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In this paper we examined how runners with different initial foot strike pattern (FSP)
develop their pattern over increasing speeds. The foot strike index (FSI) of 47 runners
[66% initially rearfoot strikers (RFS)] was measured in six speeds (2.5–5.0 ms−1), with
the hypotheses that the FSI would increase (i.e., move toward the fore of the foot) in
RFS strikers, but remain similar in mid- or forefoot strikers (MFS) runners. The majority of
runners (77%) maintained their original FSP by increasing speed. However, we detected
a significant (16.8%) decrease in the FSI in the MFS group as a function of running
speed, showing changes in the running strategy, despite the absence of a shift from
one FSP to another. Further, while both groups showed a decrease in contact times, we
found a group by speed interaction (p < 0.001) and specifically that this decrease was
lower in the MFS group with increasing running speeds. This could have implications in
the metabolic energy consumption for MFS-runners, typically measured at low speeds
for the assessment of running economy.

Keywords: strike index, human locomotion, running economy (RE), velocity, running strategy, foot strike patterns

INTRODUCTION

Foot strike patterns (FSP) describe the location of the first contact area of the foot with the ground
(Cavanagh and Lafortune, 1980) during running. At comfortable speeds, runners most commonly
strike with the rear part of the foot (∼78%), while the rest strike with the middle or the front part of
the foot (Santuz et al., 2016). The two strategies provide very distinct running patterns, exhibiting
differences in a plethora of biomechanical characteristics (Hayes and Caplan, 2012; de Almeida
et al., 2014; Almeida et al., 2015; Strauts et al., 2015; Valenzuela et al., 2015). For instance, it is well
accepted that runners that strike the ground with the heel exhibit a lower peak vertical ground
reaction force, lower external dorsiflexion moment and range of motion, while having a higher
loading rate of the vertical ground reaction forces and knee extension moment in comparison to
runners with a more anterior point of force application (Almeida et al., 2015; Valenzuela et al.,
2015). Moreover, certain FSPs have been linked to different injuries (Cheung and Davis, 2011;
Daoud et al., 2012; Rice et al., 2013) and to affect performance (Di Michele and Merni, 2014;
Ogueta-Alday et al., 2014; Ekizos et al., 2018).

The common strategy employed by humans to increase speed until ∼7 ms−1 is by exerting
larger vertical ground reaction forces (Arampatzis et al., 1999; Weyand et al., 2000), which
leads to increments in step length (Mercer et al., 2002; Dorn et al., 2012). Ground reaction
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forces subsequently increase the loading on the human system
and have to be produced in shorter contact times that are
associated with increasing velocities (Gatesy and Biewener, 1991;
Arampatzis et al., 2000). Except the overall higher loading, the
transition from a lower to a higher speed taxes the human system
with an increased oxygen consumption. However, humans
maintain similar energy costs (J/kg per meter distance) in a range
of running speeds (Margaria et al., 1963; Carrier et al., 1984;
Bramble and Lieberman, 2004). From a mechanical point of view,
it has been suggested that these increases in running speed are
achieved through a repositioning of the foot in relation to the
ground. It is suggested that runners gradually adapt their FSP in
order to modify the impact of loading or energy costs (Cheung
and Davis, 2011; Cheung and Rainbow, 2014; Di Michele and
Merni, 2014) and gradually employ a more anterior point of
force application at first contact (Keller et al., 1996). However,
previous reports did not find a consistent behavior regarding
the changes of FSP with increasing speeds. Some studies report
that the point of force application moves to the anterior with
increasing speeds (Keller et al., 1996; Wang et al., 2018), but
this alteration was not confirmed by other studies (Breine et al.,
2014, 2019; Cheung et al., 2017). Furthermore, Forrester and
Townend (2015), using the foot strike angle (i.e., angle of the foot
with respect to the ground in the sagittal plane) as assessment
parameter to classify FSP, found that the most runners did not
change their initial foot strike angle by increasing running speeds.
However, they identified also a cluster of rearfoot strike (RFS)
runners that showed a decrease in foot strike angle indicating a
trend to midfoot strike (MFS) patterns at higher speeds (Forrester
and Townend, 2015). It seems, therefore, that runners are using
diverse strategies concerning the FSP behavior to cope with
increasing speeds.

