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Abstract: Trichosanthin (TCS) is an RNA N-glycosidase that depurinates adenine-4324 in the
conserved α-sarcin/ricin loop (α-SRL) of rat 28 S ribosomal RNA (rRNA). TCS has only one chain,
and is classified as type 1 ribosome-inactivating protein (RIP). Our structural studies revealed that
TCS consists of two domains, with five conserved catalytic residues Tyr70, Tyr111, Glu160, Arg163
and Phe192 at the active cleft formed between them. We also found that the structural requirements
of TCS to interact with the ribosomal stalk protein P2 C-terminal tail. The structural analyses suggest
TCS attacks ribosomes by first binding to the C-terminal domain of ribosomal P protein. TCS exhibits
a broad spectrum of biological and pharmacological activities including anti-tumor, anti-virus, and
immune regulatory activities. This review summarizes an updated knowledge in the structural and
functional studies and the mechanism of its multiple pharmacological effects.

Keywords: TCS; ribosome-inactivating protein; ribosomal stalk P protein; multiple pharmacological
activities; mechanism

Key Contribution: This review summarized an updated knowledge of trichosanthin in the structural
and biological function studies and the mechanism of its multiple pharmacological effects.

1. Introduction

Trichosanthin (TCS) is extracted from the root tuber of the Chinese medicinal herb Trichosanthes
kirilowii Maximowicz (Tian Hua Fen), which has been used clinically as an abortifacient drug in
early and mid-gestation for centuries. Apart from inducing midterm abortion [1], TCS displays
other encouraging potentials for future clinical applications for its anti- human immunodeficiency
virus (HIV) [2,3] and anti-tumor [4,5] activities. Because of these findings, TCS has received
increased attention, and its structure and function and pharmacological properties have been further
investigated [6–10].

The precursor of TCS is a 27 kDa protein consisting of 289 aa. The active form of TCS is obtained
after the N-terminal 23 aa signal peptide and C-terminal 19 aa peptide are removed [1,11]. TCS belongs
to type 1 ribosome-inactivating protein (RIP), which is a single chain polypeptide that can inactivate
eukaryotic ribosomes by cleaving the N-glycosidic bond at adenine-4324 of 28 S rRNA [12]. This halts
the protein synthesis function of the ribosome and ultimately results in the cell death [13,14].

TCS manifests attractive pharmacological properties for its anti-tumor [9,15–17], anti-virus [2,18]
and immunoregulatory activities [19,20]. Recently, it has been found that TCS not only exhibits
a very high in vitro antitumor activity to common tumor cells, it can also kill multidrug-resistant
cancer cells [21]. Besides having anti-HIV effect [22], TCS also exhibits a promising inhibitory effect
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on Herpes simplex virus (HSV) [23] and Hepatitis B virus (HBV) [24]. Moreover, TCS can induce
immunosuppression on the non-toxic T-lymphoproliferative responses in humans [25,26], up-regulate
interleukin (IL)-4 gene expression and suppress interferon (IFN)-γ gene expression. TCS also regulates
the expansion of CD4+CD25+ regulatory T cells [27,28] and the researchers found that TCS can prevent
allograft rejection and prolong graft survival duration in a murine skin transplantation model [20,28].
In this review, we summarize the recent progress on the structure–function study of TCS, its various
pharmacological properties and potential therapeutic applications.

2. The Structural Investigation of TCS

2.1. The Structural Feature and Ribosomal Interaction Mode of TCS

The crystal structure shows that TCS consists of two domains [29]. The large N-terminal domain
contains six alpha-helices, a six-stranded sheet, and an antiparallel beta-sheet. The small C-terminal
domain has the largest distinct bent alpha-helix. Five structurally conserved catalytic residues Tyr70,
Tyr111, Glu160, Arg163 and Phe192 (Figure 1) are located on the active cleft between these two domains.
The orientation of tyrosine ring of the Tyr70 is flexible and this forms a π-π stacking interaction with
the adenine ring of the substrate to facilitate ligand binding [30]. Phe192 lies at the bottom of the active
site pocket, the indole ring could stabilize adenine binding [31].Toxins 2018, 10, x FOR PEER REVIEW  3 of 15 

 

Figure 1. The overall structure, active site and ribosomal P protein binding site of trichosanthin (TCS) 
(PDB code: 2JDL and 1GIS). The conserved active site residues are shown in orange sticks. Adenine is 
shown in yellow sticks. The P2 binding residues are shown in pink sticks. The C11-P2 peptide is 
shown as purple sticks. Hydrogen bonds are highlighted with black dash lines. 

