 , and uavg

2 respectively. In the numerical setting, this is done with the numpy linalg package,

and we always define l
avg
1
< l

avg
2

[23]. From a mechanical data interpretation perspective, the

average stretch values l
avg
1

and l
avg
2

and the associated eigenvectors are particularly convenient

because they contain information about both the magnitude and direction of contraction. This

is illustrated in Fig 1B and 1C.

Because sarcomere data is already processed through the time_series component of

our framework, we use the sarcomeres as our fiducial markers to define Λ and Λ0. We note

that this approach would be just as effective with the z-discs chosen as fiducial markers. In

addition, if 3D data was available, this approach would still work with Favg as a 3 × 3 matrix

and Λ and Λ0 as 3 × n matrices. Within the analysis_tools file, the function compu-
te_F_whole_movie() will compute Favg for each movie frame. The function visuali-
ze_F_full_movie() will create a visualization of l

avg
1

and l
avg
2

as a function of the movie

frame and schematically illustrate Favg overlaid on the original image data, as shown in Fig 1.

The computational cost of computing and processing Favg for all frames is on the order of sec-

onds to 10s of seconds on a single laptop. The computational cost of data visualization is on

the order of 10s of seconds to minutes.

Fig 4. Data analysis from segmentation and tracking: (a) Tracked elements are treated as fiducial markers and used to construct an average deformation gradient F

(see Eqs 1–4); (b) z-discs and sarcomeres are tracked independently and used to construct a spatial graph (z-discs are “nodes” and sarcomeres are “edges”, edge color

corresponds to sarcomere orientation, node color corresponds to correlation in sarcomere orientation) to measure correlations based on network distance; (c)

Automated analysis of time series data is used to extract constants such as mean contraction time and number of peaks.

https://doi.org/10.1371/journal.pcbi.1009443.g004
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Comparing average deformation (Favg) to average sarcomere shortening (~s, savg) and

Orientational Order Parameter (OOP). In addition to defining tensor Favg as a dynamic

metric that evolves over the course of the entire beating hiPSC-CM movie, it is possible to for-

mulate scalar metrics from Favg that are more straightforward to directly compare to well

established metrics for describing hiPSC-CMs [7]. Here we focus on defining scalar metrics

from Favg that are directly comparable to average sarcomere shortening (~s, savg) [10], and the

Orientational Order Parameter (OOP) [11, 14, 40].

We compute average sarcomere shortening in two different ways. In both cases, we work

with the normalized sarcomere length obtained from time_series y ¼ ðL � �LÞ=�L where L
is sarcomere length in pixels. Given normalized sarcomere length y for each movie frame, we

define shortening as:

s ¼
ymax � ymin

ymax þ 1
ð5Þ

where ymax is the maximum normalized length and ymin is the minimum normalized length.

We note briefly that this is equivalent to defining s = (Lmax − Lmin)/Lmax. Then, we can define ~s
as the median value of s for all sarcomeres tracked in the movie. We choose to use median

rather than mean in this case because the mean is more susceptible to outliers and thus ~s is a

better reflection of the ground truth sarcomere deformation. In addition, we can compute the

mean normalized length time series yavg and then compute savg based on the single mean time

series. If all sarcomeres are contracting identically, ~s and savg will be identical. However, if this

is not the case, the two values will likely differ and ~s will reflect average individual sarcomere

behavior while savg will reflect both individual sarcomeres and the (lack of) synchrony between

them. Functions to compute ~s and savg are given in the functional_metrics component

of Sarc-Graph.

In addition to computing mean sarcomere shortening, we specify the method for comput-

ing OOP from hiPSC-CM movies that we implement in the functional_metrics com-

ponent of Sarc-Graph. When hiPSC-CMs are fully relaxed, individual sarcomere chains are no

longer under systolic tension and can thus become wavy and lose local alignment. Therefore,

the first step to computing OOP is to define a frame of the movie where the lowest fraction of

sarcomere chains will be in their relaxed and potentially wavy configuration. To select this

frame, we compute det(Favg) for every movie frame with the first frame of the movie used as

the reference configuration. Then, we identify the frame where det(Favg) is the greatest (i.e. the

sarcomeres are most relaxed) and select that frame as the reference frame and recompute Favg.

With the appropriately selected reference frame, we re-compute det(Favg) and define the most

contracted frame as the frame with the lowest value of det(Favg).

