
Computational and Structural Biotechnology Journal 23 (2024) 43–51

Available online 24 November 2023
2001-0370/© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research Article 

Cluster-based radiomics reveal spatial heterogeneity of bevacizumab 
response for treatment of radiotherapy-induced cerebral necrosis 

Hong Qi Tan a,1, Jinhua Cai b,c,d,1, Shi Hui Tay e,1, Adelene Y.L. Sim e, Luo Huang f, 
Melvin L.K. Chua a,e,g,2,*, Yamei Tang b,c,d,2,** 

a Division of Radiation Oncology, National Cancer Centre Singapore, Singapore 
b Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China 
c Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 
People’s Republic of China 
d Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China 
e Division of Medical Sciences, National Cancer Centre Singapore, Singapore 
f Department of Radiation Oncology, Chongqing University Cancer Hospital, People’s Republic of China 
g Oncology Academic Programme, Duke-NUS Medical School, Singapore   

A R T I C L E  I N F O   

Keywords: 
Radiation necrosis 
Bevacizumab 
Radiomics 
Clustering 
Spatial heterogeneity 

A B S T R A C T   

Background: Bevacizumab is used in the treatment of radiation necrosis (RN), which is a debilitating toxicity 
following head and neck radiotherapy. However, there is no biomarker to predict if a patient would respond to 
bevacizumab. 
Purpose: We aimed to develop a cluster-based radiomics approach to characterize the spatial heterogeneity of RN 
and map their responses to bevacizumab. 
Methods: 118 consecutive nasopharyngeal carcinoma patients diagnosed with RN were enrolled. We divided 152 
lesions from the patients into 101 for training, and 51 for validation. We extracted voxel-level radiomics features 
from each lesion segmented on T1-weighted+contrast and T2 FLAIR sequences of pre- and post-bevacizumab 
magnetic resonance images, followed by a three-step analysis involving individual- and population-level clus-
tering, before delta-radiomics to derive five radiomics clusters within the lesions. We tested the association of 
each cluster with response to bevacizumab and developed a clinico-radiomics model using clinical predictors and 
cluster-specific features. 
Results: 71 (70.3%) and 34 (66.7%) lesions had responded to bevacizumab in the training and validation datasets, 
respectively. Two radiomics clusters were spatially mapped to the edema region, and the volume changes were 
significantly associated with bevacizumab response (OR:11.12 [95% CI: 2.54–73.47], P = 0.004; and 1.63 
[1.07–2.78], P = 0.042). The combined clinico-radiomics model based on textural features extracted from the 
most significant cluster improved the prediction of bevacizumab response, compared with a clinical-only model 
(AUC:0.755 [0.645–0.865] to 0.852 [0.764–0.940], training; 0.708 [0.554–0.861] to 0.816 [0.699–0.933], 
validation). 
Conclusion: Our radiomics approach yielded intralesional resolution, enabling a more refined feature selection for 
predicting bevacizumab efficacy in the treatment of RN.   
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1. Introduction 

Radiotherapy is an integral treatment modality in the management 
of head and neck cancers [1,2]. Whilst effective, radiotherapy in the 
head and neck region can impose substantial acute and delayed toxic-
ities due to the sensitivity of normal tissues, such as the salivary glands, 
and neurological structures, including the temporal lobes, brainstem, 
cranial nerves, etc., in this anatomical region [3–5]. Depending on the 
tumor location, some delayed post-radiotherapy complications are un-
avoidable, such as the onset of cerebral radiation necrosis (RN) in the 
temporal lobes that affects 3–24% of nasopharyngeal carcinoma (NPC) 
patients following radiotherapy, especially for those with base of skull 
and intracranial involvement [6–8]. 

RN is conventionally treated with corticosteroid, which is associated 
with a broad spectrum of toxicities, including Cushing’s and other 
metabolic syndromes, gastric discomfort, and myopathy [9]. However, 
only about 35% of RN patients derive a clinical benefit following 
corticosteroid [10]. Bevacizumab on the other hand is a humanized 
monoclonal antibody against vascular endothelial growth factor 
(VEGF), and it has demonstrated activity in the treatment of RN. Xu et al. 
conducted a randomized trial demonstrating that bevacizumab was able 
to yield a substantial radiological response in RN lesions of up to 60%, 
corresponding to a clinical improvement in 66% of patients [11]. 
Despite the pronounced radiological and clinical benefits, 34% of the 
patients in this trial had failed to respond to bevacizumab [11], 
notwithstanding the potential risk of bleeding with bevacizumab in NPC 
patients post-radiotherapy [12]. These reasons provide the clinical 

rationale to develop predictive models to identify RN patients who 
would derive a benefit from bevacizumab. 