2.2. The Possible Pell-Entry Pathway of TCS 

It is difficult for TCS to enter cells because the protein lacks a lectin-binding domain found in 
ricin. It is found that both receptor-mediated endocytosis and non-specific entry may be involved in 
the cell entry route of TCS [53] (Figure 2). TCS could interact with low-density lipoprotein 
receptor-related protein (LRP), megalin and through clathrin-coated vesicles to enter into 
mammalian cells [54,55]. The last seven amino acids at the C-terminal of TCS could interact with the 
phospholipid bilayer via electrostatic interaction under acidic conditions [56,57]. This interaction 
leads to membrane fusion, thus facilitating the translocation of TCS into the cytosol [56,57]. It was 
found that deletion of the TCS C-terminus almost completely abolishes the destabilizing effect of 
TCS on the phospholipid bilayer and significantly reduces both its RIP activity in vitro and 
cytotoxicity in vivo [57]. It has been assumed that TCS interacts with these carriers/receptors to form 
endosomes, the enveloped TCS is released into the cytosol by lysosome digestion and gradually 
transported to ribosomes to perform its RIP activity. Internalized TCS could cause vesicle leakage, 
membrane fusion [56] of subcellular organelles, and can induce the autophagy and apoptosis of 
cancer cells [58–61]. Recent findings suggest that the intracellular traffic of TCS into mammalian cells 
is a key step for its biological activities, because the cytotoxicity of TCS is dependent on its 
intracellular concentration [62]. TCS competitively binds to a surface clathrin adaptor GGA 
(Golgi-localized, gamma-adaptin ear homology, ARF-binding proteins) of Golgi to affect the 
subsequent signal transduction, thus enhancing apoptosis in HepG2 hepatoma cells [63]. 

Figure 1. The overall structure, active site and ribosomal P protein binding site of trichosanthin (TCS)
(PDB code: 2JDL and 1GIS). The conserved active site residues are shown in orange sticks. Adenine
is shown in yellow sticks. The P2 binding residues are shown in pink sticks. The C11-P2 peptide is
shown as purple sticks. Hydrogen bonds are highlighted with black dash lines.

TCS was identified to bind the ribosomal stalk P proteins and L10a [32,33]. In eukaryotic
ribosomes, a pentameric complex of ribosomal P proteins, with one P0 and two P1 and P2, forms a
flexible stalk to recruit the elongation factors to facilitate the protein synthesis [34–36]. All P proteins
possess a highly conserved amino acid sequence rich in acidic residues in their C-termini [33], and
this sequence is found to be involved in the stalk activity [37] and interacts with several RIPs [38–41].
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Our structural study revealed the binding mode of TCS toward the C-terminal peptide (C11-P) of
eukaryotic ribosomal P protein [42]. The ribosomal protein binding site is located between the
anti-parallel beta-sheets 9 and 10. Three basic residues Lys173, Arg174 and Lys177 in TCS form
charge–charge interactions with the acidic DDD motif while a hydrophobic pocket lined by Phe166,
Leu188 and Leu215 accommodates the LF motif of C11-P2 (Figure 1).

The NMR structure study of the stalk protein complex of P1/P2 heterodimer and biochemical
analyses demonstrated that the flexible C-terminal tails of eukaryotic ribosome stalk can form an
arm-like structure that extend with a radius up to ~125 Å [43–45]. The long flexible linker presumably
plays an important role in reaching out to capture the elongation factors nearby [46,47]. Truncation of
the linker region results in great reductions of depurination activity [48]. It has also been shown that
the C-terminal tails and flexible linker of the ribosomal stalk are essential for binding eukaryotic factors
2 (eEF2) [46,47,49,50]. In archaea, the C-terminal tail of archaeal P protein aP1 has been identified to
bind the initiation factor aIF5B as well as elongation factors aEF-1α and aEF-2 [37]. This interaction is
further identified to be mediated by the conserved hydrophobic amino acids of the C-terminal tail of
archaeal stalk proteins [37]. The crystal structure of a complex of C-terminal tail of aP-aEF1α·GDP
revealed the same conclusion; that the C-terminal tail of aP1 interacts with domains 1 and 3 of aEF1α
mainly mediated by hydrophobic interactions [51]. Phylogenetic and functional analyses suggested
that the eukaryotic stalk P protein may directly interact with eEF1α, in a manner like the binding
between archaeal aP1 and aEF1α [51].

Taken together, the structural and biochemical observations suggest that RIPs and eEF2 may
compete for binding to the flexible C-terminal tail of ribosomal stalk P protein. Therefore, we proposed
that eukaryote-specific RIPs may hijack the elongation-factor recruiting function of ribosomal stalk to
access to the α-SRL [52].