We compute OOP for the static image corresponding to the most contracted frame of the

movie. To do this, we define structural tensor T following the literature:

T ¼ 2

rixr
i
x rixr

i
y

riyr
i
x riyr

i
y

2

4

3

5 �
1 0

0 1

" #* +

ð6Þ

where ri ¼ ½rix; r
i
y� is the unit vector describing the orientation of the ith sarcomere [14]. The

structural tensor contains information about the amount and direction of sarcomere align-

ment. Given T, with eigenvalues amax and amin and corresponding unit eigenvectors vmax and

vmin, OOP = amax. When OOP = 0.0, sarcomeres are oriented randomly. When OOP = 1.0,

sarcomeres are perfectly aligned. Corresponding eigenvector vmax corresponds to the domi-

nant direction of sarcomere orientation.
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In order to best relate Favg to OOP, we define two scalar metrics Ciso and Ck that describe

average radial contraction, and contraction in the direction of dominant sarcomere orienta-

tion vmax respectively. Unlike individual sarcomere contraction or the average of individual

sarcomere contraction, Ciso and Ck represent deformation throughout the whole domain and

not necessarily along the sarcomere axis. Metric Ciso is defined as

Ciso ¼ 1:0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðFavgÞ

dim
q

ð7Þ

where Favg is computed in the most contracted frame and dim = 2 for the results presented in

this paper (for extension to 3D, dim = 3). Practically, Ciso is the line shortening during contrac-

tion of an equivalent system where contraction is not directionally dependent. When Ciso =

0.0, no shortening occurs. As an example, a value Ciso = 0.10 corresponds to an equivalent iso-

tropic line shortening of 10% in all directions. Essentially, higher Ciso indicates higher levels of

hiPSC-CM contraction.

To quantify shortening in the dominant direction specified by vmax computed from T, we

consider the relation Favgv0 = vmax where v0 is the corresponding vector defined in the refer-

ence frame. We can manipulate this equation to compute v0 ¼ F� 1

avgvmax and then define Ck as

Ck ¼
jv0j � jvmaxj

jv0j
: ð8Þ

With this definition, Ck is the fractional shortening of a line in the direction of vmax where

direction is defined in the contracted configuration. Conveniently, lower ~s and savg, Ciso, and

Ck all correspond to lower levels of contraction, and higher ~s and savg, Ciso, and Ck all corre-

spond to higher levels of contraction.

Functions to compute and visualize ~s, savg, OOP, Ciso, and Ck are all defined in the func-
tional_metrics script. The function “compute_metrics” will compute ~s, savg, OOP,

Ciso, and Ck and create a visualization of OOP and Favg. The function “visualize_lamb-
da_as_functional_metric” will create a movie of l

avg
1

and l
avg
2

changing over the

course of the movie. Examples of this are provided as Supplementary Information. The

computational cost of computing Favg (including computing Ciso, and Ck) and ~s, savg, and OOP

for all frames is on the order of seconds to 10s of seconds on a single laptop.

Preparing spatial graphs. In addition to analyzing average cell and sarcomere behavior

(ex: average z-disc and sarcomere morphological properties, Favg), we are interested in analyz-

ing the spatiotemporal patterns that arise on the sub-cellular level. We implemented the spa-
tial_graph component of Sarc-Graph to conveniently synthesize the outputs of the

segmentation, tracking, and time_series steps. Specifically, running the function

create_spatial_graph() will create a spatial graph where z-discs are represented as

nodes and sarcomeres are represented as edges. With a spatial graph structure, it is then possi-

ble to better quantify spatiotemporal patterns in hiPSC-CM behavior. For example, access to a

spatial graph can help delineate sarcomere synchrony that depends on Euclidean distance, and

sarcomere synchrony that depends on network distance. In addition, access to a spatial graph

can help us better quantify both global and local sarcomere alignment. This functionality is

illustrated in Fig 4B.

In the run_all_tracking() step, z-discs and sarcomeres are tracked independently.

Every z-disc that is at least partially tracked (defined as present in over 10% of the movie

frames) will have a unique local (frame-specific) ID and a unique global ID. Each node of the

spatial graph corresponds to a unique global ID, and the local IDs specific to each frame are

linked to the corresponding global ID node. Each tracked sarcomere is associated with two

local z-disc IDs in each frame. To add sarcomeres to the spatial graph, the global ID of the
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associated z-disc is first determined. Then, either a new edge is created linking the two global

IDs, or, if the edge already exists, the weight of the edge is increased. The spatial graph is cre-

ated with the NetworkX python package, and all operations, such as computing the shortest

path between two nodes, rely on built-in NetworkX functionality [41]. The function cre-
ate_spatial_graph() runs in seconds on a single laptop. Running create_spa-
tial_graph() will also produce a schematic drawing of the spatial graph.

Notable analysis and visualization tools. In addition to the functions to compute and

visualize Favg and other functional metrics (compute_F_whole_movie(), visuali-
ze_F_full_movie(), compute_metrics(), visualize_lambda_as_func-
tional_metric()) and plot normalized sarcomere length with respect to time

(plot_normalized_tracked_timeseries()), the analysis_tools component

of Sarc-Graph contains multiple functions to further visualize and analyze the data acquired

from the hiPSC-CM movies. Example outputs from these functions are included on the Sarc-

Graph GitHub page. Additional key analysis and visualization functions are as follows:

• visualize_segmentation(folder_name, gaussian_filter_size,
frame_num): Visualization of the segmented z-discs and sarcomeres overlaid on the origi-

nal image. The parameter gaussian_filter_size should match the value chosen in

segmentation. The default for gaussian_filter_size = 1 and the default for

frame_num = 0.