Radiomics extracts multi-dimensional quantitative information from 
medical images of different modalities to build models for guiding 
treatment decisions [13,14]. In recent times, there has been much in-
terest in applying radiomics in oncology for a variety of purposes, as it is 
non-invasive and is preferred over deep-learning when dealing with 
small sample sizes [15]. Given the high dimensionality of radiomics 
features, it is often necessary to employ appropriate feature selection 
methods to mitigate computational complexity and model overfitting. 
Our prior work applied the conventional radiomics approach to develop 
and validate a radiomics model that was superior to clinical factors for 
predicting bevacizumab responses in RN patients [16]. However, our 
model was limited by the fact that it was designed to predict binarized 
bevacizumab responses (responder versus non-responder) but over-
looked the intralesional variation of bevacizumab response. Similar to 
most radiomics models, it is unable to resolve spatial heterogeneity 
within a volume of interest (VOI) or provide any biological relevance to 
the selected features, thus affecting its interpretability. 

To address these issues, we investigated a novel radiomics pipeline 
by integrating an unsupervised clustering algorithm with voxel-level 
and delta radiomics to derive spatially distinct radiomics clusters, 
which were then tested for their respective associations with bev-
acizumab response. Using our method, we found that only certain high- 
resolution radiomics features that were correlated with specific radio-
logical subregions of the RN lesion – as opposed to features that 
aggregate properties of the whole lesion – were associated with 

Fig. 1. An overview of the cluster-based radiomics analysis pipeline. Pre- and post-treatment T2 FLAIR MR images of 152 RN lesions were manually segmented, 
followed by feature extraction at the voxel level for all the lesions. The first step involved individual-level clustering, where K-means clustering using 10 fixed clusters 
was applied to all the textural feature vectors in the voxel of each lesion. The second phase involved population-level clustering, where K-means clustering was 
applied to the textural feature centroid vectors from all the lesions in the training dataset. The last step would be delta radiomics to correlate any changes in the 
radiomics clusters following treatment to bevacizumab response. 
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bevacizumab response in our cohort of NPC patients with RN post- 
radiotherapy. We utilized these radiomics features in conjunction with 
our clinical predictors to construct a clinico-radiomics model. The 
combined model not only demonstrated enhanced performance 
compared to either clinical or radiomics models used independently but 
also effectively addressed spatial heterogeneity, a component that was 
absent in previous radiomics workflow. 

2. Materials and methods 

2.1. Patient cohort and treatment 

This retrospective study was approved by the institutional review 
board of Sun Yat-sen Memorial Hospital and conducted in accordance 
with the Declaration of Helsinki. Written informed consent was obtained 
from all patients. We included patients with NPC that developed cere-
bral necrosis after radiotherapy to minimize the likelihood of a misdi-
agnosis of a tumor recurrence. Moreover, brain metastasis recurrence is 
a rare clinical phenomenon in NPC [17]. The inclusion and exclusion 
criteria are outlined in the Supplementary methods. 118 consecutive 
patients who had been diagnosed with RN and treated with bev-
acizumab between July 2012 and March 2019 at the Sun Yat-sen Me-
morial Hospital were enrolled in this study. These patients were sourced 
from the same cohort as our previous study [16]. Of them, 77 patients 
with 101 brain lesions were assigned to the training dataset, while 41 
patients with 51 brain lesions were assigned to the validation dataset, as 

previously described [16]. The Mann-Whitney U test and Chi-Square test 
were used to examine the statistical differences in clinical variables 
between the two datasets. The diagnosis of RN was made based on the 
consensus opinions of both neurologists and radiologists [17–19]. 

2.2. Cluster-based MRI radiomics pipeline 

An overview of the cluster-based radiomics pipeline that was used to 
investigate the spatiotemporal association of the radiomics clusters with 
response to bevacizumab is shown in Fig. 1. 