Until now, there is no established consensus regarding the
changes in FSP with increasing speeds. FSP is a discrete rather
than a continuous variable (Breine et al., 2014) and thus changes
within a given strike pattern may not be considered examining
only the possible transfer from RFS to MFS and vice versa. Thus,
a numerical continuous parameter like the foot strike index (FSI),
may be a more appropriate way to investigate the modulation of
FSP in different running speed conditions (Breine et al., 2014;
Santuz et al., 2016). At speeds, which can be sustained for longer
periods of time, the human system is more comfortable to exhibit
its preferential or more familiar FSP. When increasing speed, the
system is forced to accommodate the higher loads and alterations
in FSI may be associated with the runners FSP at the comfortable
speed. Non-rearfoot strikers, for instance, have a lower margin
to increase their FSI anteriorly compared to rearfoot runners.
Consequently, runners with a non-rearfoot strike pattern may
retain a similar FSI throughout increasing running speeds. It is
therefore possible, that the strategies of rearfoot and non-rearfoot
strike runners could develop differently as speed progresses and
particularly an alteration of FSI toward anterior only in rearfoot
runners could be expected. In the current study, we examined
the effect of speed on the FSI separately for runners with a rear
and non-rear foot strike pattern. We hypothesized (1) a change
of FSI in runners with a rear strike pattern toward the fore of the
foot, leading to a higher percentage of non-rear foot runners by

increasing running speed and (2) runners with an initial non-rear
strike pattern would maintain the same strike pattern strategy.

METHODS

Experimental Design
In the current study 47 young adults who were recreational
runners (37 males and 10 females, training sessions per week:
3.7 ± 1.6, training duration per week 5.1 ± 2.8 h) have been
recruited (age: 27.8 ± 4.8 years, height: 177.3 ± 8.6 cm, mass
70.9 ± 9.2 kg). For each participant the measurement took place
on a single day. None of the participants had any neuromuscular
or musculoskeletal impairments at the time of the measurements.
Moreover, in the 6 months prior to the day of the measurements,
none of them have suffered any injury to the lower limbs. All
participants gave informed consent and approval of ethics has
been acquired from the appropriate committee of the Humboldt-
Universität zu Berlin (HU-KSBF-EK_2018_0013).

For the measurements we used a treadmill (mercury, H-p-
cosmos Sports & Medical GmbH, Nussdorf, Germany) with an
integrated pressure plate operating at 120 Hz (FDM-THM-S,
zebris Medical GmbH, Isny im Allgäu, Germany). After a self-
selected warm-up, the participants ran shod at six predefined
sub-maximal fixed velocities; 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 ms−1.
The chosen speeds were comfortably attainable by all participants
for small periods of time. While in non-homogeneous groups
relative intensity can provide methodological advantages, the
homogeneity presented in our cohort meant we could use fixed
speeds. As such, possible differences in the relative intensity
would not skew our results and comparability with other
studies is increased. The duration of the run at each speed was
2 minutes, of which the first minute was used as familiarization
to the specific speed and the latter minute was extracted for
subsequent analysis.

To calculate the contact time of each step we used the pressure
plate data from the treadmill. The time that each foot was in
contact with the ground has been calculated based on the time
difference, between the first non-zero data after the swing phase
and the first zero in the pressure data right after toe-off. We
used the average of all contact times of both feet in all steps
per trial per person for the statistical analysis. Cadence was
calculated from the number of steps detected over the whole trial
period. Subsequently, step length, step time and flight time were
calculated based on these values. The duty factor was calculated
as the ratio of contact time over step time.

The FSP was numerically quantified using the pressure
distributions from the instrumented treadmill, through the strike
index. The FSI is defined as the distance from the heel to
the center of pressure at first impact, relative to the total foot
length and was calculated based on the recorded foot pressure
distribution using a validated custom algorithm (Santuz et al.,
2016). In short, after physically measuring the shoe length (to
account for incomplete footstrikes), the algorithm compares it
to the calculated length (i.e., using the pressure plate data) and
corrects the footstrikes when necessary (Santuz et al., 2016). The
first recorded data (i.e., initial contact) at touchdown of each
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foot in every step are then localized to the full length of the
foot. The values, therefore, range from the most posterior part
of the heel representing 0 up to the most anterior part of the
toes representing 1 (non-dimensional). In our paper we aimed
at showing the behavior of the system as a whole and thus we
used the average of the strike indexes of both feet in all steps
per trial per person. The symmetry in the FSI between left and
right foot was quite high depicting an association of R2 = 0.887
and differences were not statistically significant (p > 0.05) in all
investigated speeds.