• visualize_contract_anim_movie(folder_name, re_run_timeseries,
use_re_run_timeseries, keep_thresh = 0.75): Visualization of the results

of tracking overlaid on the original movie of the contracting hiPSC-CMs. If re_run_ti-
meseries = True and use_re_run_timeseries = True this function will re-run

the timeseries_all() function with the new specified keep_thresh. The saved

tracking data will be designated for visualization purposes only.

• cluster_timeseries_plot_dendrogram(folder_name,compute_-
dist_DTW, compute_dist_euclidean): Visualize hierarchical clustering of all

normalized sarcomere length time series data and plot a dendrogram that illustrates the clus-

tering [30]. If compute_dist_DTW = True the similarity between each sarcomere time

series will be measured with a Dynamic Time Warping algorithm [42]. Because this can be

time consuming (order of minutes to 10s of minutes), we also provide an option to set com-
pute_dist_euclidean = True and instead base clustering on the Euclidean distance

between time series.

• plot_normalized_tracked_timeseries(folder_name): This function will

create a plot of the normalized length of the tracked sarcomeres with respect to frame

number.

• plot_untracked_absolute_timeseries(folder_name): This function will

create a plot of the absolute sarcomere lengths in pixels with respect to frame number for all

segmented sarcomeres. The number of segmented sarcomeres will exceed the number of

tracked sarcomeres.

• compute_timeseries_individual_parameters(folder_name): This func-

tion will compute and save scalar values describing the normalized length time series data

for the tracked sarcomeres (contraction time, relaxation time, flat time, period, offset, etc.)

The results of this analysis will be saved in a spreadsheet titled “timeseries_parame-
ters_info.xlsx.”
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• analyze_J_full_movie(folder_name): This function will compute and save sca-

lar values describing the Favg time series data. Specifically, it will compute time constants

describing the plot of the scalar Jacobian(J = det Favg) with respect to frame number. This is

illustrated in Fig 3C.

• compare_tracked_untracked(folder_name): This function will compare the

tracked and untracked populations through random sampling of the untracked population.

These plots are important for understanding if the tracked data is significantly biased com-

pared to the segmented data.

• preliminary_spatial_temporal_correlation_info(folder_name):

This function will perform a preliminary analysis of spatial/temporal correlation within the

hiPSC-CMs. The main outcome is a plot of normalized cross-correlation score between nor-

malized sarcomere length time series data with respect to both Euclidean and network

distances.

Results and discussion

Synthetic data examples

Our first investigation into the performance of Sarc-Graph on synthetic data is illustrated in

Fig 5. In this investigation, we define a sinusoidal chain of 20 sarcomeres that deform homo-

geneously following the time series illustrated in Fig 2A. Under baseline conditions (modest

amplitude, little angling out of plane, and low to moderate noise), Sarc-Graph is able to suc-

cessfully track all 20 out of 20 sarcomeres. This is illustrated in Fig 5A. Then, we adversely alter

these baseline conditions to demonstrate the limitations of our approach. In the first study,

illustrated in Fig 5B, we alter the underlying 3D geometry of the sarcomere chain. As antici-

pated, performance degrades when we increase the amplitude of the sine wave, and when we

Fig 5. For each image, the number of sarcomeres successfully segmented and tracked (out of 20 possible) is reported. Running the algorithm on synthetic data

shows that the code is robust to geometry and noise up to a limit: (a) Illustration of successful z-disc and sarcomere segmentation and tracking for a curved geometry

in the presence of noise; (b) Performance degrades when the baseline geometry moves partially out of plane (here slanted in the z-direction), and when the sarcomere

chain is too distorted (here high amplitude to period ratio for sinusoidal geometry); (c) Performance degrades in the presence of Perlin noise, in particular noise that is

similar in size and brightness to the z-discs themselves.

https://doi.org/10.1371/journal.pcbi.1009443.g005
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increase the out of plane tilt of the sarcomere chain. That being said, we are able to segment

and track at least half of the 20 sarcomeres in all but four of the examples shown. In the second

study, illustrated in Fig 5C, we adversely alter baseline conditions by adding noise to the ren-

dered image. Specifically, we add Perlin noise at varying levels of magnitude and with a varying

number of octaves [22]. From these results, it is clear that our computational framework is

quite robust to all tested types of low magnitude noise, and Perlin noise with a low number of

octaves (low frequency). However, performance degrades in the presence of Perlin noise that

has high gradients and is similar in size and brightness to the simulated z-discs themselves. We

note that if a specific experimental dataset has a characteristic noise pattern that can be

removed with a known operation, implementing additional steps in the segmentation
component of our computational framework to address it would be straightforward. In some

cases, simply increasing the parameter gaussian_filter_size will resolve the issue. In

the experimental data that we have tested the computational framework on thus far, our cur-

rent segmentation process is effective. To complement the synthetic data results shown in Fig

5, S3 Text shows the effect of decreasing image resolution on Sarc-Graph performance.