2.2.1. MR image segmentation and radiomics feature extraction 
Manual segmentations of the edema and necrotic regions of each VOI 

were performed on pre- and post-treatment MRI scans using the 3D 
Slicer software (version 4.9.0), as previously described [16]. The images 
and segmentations were first interpolated to yield an isotropic voxel 
resolution of 1 mm using linear interpolation. The voxel values were 
then standardized in each lesion to ensure a similar voxel value dynamic 
range across lesions. Radiomics features were extracted from each voxel 
within the segmented VOI on T2-Flair sequence using Pyradiomics 2.2.0, 
which is compliant with the biomarker standardization initiative [20]. 
First-order features were omitted because the image voxel value histo-
gram and absolute value varied greatly between patients even for the 
same anatomical structure. The omission of these features was to 
introduce robustness to account for variations in MR scanner and 
acquisition protocols in the model. Furthermore, since the clustering 
performance deteriorates rapidly with increased feature dimension [21, 
22], only a single type of textural feature was selected. Focusing solely 
on the GLCM textural features, we extracted a total of 24 gray-level 
co-occurrence matrix (GLCM) feature maps. This was further reduced 
to 10 GLCM feature maps based on the robustness to Gaussian noise 
addition in the small kernel. At this stage, each voxel had a 10-dimen-
sional feature vector representative of local texture. 

2.2.2. Individual-level clustering 
K-means clustering based on 10 pre-defined number of clusters was 

applied on pre- and post-treatment images to over-segment the VOI, 
resulting in a superpixel. Specifically, the feature vectors of all the voxels 
in the lesion were inputted into the clustering algorithm to assign a 
cluster label to each voxel. The 10 centroid vectors of each lesion were 
recorded to represent the textural feature vector of RN lesion. 

2.2.3. Population-level clustering 
Clustering at the population-level, where all the centroid vectors 

from the pre-treatment images of the RN lesions were aggregated at the 
cohort level to derive the final cluster heatmap. Ensemble clustering 
method was used to ensure robust clustering results. 130 ensembles 
were applied, and K-means clustering was used in each ensemble with a 
different bootstrapped sample. The optimal number of clusters was 
defined using the elbow method with ΔK metric [23]. The output of the 
ensemble clustering was the final cluster heatmap for the lesion of each 
patient. Then, the cluster heatmaps in the post-treatment images were 
obtained using the centroids defined from the pre-treatment images. The 
3D heatmap provided an intuitive visualization of the heterogeneity 
within the VOI. Finally, delta radiomics was performed to link the 
change in the pre- and post-treatment radiomics clusters to treatment 
response. 

2.3. Definition of radiological subregions and spatial mapping of 
radiomics clusters within the RN VOI 

To perform spatial correlation analyses, we delineated the RN VOI 
into 3 distinct subregions, namely necrosis, edema, and boundary. The 
necrotic region was manually contoured by observing the enhanced 
lesion on the T1w+C sequence, while the whole lesion comprising of the 
edema and necrotic subregions was contoured based on the T2-FLAIR 

Table 1 
Clinical characteristics of the patients.  

Variables Training 
(N = 77) 

Validation 
(N = 41) 

P 

Age (years) 50 (43–56) 44 (39–52)  0.016 
Sex     
Male 56 (72.7) 32 (78.0)  0.682 
Female 21 (27.3) 9 (22.0)   
LENT/SOMA     
Grade 1 11 (14.3) 10 (24.4)  0.043 
Grade 2 18 (23.4) 16 (39.0)   
Grade 3 31 (40.2) 12 (29.3)   
Grade 4 17 (22.1) 3 (7.3)   
MoCA 24.0 

(23.0–27.0) 
24.0 
(22.0–27.0)  

0.535 

QOL 58.3 
(57.1–61.7) 

58.3 
(53.2–63.2)  

0.669 

IRB (months) 49.1 
(31.9–69.0) 

38.8 
(21.0–75.1)  

0.079 

IBT (months) 3.7 (0.6–12.6) 3.3 (1.2–6.2)  0.832 
Dmax to the brain (Gy) 70.0 

(68.0–72.0) 
70.0 
(68.0–70.0)  

0.180 

Radiation approach     
Conventional radiotherapy 38 (49.4) 15 (36.6)  0.257 
IMRT 39 (50.6) 26 (63.4)   
Laterality of RN lesions     
Unilateral 53 (68.8) 31 (75.6)  0.575 
Bilateral 24 (31.2) 10 (24.4)   
Pre-bevacizumab lesion volumea 

(cm3) 
25.0 
(12.8–65.1) 

21.5 (9.8–45.1)  0.279 

Decrease in lesion volume, 
mediana (%) 

56.2 
(12.9–80.3) 