Generally, footstrikes are divided in three distinct categories
based on where the first impact is located, in relation to the whole
foot. A RFS is considered one that provides a strike index lower
than 0.33 and thus first touch occurs at the heel of the foot,
a midfoot strike one that provides values between 0.33 and up
to 0.66 (approximate point of the metatarsophalangeal joints),
and a forefoot strike one with values above 0.66 (Cavanagh and
Lafortune, 1980; Hasegawa et al., 2007). Due to forefoot strikers
exhibiting a low prevalence in the general population (Hasegawa
et al., 2007; Larson et al., 2011; Santuz et al., 2016), in this study
the participants exhibiting a mid- or a forefoot strike have been
grouped together as MFS for all further analysis.

Statistics
We defined two groups based on the FSI at the slowest running
speed (i.e., 2.5 ms−1). In that way a RFS (n = 31) and a MFS
group (n = 16) have been identified. To further examine the
differences and development of FSI, contact time, cadence, step
length, step time, flight time and duty factor with speed based on
the identified groups, we performed a two-way repeated measures
ANOVA. Speed was selected as a 6-level within-subject factor and
groups (RFS, MFS) as the between-subject factor. The level of
significance was set to α = 0.05.

RESULTS

Investigating the effect of running speed for the FSI we found
an interaction between the two groups [F(2,5) = 5.2, p = 0.005;
Figure 1]. The post hoc analysis by means of a repeated measures
ANOVA revealed a significant decrease in the FSI in the MFS
group [F(2,5) = 4.3, p = 0.018] and no significant differences in
the RFS group [F(1,5) = 2.5, p = 0.104].

Contact times decreased significantly with increasing
velocities [F(2,5) = 799.8, p < 0.001] in both RFS and MFS
groups, while between groups there was a significant effect
[F(1,5) = 8870, p < 0.001] with a clearly higher contact time in
the RFS group (Figure 2). We found a group by speed interaction
[F(2,5) = 10.4, p < 0.001] in the contact time. In the post hoc
analysis, both groups exhibited significantly decreased contact
times with increasing velocities [RFS: F(1,5) = 718.4, p < 0.001;
MFS: F(1,5) = 244.9, p< 0.001], therefore the interaction indicate
a higher decrease of contact time in the RFS group.

Cadence increased with increasing speeds [F(2,5) = 309,
p < 0.001] and showed no interaction effects [F(2,5) = 1.8,
p = 0.180; Table 1]. Similarly, there was an increase [F(2,5) = 2132,
p < 0.001] and no interaction in the development of step length

FIGURE 1 | Mean ± standard deviation of the strike indexes throughout the
examined speeds and the individual values for both rearfoot strikers (RFS) and
mid-forefoot strikers (MFS). The black dotted line indicates the separation
between RFS (below 0.33 of strike index) and MFS (above 0.33 of strike
index). ‡: statistically significant group × speed interaction (p < 0.05)
indicating a decrease of strike index only in MFS group.

FIGURE 2 | Mean ± standard deviation of contact times [ms] throughout the
examined speeds and the individual values for both rearfoot strikers (RFS) and
mid-forefoot strikers (MFS). *: statistically significant speed effect (p < 0.05); †:
statistically significant group effect (p < 0.05); ‡: statistically significant group x
speed interaction (p < 0.05) indicating a greater decrease of contact time in
RFS group.

[F(2,5) = 1.7, p = 0.197]. Step time decreased [F(2,5) = 313,
p < 0.001] as a function of running speed without any
interaction effects [F(2,5) = 1.9, p = 0.155]. Flight times increased
significantly with increasing velocities [F(2,5) = 138, p < 0.001]
and showed a significant interaction between groups and speed
[F(2,5) = 4.2, p = 0.024]. Post hoc comparisons evidenced a
statistically significant [F(2,5) = 370, p < 0.001] lower flight time
in RFS runners in all speeds (Table 1). Duty factor decreased
significantly with increasing speeds and an interaction was also
observed between speed and group [F(2,5) = 4.9, p = 0.016].
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TABLE 1 | Mean± standard deviation of the cadence, step length, step time, flight time, and duty factor for the rearfoot strikers (n = 31) and mid-forefoot strikers (n = 16).