Our second investigation into the performance of Sarc-Graph on synthetic data is illus-

trated in Fig 6. In these examples, our aim is to design synthetic data that contains many of

challenges associated with analyzing real hiPSC-CMs: out of plane deformation, sarcomere

chain curvature, sarcomere chain overlap, inhomogeneous deformation, variable z-disc size,

and irregular contraction. From S1 to S5 the examples are loosely organized from “least” to

“most” challenging for the computational framework to capture. The corresponding movies

are included in our GitHub repository. Briefly, example S1 shows four sarcomere chains of

variable curvature (decreasing from left to right) and variable out of plane deformation

(increasing from left to right) deforming homogeneously. Our framework is able to recover 77

out of 80 sarcomeres, match the ground truth mean time series data, and match the ground

truth on l
avg
1

and l
avg
2

. This is consistent with the results shown in Fig 5. Example S2 shows two

families of sarcomere chains, an external ellipse and four internal chains that overlap in the

center. Our framework is able to recover 90 out of 99 sarcomeres (error occurs primarily near

the overlap region), match the ground truth mean time series data, and match the ground

truth on l
avg
1

and l
avg
2

.

Example S3 shows three closely positioned elliptical sarcomere chains that deform inhomo-

geneously. Our framework is able to recover 34 out of 40 sarcomeres, however, because there

is bias in which sarcomeres are recovered (recovery is worse towards the bottom of the image

frame), both the mean time series data and the l
avg
1

and l
avg
2

data are unable to perfectly capture

the ground truth. We note that the results for l
avg
1

and l
avg
2

are a better reflection of the ground

truth than the mean time series data. We also note that the amount of sarcomere contraction

simulated in S3 exceeds what is typically observed in the experimental setting (over 30%

contraction).

Example S4 shows two families of sarcomere chains: an external ellipse, and multiple par-

tially overlapping and curved internal chains in different z-planes. In Example S4, the sarco-

meres deform inhomogeneously with a brief abrupt jump in sarcomere deformation around

frame 70. Our framework is able to recover 75 out of 90 sarcomeres, and is able to nearly

recover the mean time series data, and the l
avg
1

and l
avg
2

data. We note that for both approaches,

the abrupt jump in sarcomere behavior seen in the ground truth is smoothed out in the auto-

mated time series processing because during the abrupt jump tracking temporarily fails for the

entire outer ring of sarcomeres. There are two main implications of this result. First, that large

abrupt motion may cause Sarc-Graph to fail. Second, that Sarc-Graph is able to track sarco-

meres on either end of a time period where signal is temporarily lost, and interpolate data
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Fig 6. Example performance on synthetic data of increasing complexity with a known ground truth: Segmentation and tracking (marker color

corresponds to sarcomere contraction in the illustrated frame); Constructing a spatial graph (line color corresponds to sarcomere orientation);

Recovering individual time series data (both Sarc-Graph output and ground truth shown); Recovering average deformation behavior (both Sarc-

Graph output and ground truth shown).

https://doi.org/10.1371/journal.pcbi.1009443.g006
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across the missing frames. Similar to example S3, the plot of l
avg
1

and l
avg
2

is a better reflection

of the ground truth than the mean time series curve.

Example S5 shows multiple sarcomere chains that are all angled out of plane, appear to

overlap at multiple points, and undergo inhomogeneous deformation. In this case, we are only

able to recover time series data for 27 out of 70 sarcomeres. This results in mean time series

data that is a poor reflection of the ground truth. However, the l
avg
1

and l
avg
2

data is a much bet-

ter match to the ground truth. This is a positive sign towards the efficacy of our proposed met-

ric even when the number of sarcomeres recovered is relatively low. Though only 27 out of 70

sarcomeres were fully tracked, segmented but only partially tracked sarcomeres appear on the

spatial graph shown in Fig 6 example S5. Looking forward, additional criteria to further refine

the spatial graph and further delineate “probable” and “improbable” links can readily be added

to Sarc-Graph within the spatial_graph module.

In Table 2, we report median individual sarcomere shortening (~s), mean time series sarco-

mere shortening (savg), Orientational Order Parameter (OOP), equivalent isotropic contrac-

tion (Ciso), and contraction in the dominant direction of sarcomere orientation (Ck) for each

synthetic data example. For all of the synthetic data cases, we are able to compute a ground

truth for each of these parameters from the known ground truth contraction, displacement,

and orientation of the sarcomere geometry. For examples S1 and S2, the parameters recovered

by Sarc-Graph are a near perfect match to the ground truth. However, for all other samples

minor discrepancies arise in ~s, OOP, Ciso, and Ck. For example S4, ~s is overestimated. For

examples S3 and S5, OOP is overestimated, Ciso is underestimated, and Ck is underestimated.