54.7 
(12.9–86.7)  

0.786 

Documented response to 
bevacizumab     

Non-responder (NR) 30 (29.7) 17 (33.3)  0.786 
Responder (R) 71 (70.3) 34 (66.7)   

The data are shown as the number (percentage) or median (interquartile range). 
Abbreviations: IBT, interval between diagnosis of brain necrosis and treatment 
with bevacizumab; Dmax, maximum radiation dose; IRB, interval between 
radiotherapy and diagnosis of brain necrosis; IMRT, intensity-modulated radi-
ation therapy; LENT/SOMA, Late Effects of Normal Tissue Subjective, Objective, 
Management 

a Each individual brain lesion was considered as a subject to be measured in 
these clinical variables. 
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sequence. The edema subregion was then obtained by the Boolean 
subtraction of the necrosis volume from the whole VOI. The boundary 
subregion was defined by a fixed margin of one voxel around the VOI. 

The assignment of the radiomics clusters to the radiological sub-
regions was then based on calculating the proportion of voxels of each 
radiomics cluster that resided within each radiological subregion. The 
Kruskal-Wallis test was used to determine if there were statistically 
significant differences across the clusters. Additionally, the distance of 
the radiomics cluster from the boundary was quantified for each RN 
lesion. The distance was defined as the mean of the shortest two- 
dimensional Euclidean distance of all the voxels within a particular 
cluster from the boundary. 

2.4. Differential response of radiomics clusters to bevacizumab 

Pre- and post-treatment MR images were co-registered, so that each 
voxel in the pre-treatment MR image was mapped to the corresponding 
radiological voxel in the post-treatment MR image. Rigid transformation 
was carried out using Plastimatch v1.8.0 [18]. The association between 
the decrease in radiomics cluster size, based on the absolute number of 
voxels, and bevacizumab response was determined using the aggregated 
volume change and univariable analysis. 

2.5. Response prediction with cluster-specific features 

Hand-crafted features shown in Table S1 were extracted from the 
cluster heatmap of each RN VOI of the pre-treatment MR images. In 
addition to the aggregate and fractional cluster volume features of all 
clusters, textural features from the cluster that was most significantly 
associated with bevacizumab response were included for model build-
ing. Fig. S1 illustrates the features extracted from the clusters to build 
the model. Three different models were constructed, namely radiomics, 
clinical and combined model. The radiomics-only model utilized a 
combination of the LASSO algorithm and a bagging strategy to predict 
bevacizumab response [19]. The LASSO algorithm was used to handle 
the issue of correlated features, and the bagging strategy was used to 
improve the generalizability of the model. 100 ensembles were used in 
the Bagging algorithm and λ value corresponding to the minimum point 
of the binomial deviance curve was used for LASSO in each ensemble. A 
variable importance plot was produced to rank the cluster-specific fea-
tures driving the prediction. Two significant clinical predictors, ascer-
tained by univariate analysis [16] – 1) time interval between 
radiotherapy and diagnosis of RN (OR=0.976 [95% CI: 0.952–0.995], 
P = 0.025), and 2) time interval between diagnosis of RN and treatment 
with bevacizumab (OR=0.984 [95% CI: 0.971–0.995], P = 0.008], were 

Fig. 2. Mapping of radiomics clusters to radiological subregions. (A) Workflow for spatial mapping of radiomics clusters with the radiological subregions. T2 FLAIR 
and T1-weighted with gadolinium contrast sequences were used for the manual segmentation of edema and necrosis, respectively. Pre-treatment volumes of edema 
and necrosis for the training and testing datasets are shown in the adjacent box plots. (B) Composition of edema, necrosis, and boundary by the different radiomics 
clusters. (C) Proportion of voxels of each radiomics cluster localized to boundary, edema, and necrosis. (D) Median of the average distances of the radiomics clusters 
from the boundary of the 152 RN lesions. 
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used to construct the clinical-only model. Finally, the predicted proba-
bility from the Bagging LASSO algorithm was used as a single "radiomics 
score" and combined with the two significant clinical predictors to form 
the final set of indices for the combined model. The clinical-only and 
combined models were both conventional logistic regression models. 
The performance of the combined model was compared with the 
radiomics-only and clinical-only models using area under the curve 
(AUC) of the receiver operating curves (ROCs) and calibration curves 
generated from the predicted probabilities. 