Speed
[ms−1]

Cadence [steps/min]∗ Step length [m]∗ Step time [ms]∗ Flight time [ms]∗†‡ Duty Factor [%]∗†‡

RFS MFS p RFS MFS p RFS MFS p RFS MFS p RFS MFS p

2.5 162 ± 9 164 ± 11 0.965 0.93 ± 0.05 0.92 ± 0.06 0.977 371 ± 21 368 ± 24 0.977 63 ± 30 96 ± 32 0.004 83.1 ± 7.5 74.2 ± 7.9 0.001

3.0 168 ± 11 168 ± 11 0.965 1.07 ± 0.07 1.07 ± 0.07 0.977 358 ± 24 358 ± 24 0.977 82 ± 25 109 ± 26 0.004 77.2 ± 5.9 69.8 ± 6.4 0.001

3.5 173 ± 12 174 ± 12 0.965 1.22 ± 0.08 1.22 ± 0.08 0.977 348 ± 24 347 ± 24 0.977 96 ± 23 118 ± 25 0.007 72.5 ± 5.3 66.2 ± 5.9 0.001

4.0 180 ± 12 180 ± 14 0.965 1.34 ± 0.10 1.34 ± 0.10 0.977 335 ± 24 335 ± 26 0.977 104 ± 22 122 ± 26 0.012 69.3 ± 4.9 63.8 ± 5.7 0.001

4.5 186 ± 12 184 ± 14 0.965 1.46 ± 0.10 1.48 ± 0.11 0.977 325 ± 22 329 ± 24 0.977 110 ± 20 129 ± 24 0.007 66.3 ± 4.3 60.9 ± 5.3 0.001

5.0 193 ± 13 190 ± 15 0.965 1.56 ± 0.11 1.59 ± 0.12 0.977 313 ± 22 318 ± 24 0.977 113 ± 19 132 ± 24 0.007 64.0 ± 4.2 58.8 ± 5.1 0.001

Between groups comparisons through an independent samples Student’s t-test.
P-values are adjusted according to a Benjamini Hochberg false discovery rate analysis.
∗Statistically significant speed effect (p < 0.05).
†Statistically significant group effect (p < 0.05).
‡Statistically significant group × speed interaction (p < 0.05).

In the post hoc comparisons RFS demonstrated a significantly
greater [F(2,5) = 7037, p < 0.001] duty factor compared to
the MFS runners.

DISCUSSION

In the current study, we examined the effect of speed on the
FSI and contact time for RFS and MFS runners. Out of all
47 investigated participants, 31 (66%) were rearfoot striking at
the initial examined speed (i.e., 2.5 ms−1) and 16 (34%) were
mid- or forefoot striking. Only six participants (13%) exhibited
a change in the FSP: three changed their FSP from RFS to
MFS and three changed to a RFS while starting with a MFS.
The rest of the participants did not change their initial FSP
by increasing running speed. Further, we detected an overall
decrease of FSI in the MFS group at higher running velocities.
Both groups significantly decreased contact times with increasing
speeds, however, the decrease was higher in the RFS group.

We hypothesized an increase of FSI in the RFS runners leading
to a higher percentage of MFS runners by increasing running
speed. Since only three participants changed from RFS to MFS
our first hypothesis has been rejected. However, based on our use
of the FSI, it was also shown that RFS runners do not alter the
way their point of first contact within their chosen pattern either.
This means they are maintaining a similar way of striking the
ground throughout the examined speeds. In bipedal locomotion
contact times decrease with increasing velocities (Gatesy and
Biewener, 1991; Arampatzis et al., 2000) and RFS pattern is
reported to have longer contact times than MFS (Hayes and
Caplan, 2012; Di Michele and Merni, 2014; Ekizos et al., 2018).
This could naturally lead participants that use RFS at lower
velocities to change their strike pattern toward the fore of the
foot. Dynamic stability during locomotion is a sine qua non
concept and acute changes in the mechanics of running can cause
instabilities in the system. In previous studies we found that
acute changes in foot strike patterns (i.e., alteration from RFS
to MFS) decrease the human dynamic stability during running
(Ekizos et al., 2017, 2018). Maintenance of locomotor stability
might be therefore a reason for the preservation of the foot

strike patterns despite the increased running speed. Although
contact time decreased significantly with the increased speed, the
majority of the investigated RFS runners (87%) maintained the
same FSP and minimized the changes in the FSI.