Consistent with the results shown in Fig 6, we believe that this error is due to bias in the region

where sarcomeres are recovered in S3, and failure of the algorithm for overlapping and

severely out of plane sarcomere chains in S4 and S5. We note that for all examples but S1 and

S2—where sarcomere contraction is synchronous—recovered savg is not a good match to the

ground truth. This is consistent with the normalized sarcomere length time series plot shown

in Fig 6. However, the other metrics are able to perform acceptably in the presence of non-syn-

chronous contraction. In general, these errors indicate that care should be taken when com-

paring results across beating hiPSC-CM movies that may have systemic differences. The

accessibility of our code for generating additional synthetic data can aid in this preliminary

check.

In all examples, most glaringly example S5, more sarcomeres are segmented and tracked for

a small number of frames (and thus appear on the spatial graph) than are tracked for enough

frames to reconstruct the full time series. The recovered time series (l
avg
1

and l
avg
2

) and parame-

ters (Ciso and Ck) associated with Favg are typically a closer match to the synthetic data ground

truth behavior than the mean curve of the recovered time series data. Example S5—with out of

plane inhomogeneous deformation and overlapping sarcomere chains—is perhaps the best

reflection of the challenges that we have seen in our experience thus far with the experimental

data. We note that the extensible code used to generate the synthetic data is published on

Table 2. Comparison of Sarc-Graph computed ~s, savg, OOP, Ciso, and Ck with the ground truth values of these parameters for each synthetic data example.

~s ~sGT savg sGTavg OOP OOPGT Ciso CGT
iso Ck CGT

k

S1 0.15 0.15 0.15 0.15 0.62 0.63 0.15 0.15 0.15 0.15

S2 0.085 0.074 0.074 0.075 0.080 0.066 0.076 0.075 0.076 0.075

S3 0.38 0.40 0.079 0.24 0.93 0.88 0.11 0.16 0.039 0.070

S4 0.058 0.043 0.042 0.024 0.16 0.15 0.04 0.04 0.039 0.038

S5 0.22 0.22 0.085 0.042 0.35 0.21 0.13 0.16 0.17 0.20

https://doi.org/10.1371/journal.pcbi.1009443.t002
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GitHub so implementing and testing additional examples is straightforward. To complement

these results, S4 Text shows the performance of Sarc-Graph on the synthetic data generated for

the SarcTrack paper [10] and directly compares results from both Sarc-Graph and SarcTrack.

Experimental data examples

Here, we show the performance of Sarc-Graph on the five experimental data examples listed in

Table 1. In Figs 7–9, we illustrate the key Sarc-Graph outputs. In Table 3, we report ~s, savg,

OOP, Cavg, and Ck for each example. In the Supplementary Information section, we include a

movie for each sample that shows both the change in length of the successfully tracked sarco-

meres, and how our computed metric Favg changes over the course of the movie.

In Fig 7, we show the performance of Sarc-Graph on two similar examples of beating

hiPSC-CM movies, examples E1 and E2. For example E1, we are able to segment� 500 sarco-

meres per frame and successfully track 74 sarcomeres. The time series plot of absolute sarco-

mere length change with respect to frame number shows three distinct contraction events

during the movie. Though the individual sarcomeres are clearly not perfectly in sync, there is

enough of a unifying pattern for these three peaks to emerge. These three distinct contraction

events are also reflected in the plot of l
avg
1

and l
avg
2

. For example E2, we are able to segment�

500 sarcomeres per frame and successfully track 60 sarcomeres. The time series plots of abso-

lute sarcomere length change and l
avg
1

and l
avg
2

with respect to frame number also show three

distinct peaks. We also show the spatial graph representation of each example and a plot of

normalized cross-correlation between pairs of individual sarcomere time series curves with

respect to network distance.

Qualitatively, examples E1 and E2 are different in that the sarcomeres in example E1 appear

vertically(top/bottom of the page) aligned throughout while the sarcomeres in example E2

appear tangentially aligned around the edge of the cell and unaligned in the center. This quali-

tative observation is consistent with the values of OOP reported in Table 3. In addition, we can

use our computed metric Favg to go beyond morphology alone and quantify the function of the

observed hiPSC-CMs. By looking at the time series plots of l
avg
1

and l
avg
2

with respect to frame

number, we can see that example E1 is deforming quite anisotropically l
avg
1
< l

avg
2

while the

deformation of example E2 is much closer to isotropic where l
avg
1
� l

avg
2

. In example E1, Ck is

meaningfully greater than Ciso while in example E2 the two parameters are much closer in

value. Essentially, example E1 is experiencing more substantial oriented contraction than

example E2. We also note that for these two examples, where ~s is similar but OOP is different,

metrics derived from Favg are able to capture functional differences in contraction.