2.6. Statistical analyses and toolboxes 

All statistical tests were performed using the R statistical software 
(version 3.4.2; R Foundation for Statistical Computing). The Scikit-Learn 
v0.20.3 module was used to perform K-means clustering. The Cluster_-
Ensembles v1.16 module was used for ensemble clustering. Bagging- 
LASSO was performed using the SparseLearner v1.02 module in RStu-
dio. The ROC curve and 95% confidence interval were determined using 
the ROCR v1.0–7 package, and the calibration curves were generated 
using PredictABEL v1.2–4 package in R. A two-sided p-value of < 0.05 
was considered statistically significant. 

3. Results 

3.1. Patient cohort and response to bevacizumab 

The clinical characteristics of the study cohort were previously 
summarized [16], as shown in Table 1. There were no significant dif-
ferences in clinical parameters between the training and validation 
datasets, except age (P = 0.016), and late effects of normal tissue sub-
jective (P = 0.043). Overall, 71 (70.3%) and 34 (66.7%) lesions in the 
training and validation datasets, respectively, manifested radiological 

responses to bevacizumab. The corresponding median percentages 
reduction of RN VOI were 71.8% (IQR: 54.7–87.5) in responders, and 
13.2% (IQR: 7.98–21.4) in non-responders. 

3.2. Spatial mapping of radiomics clusters to radiological subregions 
within the RN lesion 

Using our three-step radiomics analysis, we derived five optimal 
radiomics clusters (Fig. S2), where each cluster is represented by a 
different color (Fig. 1). Next, we attempted to overlay the radiomics 
clusters over each pre-treatment RN VOI, mapping them to the three 
radiological subregions – necrosis, edema, and boundary, as aforemen-
tioned (Fig. 2A). We did not observe a difference in pre-treatment vol-
umes of the necrosis and edema subregions between responders and 
non-responders (Fig. 2A; P = 0.5112, necrosis, P = 0.3003 for edema). 
We also found that each radiomics cluster was differentially associated 
with edema, necrosis, and boundary. Based on the cluster assignment of 
voxels within each radiological subregion, most of the boundary sub-
region was comprised of cluster 5 (red), while cluster 1 (blue) was the 
dominant cluster within the edema subregion. Necrosis was mostly 
comprised of clusters 3 (green) and 4 (orange) (Fig. 2B). This finding 
was corroborated by Fig. 2C, which showed the proportion of each 
radiological subregion within the radiomics clusters; here, we showed 
that the boundary and edema subregions were inversely associated with 
the radiomics clusters, suggesting that these clusters represent a gradual 
change in texture. The Kruskal-Wallis test showed significant differences 
in the proportions of edema, boundary and necrosis across the five 
clusters, with P < 0.001 for edema and boundary, and P = 0.0395 for 
necrosis. The distances of the respective radiomics clusters from the 
boundary were also derived; clusters 4 (orange) and 5 (red) had smaller 
median distances of 0.411 mm (IQR=0.766 mm) and 0.671 mm 
(IQR=1.03 mm), respectively, from the boundary, compared with the 

Fig. 3. Cluster evolution between pre- and post-treatment MR scans. (A) Cluster evolution for a responding RN lesion (top), and a non-responding lesion (bottom). 
(B) Comparison of the cluster sizes before and after treatment for responders and non-responders. (C) Forest plot showing the odds ratios from the univariable 
analysis of associations between change in cluster size and bevacizumab response for the respective clusters. 
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other clusters (Fig. 2D). 

3.3. Temporal evolution of the radiomics clusters between responders and 
non-responders 

We reconstructed the cluster heatmaps on the post-treatment MR 
images to track the temporal evolution of the radiomics clusters in 
response to bevacizumab. Examples of the radiomics cluster evolution in 
a responder and non-responder are illustrated in Fig. 3A. Expectedly, the 
responder showed an overall reduction of the RN VOI and cluster 1 
(blue), which is the dominant radiomics cluster within edema. In 
contrast, the non-responder showed minimal change for both RN VOI 
and cluster 1. Fig. 3B shows the cluster sizes before and after bev-
acizumab in responding and non-responding lesions. The former showed 
a significant reduction in volume for all the radiomics clusters, while the 
latter showed a non-significant decrease in cluster 1 (blue), cluster 2 
(cyan), and cluster 3 (green), but a significant decrease in clusters 4 
(orange) and 5 (red) volumes. Univariable tests of association between 
change in cluster size and response to bevacizumab for the respective 
clusters are presented in Fig. 3C. Among them, only the decrease in 
volumes of clusters 1 (blue) and 2 (light blue) showed significant 

associations with bevacizumab response, with the odds ratios (OR) of 
11.12 (95% confidence interval [CI]: 2.54–73.47) for cluster 1 and 1.63 
(95%CI, 1.07–2.78) for cluster 2. 