Midfoot strike runners also maintained their initial FSP
throughout the examined speeds. However, in the MFS runners
we found a significant (16.8%) decrease in the FSI with increasing
speeds, which resulted in smaller differences in the FSI between
RFS and MFS. This highlights that while the overall FSP did
not change, the modification of the FSI within the MFS pattern
indicates changes in the running strategy. At the same running
speed, lower FSI is associated with a longer contact time (Gruber
et al., 2013; Di Michele and Merni, 2014; Ekizos et al., 2018) and
therefore the decrease of the contact time by increased speed
was lower in MFS. The consequence was a reduction of the
differences in the contact time between RFS and MFS runners by
increasing speed. Both groups increased cadence and step length,
and decreased step time in a similar way (Table 1). The flight
time and consequently the duty factor on the other hand showed
a different trend between groups indicating a greater time on
the ground of the RFS runners by increasing speeds. There is
evidence that the rate of metabolic energy consumption per body
weight of running is inversely proportional to contact time (Kram
and Taylor, 1990; Kram, 2000). Therefore, the lower decrease of
contact time in MFS could affect the energy cost of running.

The higher FSI in the MFS group results in distinct
distributions of the muscular output in the lower extremities
between RFS and MFS runners [i.e., higher moments at the ankle
and lower moments at the knee joint for MFS (Kulmala et al.,
2013; Kuhman et al., 2016)], and leads to improvements in the
cost coefficient (Ekizos et al., 2018). However, the improved cost
coefficient due to the higher FSI in MFS did not improve running
economy because of the lower contact time and thus greater
rate of ground reaction force development (Ekizos et al., 2018).
Traditionally, running economy is investigated in running speeds
between 2.5 and 4 ms−1 (Heise and Martin, 2001; Arampatzis
et al., 2006; Albracht and Arampatzis, 2013; Gruber et al., 2013;
Craighead et al., 2014; Bohm et al., 2019) or as a percentage of
the lactate threshold (Fletcher et al., 2009; Andersson et al., 2021)
and several studies reported no differences in running economy
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between RFS and MFS (Gruber et al., 2013; Ekizos et al., 2018). In
these speeds the average differences in the contact time between
the investigated RFS and MFS were ∼9.6% and reduced to 6.5%
in the 5.0 ms−1 speed and may decrease the negative effect of the
contact time for running economy in MFS. Elite distance runners,
for instance, who are commonly employing speeds >5.0 ms−1

(Hoogkamer et al., 2017) might have energetic benefits using MFS
patterns. At least, our findings indicate that the investigation of
running economy between RFS and MFS should be extended to
higher running speeds.

Here, we found that most runners maintain their initial FSP
with increasing running speed and that MFS runners even move
the point of force application to the posterior. This means that
until 5.0 ms−1 it is possible to increase the rate of force generation
without a transition to a more anterior point of force application.
However, based on our results we cannot answer how the FSI or
other parameters will develop at speeds above 5.0 ms−1. Future
investigations could improve our understanding concerning the
effects of FSP on running mechanics and energetics during
increased speeds, by considering measurements on metabolic
energy consumption, lower leg kinetics and muscle mechanics
(Arampatzis et al., 2006; Gruber et al., 2013; Bohm et al., 2019,
2021), as well as including runners who are accustomed with
speeds higher than 5.0 ms−1.

CONCLUSION

Although the majority of runners maintained their original
FSP with increasing speed, we found that RFS and MFS
runners employed different strategies to cope with this increase.
Specifically, RFS runners maintained a similar FSI throughout
the examined speeds, but MFS runners exhibited a significant
reduction in the FSI, without this reduction being enough to
change the FSP. Compared to RFS, the MFS group also decreased
contact times slower with increasing speeds which could affect the

measurement of the energy consumption in MFS runners, when
this is measured only in slow speeds.
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