In Fig 8, we show the performance of Sarc-Graph on two contrasting examples of beating

hiPSC-CM movies, examples E3 and E4. Example E3 is of a single hiPSC-CM adhered to a pat-

terned soft hydrogel substrate with highly aligned sarcomeres and large deformation while

Example E4 is of hiPSC-CMs in a monolayer culture without a clear direction of sarcomere

alignment. With Sarc-Graph, we are able to segment approximately 100, and track 44 sarco-

meres from E3. From the plots of l
avg
1

and l
avg
2

, and scalar metrics OOP, Ciso, and Ck, we

observe high sarcomere alignment and corresponding highly aligned contraction. Notably, the

cell contracts substantially in the direction perpendicular to fiber alignment, thus exhibiting

auxetic deformation during contraction. For example E4 we are able to segment approximately

700, and track 228 sarcomeres. This is notable because the conditions in E4 are far from ideal

for image analysis. In both cases, five distinct contraction events are observed over the course

of the movie and are visible from both the average normalized sarcomere length time series

and the l
avg
1

and l
avg
2

time series.
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Fig 7. Example performance on experimental data E1 and E2: Raw image visualization; z-disc and sarcomere segmentation; Sarcomeres that are tracked for 1/3 or

more of the movie, red corresponds to a contracted state, blue corresponds to a relaxed state (frame 20); Sarcomeres that are tracked for 3/4 or more of the movie, red

corresponds to a contracted state, blue corresponds to a relaxed state (frame 20), note that these sarcomeres are included in the time series analysis; Individual time

series data for normalized sarcomere length; Average deformation behavior; Illustration of the data represented as a spatial graph, color corresponds to sarcomere

orientation; Normalized sarcomere time series cross-correlation score plotted as a function of the distance along the network. S1 and S2 Movies are included for

further visualization.

https://doi.org/10.1371/journal.pcbi.1009443.g007
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Fig 8. Example performance on experimental data E3 and E4: Raw image visualization; z-disc and sarcomere segmentation; Sarcomeres that are tracked for 1/3 or

more of the movie, red corresponds to a contracted state, blue corresponds to a relaxed state (frame 50 for E3, frame 40 for E4); Sarcomeres that are tracked for 3/4 or

more of the movie, red corresponds to a contracted state, blue corresponds to a relaxed state (frame 50 for E3, frame 40 for E4), note that these sarcomeres are included

in the time series analysis; Individual time series data for normalized sarcomere length; Average deformation behavior; Illustration of the data represented as a spatial

graph, color corresponds to sarcomere orientation; Normalized sarcomere time series cross-correlation score plotted as a function of the distance along the network.

S3 and S4 Movies are included for further visualization.

https://doi.org/10.1371/journal.pcbi.1009443.g008
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In Fig 9, we show the performance of Sarc-Graph on example E5. Example E5 is of a

hiPSC-CM on a glass slide with poor fiber alignment, curved fibers, and relatively low defor-

mation over the course of the movie. With Sarc-Graph, we are able to segment approximately

800 and track 539 sarcomeres for example E5. Though individual sarcomeres in this movie

contract substantially (~s ¼ 0:13), there is low overall synchrony, and overall average deforma-

tion is quite low (Ciso = 0.0060). Despite low synchrony, Sarc-Graph still detects 5 distinct con-

tractions in both the average time series plot and the l
avg
1

and l
avg
2

time series plot. Notably,

overall contraction is also slightly higher (Ck> Ciso) in the dominant direction of sarcomere

orientation. This example is notable because Sarc-Graph is able to segment and track a high

number of sarcomeres from an irregular geometry and detect subtle sarcomere behavior

beyond the limits of what has been accomplished with the previous state of the art [10].

Fig 9. Example performance on experimental data E5: Raw image visualization; z-disc and sarcomere segmentation; Sarcomeres that are tracked for 1/3 or more of

the movie, red corresponds to a contracted state, blue corresponds to a relaxed state (frame 50); Sarcomeres that are tracked for 3/4 or more of the movie, red

corresponds to a contracted state, blue corresponds to a relaxed state (frame 50), note that these sarcomeres are included in the time series analysis; Individual time

series data for normalized sarcomere length; Average deformation behavior; Illustration of the data represented as a spatial graph, color corresponds to sarcomere

orientation; Normalized sarcomere time series cross-correlation score plotted as a function of the distance along the network. S5 Movie is included for further

visualization.

https://doi.org/10.1371/journal.pcbi.1009443.g009

Table 3. Sarc-Graph computed ~s, savg, OOP, Ciso, and Ck for each experimental data example.

~s savg OOP Ciso Ck
E1 0.17 0.049 0.48 0.015 0.026

E2 0.15 0.07 0.29 0.025 0.028

E3 0.18 0.061 0.68 0.069 0.041

E4 0.13 0.041 0.16 0.021 0.027

E5 0.13 0.02 0.38 0.0060 0.0066

https://doi.org/10.1371/journal.pcbi.1009443.t003
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To complement the results of analyzing movies E1-E5, we also apply Sarc-Graph to two

experimental datasets published by others [6, 12]. In both cases, we are only evaluating the seg-

mentation functionality of the code because the datasets only contain still images. In S1 Text,

we compare sarcomere length predicted by Sarc-Graph to the sarcomere length predicted by

the SOTA framework [12]. In S2 Text, we demonstrate the feasibility of constructing a

machine learning phenotype classification model using Sarc-Graph derived metrics with the

data published with Pasqualini et al. 2015 [6]. These results help provide broader context of

Sarc-Graph functionality and show the performance of Sarc-Graph on datasets that the code

was not originally designed for.