3.4. Prediction of response with cluster-specific radiomics features 

Finally, we built a radiomics model based on the features defined in 
Table S1, which were extracted from the clusters in pre-treatment MR 
images to predict bevacizumab response. Since the change in volume of 
cluster 1 (blue) was identified to be most strongly associated with 
response to bevacizumab, we hypothesized that the textural features in 
cluster 1 would be the best predictors of bevacizumab response. In total, 
30 cluster-specific features were selected using the bagging LASSO 
model; the variable importance plot is shown in Fig. S3. The results of 
the discriminatory ability of the radiomics, clinical and combined 
models in the training and validation datasets can be interpreted from 
the ROC curves in Figs. 4A and B, respectively. The combined clinico- 
radiomics model was superior to the clinical-only model, improving 
the AUC from 0.755 (95% CI, 0.645–0.865) to 0.852 (95%CI, 
0.764–0.940) in the training, and from 0.708 (95%CI, 0.554–0.861) to 
0.816 (95%CI, 0.699–0.933) in the validation datasets. The results of the 
calibrations for both training and testing datasets are shown in Fig. 4C. 
Both datasets showed non-significant statistics with Hosmer-Lemeshow 
tests (P = 0.344 for training, and P = 0.331 for validation), indicating 
no deviation between the logistic model and the perfect prediction. 
Overall, these results showed that features derived from specific radio-
mics clusters within the RN VOI could yield a well-calibrated model for 
predicting bevacizumab response. 

4. Discussion 

The past few years have witnessed a peak in interest in adopting 
radiomics for a variety of clinical applications, including the develop-
ment of models to prognosticate survival in cancer patients, predict 
specific genotypes of cancers, and adapt treatment [24–26]. While the 
results are encouraging, the field has remained apprehensive in tran-
sitioning these models to the clinics, partly because of concerns 
regarding the explainability of these models. Most conventional radio-
mics models, including our previous model [16], were built using a se-
ries of single textural feature vectors extracted from a VOI. These 
radiomics approaches lack spatial resolution characterization and as-
sume that a single feature vector represents the textural morphology of 
the whole 3D structure, thus prompting cynicisms regarding the reli-
ability and reproducibility of these outputs to variations in image 
acquisition and VOI segmentation [16,27–29]. The interpretation of the 
single feature vector becomes challenging when dealing with segmen-
tation comprising multiple distinct and heterogeneous regions, making 
it difficult to identify specific regions within the lesion that demonstrate 
significant treatment response. Moreover, textural features extracted 
from the entire lesion may encompass irrelevant features, potentially 
resulting in model overfitting. Consequently, the biological relevance 
leading to the predictive outcome remained elusive and could not be 
attributed to any influencing factor. To address the limitations of con-
ventional volume-based radiomics models, here, we devised a novel 
cluster-based radiomics approach to provide spatial resolution of the 
textural features that could be associated with the response of RN lesions 
to bevacizumab treatment (Fig. 5). Specifically, we characterized the 
spatial heterogeneity of the lesion, which yielded multiple regions with 
diverse texture characteristics, enabling the identification of specific 
regions that demonstrate a significant treatment response. Furthermore, 
we selectively included textural features from the region of the lesion 
that demonstrated the strongest association with treatment response for 
model building. This targeted approach enhanced the model’s feature 
relevance by focusing on the most informative region for predicting 
treatment response. We built this idea upon a voxel-level radiomics tool 
that was available in PyRadiomics [24,30]. We first derived a heatmap 