2.2. The Possible Pell-Entry Pathway of TCS

It is difficult for TCS to enter cells because the protein lacks a lectin-binding domain found in ricin.
It is found that both receptor-mediated endocytosis and non-specific entry may be involved in the cell
entry route of TCS [53] (Figure 2). TCS could interact with low-density lipoprotein receptor-related
protein (LRP), megalin and through clathrin-coated vesicles to enter into mammalian cells [54,55].
The last seven amino acids at the C-terminal of TCS could interact with the phospholipid bilayer via
electrostatic interaction under acidic conditions [56,57]. This interaction leads to membrane fusion,
thus facilitating the translocation of TCS into the cytosol [56,57]. It was found that deletion of the TCS
C-terminus almost completely abolishes the destabilizing effect of TCS on the phospholipid bilayer and
significantly reduces both its RIP activity in vitro and cytotoxicity in vivo [57]. It has been assumed
that TCS interacts with these carriers/receptors to form endosomes, the enveloped TCS is released
into the cytosol by lysosome digestion and gradually transported to ribosomes to perform its RIP
activity. Internalized TCS could cause vesicle leakage, membrane fusion [56] of subcellular organelles,
and can induce the autophagy and apoptosis of cancer cells [58–61]. Recent findings suggest that the
intracellular traffic of TCS into mammalian cells is a key step for its biological activities, because the
cytotoxicity of TCS is dependent on its intracellular concentration [62]. TCS competitively binds to a
surface clathrin adaptor GGA (Golgi-localized, gamma-adaptin ear homology, ARF-binding proteins)
of Golgi to affect the subsequent signal transduction, thus enhancing apoptosis in HepG2 hepatoma
cells [63].
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previously [53]. Here, we summarize the recent progresses on these pharmacological activities and 
the important signal pathways for TCS to exert its pharmacological effects. 
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3.1.1. Anti-HIV-1 Activity 

Previous studies reported that TCS selectively inhibits the replication of HIV virus type 1 
(HIV-1) in both acutely infected T-lymphoblastoid cells and chronically infected macrophages in 
vitro [64]. Phase I/II clinical trials with TCS alone or in combination with other anti-HIV drugs, 
zidovudine or dideoxinosine, showed that TCS could decrease serum HIV-1 p24 antigen level and 

Figure 2. The proposed cell-entry and intracellular trafficking pathway of TCS. Through interacting
with phospholipids of cell membrane, lipoprotein receptor-related protein (LRP) receptor and
Megalin/Clathrin surface architectures, TCS is transported into the cytosol.

3. TCS Possesses Multiple Pharmacological Properties

TCS has a broad spectrum of biological and pharmacological activities, including induction of
abortion, inhibition of tumor cell proliferation via render protein synthesis, anti-viral activity, effective
against a variety of tumors and immunomodulatory activity. These have been reviewed previously [53].
Here, we summarize the recent progresses on these pharmacological activities and the important signal
pathways for TCS to exert its pharmacological effects.

3.1. Anti-Viral Activity of TCS

3.1.1. Anti-HIV-1 Activity

Previous studies reported that TCS selectively inhibits the replication of HIV virus type 1 (HIV-1)
in both acutely infected T-lymphoblastoid cells and chronically infected macrophages in vitro [64].
Phase I/II clinical trials with TCS alone or in combination with other anti-HIV drugs, zidovudine
or dideoxinosine, showed that TCS could decrease serum HIV-1 p24 antigen level and increase
the percentage of CD4+ cells in patients with acquired immunodeficiency syndrome (AIDS) and
AIDS-related complex [65,66]. It is generally assumed that the antiviral activity of TCS is related to
its RIP activity. It was found that TCS variants without catalytic residues and residues close to the
active site could lose almost all of their anti-HIV-1 activity [22]. Intriguingly, the C-terminal addition
variants of TCS, within the 19 amino acid extension and an ER retrieval signal sequence KDEL at
the C-terminus of TCS, retained all RIP activity but lost most of the anti-HIV-1 activity, while the
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TCS C-terminal deletion variants lost all activities [67]. Combined with our structural findings, TCS
C-terminal deletion variants may damage the ribosomal stalk P2 binding interface thus decrease its
RIP activity and anti-HIV-1 activity. On the other hand, addition of amino acids at the C-terminal does
not destroy the P2-binding pocket, hence there was no effect on its RIP activity while the anti-HIV-1
activity was blocked. These results suggested that RIP activity of TCS may have significant correlation
with its anti-HIV-1 property. Another observation demonstrated that TCS can penetrate into HIV-1
viral particles, and several residues, FYY140-142, D176, and K177 were identified as key amino acid
residues for mediating membrane translocation process into HIV-1 virions [68]. The penetration of
TCS exerts no obvious effect on viral integrity. However, TCS-enriched HIV-1 virions were severely
impaired in its viral infectivity [69]. It was then found that TCS transiently binds and depurinates
the long terminal repeats of HIV-1, which may be responsible for the inhibitory activity on HIV-1
integration [70].