Current limitations and future directions

Based on the results from both synthetic and experimental data, it is clear that Sarc-Graph is a

powerful software tool for segmentation, tracking, and analysis of sarcomeres in hiPSC-CMs.

However, there are multiple current limitations and opportunities for further improvement.

Key limitations are as follows:

• Potential bias in interpreting data due to variations in sarcomere width. At present, seg-

mented sarcomeres are not weighted by size in any of the analysis steps. Therefore, a large

(i.e., wide) sarcomere will have the same importance as a small (i.e., narrow) sarcomere in

analysis. Because sarcomere width is measured and saved, it would be straightforward to

apply a width based weighting factor during the analysis step in future work and/or compare

segmented sarcomere widths between groups.

• Potential bias in segmentation due to missing poorly formed sarcomeres. As a general rule

of thumb, sarcomeres (i.e., z-disc pairs) that are not discernible to the human eye will not be

properly segmented by Sarc-Graph. In some cases, Sarc-Graph may segment sarcomere-like

shapes, but due to inconsistency between frames these shapes will rarely be both segmented

and tracked. In general, Sarc-Graph reported metrics have not been explored for poorly

formed individual sarcomeres and, at this point in time, are not suitable for these applica-

tions. An example of what applying Sarc-Graph to poorly formed sarcomeres might look

like is shown in S1 Text.

• Potential bias due to an inability to track all sarcomeres. As seen in both the synthetic and

experimental data examples, it is typical for many more sarcomeres to be segmented than

tracked. In some cases, segmented sarcomeres will be spurious and because these spurious

sarcomere-like conditions are less likely to persist across frames the tracking step provides a

beneficial additional filter to remove them. However, in many cases, sarcomere tracking will

fail due to either large deformations or deformation with respect to the image plane. Partial

tracking becomes a concern when there is bias in the type or location of sarcomeres that are

tracked. To address this, there are two options: (1) specify a smaller number of frames to

track (e.g. only a single contraction) thus reducing the chance of motion outside the image

plane; (2) use the compare_tracked_untracked() function to compare the proper-

ties of tracked and untracked sarcomeres. If there are notable systematic differences, further

investigation may be necessary. Future work will focus on making multiple tweaks to

improve the performance of Sarc-Graph in both consistent segmentation, tracking, and sub-

sequent statistical analysis.

• Lack of explicit force measurements. Our proposed metrics summarize kinematic informa-

tion only. During cell contraction, individual sarcomere chains may bend, buckle, re-

arrange, and interact with other cell components that are not directly visualized [43].

PLOS COMPUTATIONAL BIOLOGY Sarc-Graph: Automated analysis of hiPSC-derived cardiomyocytes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009443 October 6, 2021 22 / 27

https://doi.org/10.1371/journal.pcbi.1009443


Though Sarc-Graph is able to capture the kinematic aspects of bending, buckling, and re-

arrangement, Sarc-Graph is unable to capture any direct information about force. Therefore,

the proposed contraction metrics should be thought of strictly as kinematic contraction. In

future work, Sarc-Graph metrics can be combined with additional experimental information

and modeling to better determine the relationship between sarcomere length, motion, and

force.

Future work will focus on both addressing these limitations and comparing the Sarc-Graph

metrics to alternative approaches to capturing cell contractile function such as Traction Force

Microscopy [8, 44, 45]. Critically, Sarc-Graph is a platform thorough which biologically rele-

vant length and time scales for hiPSC-CM contraction can be uncovered. For example, Sarc-

Graph can be used to understand the relationship between individual sarcomere shortening

and overall cell deformation. By extracting explicitly defined relevant information from these

information rich movies of hiPSC-CM contraction, Sarc-Graph will help users compare

between groups of cells and help uncover fundamental relationships between external condi-

tions, morphology, and contractile function.

Conclusion

The objective of this work is to provide an open source computational framework to quantita-

tively analyze movies of beating hiPSC-CMs. To accomplish this, we introduce tools to seg-

ment and track z-discs and sarcomeres, and analyze their spatiotemporal behavior. Notably,

we are able to automatically segment and track a high number of sarcomeres across multiple

experimental conditions without any input parameter tuning, and we introduce two important

new approaches for the analysis of beating hiPSC-CM: a method for computing average defor-

mation gradient, and a method for treating the hiPSC-CMs as spatial graphs. Looking forward,

we see this work as an important tool for substantial future study of hiPSC-CM behavior.

Finally, our proposed computational framework is heavily documented and has a modular

extensible design. We anticipate that many components of our open source software will be

directly useful to other researchers.