Fig. 4. Prediction of bevacizumab using cluster-derived radiomics features. (A, 
B) ROC curves comparing the clinical, radiomics, and combined clinico- 
radiomics models for training and validation datasets, respectively. (C) Cali-
bration curves of the training and validation datasets. 
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Fig. 5. A comparison of the conventional volume-based and cluster-based radiomics analyses. The conventional volume-based radiomics approach extracts a single 
radiomics feature vector per image segmentation, while the cluster-based radiomics approach extracts multiple feature heatmaps per segmentation. K-means 
clustering is performed on all the feature vectors in each voxel of the VOI to break down the VOI into multiple textural clusters for information on spatial 
heterogeneity. 
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using K-means clustering to visualize the radiomics textural clusters 
within the RN lesion, which were then spatially mapped to the radio-
logical subregions. Each of the five derived radiomics clusters possesses 
unique texture characteristics with significantly different proportions of 
edema, necrosis, and boundary. We were subsequently able to deter-
mine the radiomics clusters that showed the largest delta pre- and 
post-treatment, which coupled with spatial-level information, revealed 
the intralesional variation of response to bevacizumab. We proceeded to 
show that the volume features extracted from all the clusters, along with 
textural features from the “significant” cluster (cluster 1), effectively 
captured intratumor heterogeneity and improved the prediction of 
bevacizumab response when the radiomics model was added to the 
clinical model. As a notable improvement over our previous model [16], 
we provided feature relevance of our radiomics model by consideration 
of spatial heterogeneity of intralesional response to bevacizumab, and 
incorporated textural features that were strongly associated with 
region-specific response in the model. Overall, our cluster-based radio-
mics approach revealed the correlation of the radiomics features with 
known radio-anatomical characteristics, and thus added a layer of bio-
logical relevance to the radiomics model, leading to an improved un-
derstanding of the final combined model. 

Bevacizumab has been investigated for the treatment of RN on the 
rationale that abnormal vasculogenesis, induced due to hypoxic changes 
to the microenvironment post-radiation, thereby resulting in increased 
vessel permeability and consequential interstitial tissue edema and 
damage, is the dominant mechanism underpinning RN [27]. Radiolog-
ical responses to bevacizumab are thus characterized by an initial 
reduction of edema, followed by ensuing resolution of the necrosis [28, 
29,31]. In our analyses of 152 RN lesions, we found that among the five 
radiomics clusters, cluster 1 was most closely associated with edema, 
with 92.6% of the voxels localized within this radiological subregion. 
Therefore, it was not unexpected that radiomics features, including the 
change in the size, of cluster 1 showed the strongest association with 
bevacizumab response (OR of 11.12). From this improved radiomics 
workflow, we have demonstrated that by adding a layer of spatial 
radiomics, one could enhance the explainability of the radiomics 
analytical output, especially when the findings concur with underlying 
biological mechanisms. 

The ability to visualize radiomics clusters within a VOI aids in the 
interpretation of any association between a radiomics feature/model 
and the clinical outcome of interest. For instance, the existence of cluster 
1 within edema, through visual inspection, could explain why radiomics 
features within this cluster carried the highest weightage in the eventual 
prediction model (see variable importance plot – Fig. S3). This visuali-
zation is also analogous to the grad-CAM [32] method in the convolu-
tional neural network (CNN) for highlighting important regions in the 
image that are contributing to a prediction. The availability of such tools 
is crucial for the interpretation of radiomics models, as it may lower the 
barrier to clinical implementation. Besides, such tools can enable the 
investigation of specific subregions within an image, allowing for a more 
focused analysis, especially in cases where different regions exhibit 
diverse characteristics or response to treatment. 

Despite the encouraging results of this new radiomics approach, 
there are some limitations to this study. Firstly, the small sample size of 
our study could have adversely influenced the clustering results, and we 
lacked an external dataset to determine the generalizability of our al-
gorithm. We plan to extend our work to include other tumor types, and 
in larger cohorts. Secondly, our final bevacizumab response model was 
constructed based on pre-treatment MR images alone, and not delta 
radiomics features (contrary to the analysis of the cluster response). 
Delta radiomics could potentially yield better discrimination, and to do 
this, one would require an earlier interval MR imaging midway through 
treatment, so that the prediction model could expedite a go-no-go de-
cision regarding treatment continuation. Thirdly, the candidate clinical 
factors related to the RN response to bevacizumab were determined 
based on clinical experience and prior studies [33,34]. There might be 

other important clinical factors that could augment the results of the 
clinical model. Fourthly, we focused exclusively on a single type of 
textural features (GLCM). The incorporation of other radiomics features 
holds the potential for further enhancing the performance of our 
radiomics model. 

5. Conclusion 

Overall, our radiomics approach yielded intralesional resolution, 
enabling a more refined feature selection process for predicting bev-
acizumab efficacy in the treatment of RN. We anticipate that this method 
will be considerably more valuable in clinical settings for evaluating 
heterogeneous lesions compared to conventional radiomics techniques. 
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