Supporting information

S1 Text. A direct comparison to SarcOmere Texture Analysis (SOTA) software from Sut-

cliffe et al. [12]. Direct comparison to an alternative method for automatically quantifying

morphology of single images. Fig A. Pre-processing with a Gaussian filter. The effect of

applying a Gaussian filter as a pre-processing step on Sarc-Graph illustrated on data from Sut-

cliffe et al. 2018 [12]. Fig B. Direct comparison between Sarc-Graph and SOTA [12]. Com-

parison between SOTA and Sarc-Graph of sarcomere segmentation and analysis for the

images shown in Figure 6 of Sutcliffe et al. 2018 [12].

(PDF)

S2 Text. A direct comparison to Pasqualini et al. [6]. Evaluation of Sarc-Graph as a potential

tool for creating features suitable for machine learning based classification. Fig A. Pasqualini

et al. [6] dataset. Visualization of the un-processed dataset from Pasqualini et al. [6]. Fig B.

Pasqualini et al. [6] dataset segmented. Visualization of the dataset from Pasqualini et al. [6]

segmented with Sarc-Graph. Fig C. Pasqualini et al. [6] dataset analysis results. Visualization

of the information obtained from the Sarc-Graph segmentation shown in Fig B in S2 Text.

(PDF)

S3 Text. Influence of image resolution on Sarc-Graph performance. Presentation and analy-

sis of more synthetic data at multiple image resolutions (this is similar to Fig 5). Fig A.
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Demonstration of varied image resolution. Performance of Sarc-Graph in segmentation and

tracking with respect to image resolution. Fig B. Favg analysis at multiple image resolutions.

Comparison of Favg computed with Sarc-Graph to the ground truth at different rendering res-

olutions. Fig C. OOP analysis at multiple image resolutions. Comparison of OOP computed

with Sarc-Graph to the ground truth at different rendering resolutions. Fig D. Angle analysis

at multiple image resolutions. Comparison of sarcomere angle computed with Sarc-Graph to

the ground truth at different rendering resolutions.

(PDF)

S4 Text. A direct comparison to SarcTrack software from Toepfer et al. [10]. Direct com-

parison to an alternative method for automated segmentation and tracking of hiPSC-CMs. Fig

A. SarcTrack [10] comparison 1. Synthetic data and comparison to SarcTrack [10], example

“411.” Fig B. SarcTrack [10] comparison 2. Synthetic data and comparison to SarcTrack [10],

example “412.” Fig C. SarcTrack [10] comparison 3. Synthetic data and comparison to Sarc-

Track [10], example “421.” Fig D. SarcTrack [10] comparison 4. Synthetic data and compari-

son to SarcTrack [10], example “422.” Fig E. SarcTrack [10] comparison 5. Synthetic data and

comparison to SarcTrack [10], example “1011.” Fig F. SarcTrack [10] comparison 6. Synthetic

data and comparison to SarcTrack [10], example “1012.” Fig G. SarcTrack [10] comparison 7.

Synthetic data and comparison to SarcTrack [10], example “1021.” Fig H. SarcTrack [10]

comparison 8. Synthetic data and comparison to SarcTrack [10], example “1022.”.

(PDF)

S1 Movie. A movie of E1. The movie contains a schematic illustration of deformation gradient

Favg and tracked sarcomeres overlaid (sarcomere color corresponds to contraction level with

red indicating the highest level of contraction), magnitudes of average principal stretches (λ1,

λ2 computed from Favg), and average normalized sarcomere length, both with respect to the

movie frame number. This movie is a supplement to Fig 7, sample E1.

(MP4)

S2 Movie. A movie of E2. The movie contains a schematic illustration of deformation gradient

Favg and tracked sarcomeres overlaid (sarcomere color corresponds to contraction level with

red indicating the highest level of contraction), magnitudes of average principal stretches (λ1,

λ2 computed from Favg), and average normalized sarcomere length, both with respect to the

movie frame number. This movie is a supplement to Fig 7, sample E2.

(MP4)

S3 Movie. A movie of E3. The movie contains a schematic illustration of deformation gradient

Favg and tracked sarcomeres overlaid (sarcomere color corresponds to contraction level with

red indicating the highest level of contraction), magnitudes of average principal stretches (λ1,

λ2 computed from Favg), and average normalized sarcomere length, both with respect to the

movie frame number. This movie is a supplement to Fig 8, sample E3.

(MP4)

S4 Movie. A movie of E4. The movie contains a schematic illustration of deformation gradient

Favg and tracked sarcomeres overlaid (sarcomere color corresponds to contraction level with

red indicating the highest level of contraction), magnitudes of average principal stretches (λ1,

λ2 computed from Favg), and average normalized sarcomere length, both with respect to the

movie frame number. This movie is a supplement to Fig 8, sample E4.

(MP4)

S5 Movie. A movie of E5. The movie contains a schematic illustration of deformation gradient

Favg and tracked sarcomeres overlaid (sarcomere color corresponds to contraction level with
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red indicating the highest level of contraction), magnitudes of average principal stretches (λ1,

λ2 computed from Favg), and average normalized sarcomere length, both with respect to the

movie frame number. This movie is a supplement to Fig 9, sample E5. A still frame from this

movie is also shown in Fig 1.

(MP4)
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