3.1.2. Anti-Hepatitis B Virus Activity

The plant Trichosanthes kirilowii has a long history of clinical use for treating hepatitis B virus
(HBV) in China. As the main component in the aqueous extract of Trichosanthis Radix, TCS is
found responsible for the anti-HBV effect [24]. TCS has significant and effective dose-dependent and
time-dependent inhibition of the expression of HBsAg and HBeAg antigen in HepG2.2.15 cells [24].
However, the molecular mechanism of this inhibitory action to HBV is still elusive.

3.1.3. TCS has Protective Effect against Herpes Simplex Virus in Animal Model

Herpes simplex virus (HSV) is responsible for a broad range of human diseases [71]. Type 2 HSV
infection is frequently found associated with HIV-1 infection and can be lethal to AIDS patients [72].
All the clinically available anti-viral drugs such as interferons (INFs), acyclovir (ACV), vidarabine,
ganciclovir and foscarnet have adverse complications and could induce resistance [71]. A previous
study has found that TCS can synergistically enhance the anti-HSV effect of INFα2a and ACV at
cellular level [73]. TCS has a protective effect against HSV-1 induced infection in mice model [23].
It has been further shown that TCS could suppress the HSV-1 viral replication both in Vero cells
and human epithelial carcinoma Hep-2 cells [74,75]. TCS may exert its anti-HSV virus activity via
modulating three important signal pathways, namely p38 MAPK/Bcl2, nuclear factor-kappaB and p53
pathways (Figure 3) [74,76]. TCS can suppress the elevation of p38 MAPK and Bcl-2 induced by HSV-1
infection to reduce viral replication in Vero cells [74]. It also suppresses the activation of NF-kappaB
and regulation of p53-dependent cell death in infected Hep-2 cells [76].

3.2. The Anti-Tumor Activities of TCS

3.2.1. TCS Inhibits Various Tumor Cells

Previous studies have indicated that TCS exerts a selective and high toxicity for a broad range of
tumor cells [53,77] in vitro and in vivo (Table 1). Recent studies have demonstrated TCS can effectively
inhibit the proliferation and viability of cancer cells by inducing apoptosis in several tumor cell lines
and in animal models.
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Figure 3. Proposed anti-HSV (Herpes simplex virus) mechanism of trichosanthin via the modulation
of key signaling pathways. Black and orange arrows represent the activation of signal transduction
receptors, blunt arrows represent inhibition of signal transduction receptors initiated by HSV infection
(black) and TCS treatment (orange). Red/green upward arrows and downward arrows represent the
upregulation and downregulation effect triggered by HSV infection (red) and TCS treatment (green).
Blue arrows indicate the outcomes of signal transduction.

Table 1. The anti-tumor activities of trichosanthin, including in vitro cell lines and in vivo
animal models.

System Tumor Type Tested Cell Line Tested Model

Female reproductive
Breast cancer MCF-7, BT-474 and

MDA-MB-231 [60] Nude mice [60]

Cervical cancer HeLa [78] and Caski cells [79] -
Choriocarcinoma JAR [59] and BeWo [80] -

Immune Lymphoma SU-DHL-2 cells [61] -

Digestive
Colon cancer CT-26 [81] -

Hepatoma HepA-H cells [81] -
Gastric cancer MCG803 [82] -

Blood Leukemia HL-60 [83] and K562 [84] -

Respiratory Lung cancer A549 cells [85] and 3LL [86]
Nude mouse [85]

Lewis rat murine models
[86]

Nasopharyngeal cancer CNE1 and CNE2 [87] -

Male reproductive Prostate cancer RM-1 [88] -

Integumentary Melanoma B16 [89] -

Nervous Glioma U87 and U251 [90] -

3.2.2. The Possible Anti-Tumor Mechanism of TCS

TCS is known to induce apoptosis of various tumor cell lines. Previous reviews have summarized
that TCS could regulate various signaling pathways to determinate the tumor cell fates and induce
apoptosis of tumor cells [10,91], including nitric oxide (NO)-mediated apoptosis pathway [92],
oxidative stress [58,59], cAMP signaling pathway [93,94] and mitochondrial and endoplasmic reticulum
stress signaling pathways [83]. Other subcellular organelles such as ribosomes, microfilaments and
microtubules, also play respective and cooperative roles in the TCS-induced apoptosis pathway [10].
TCS can also alter the expression of apoptosis-related genes, regulate cytoskeleton structure, reduce
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the proliferation or viability of tumor cells, and activate the extrinsic and intrinsic apoptotic
pathways [61,83]. Recent studies demonstrated that TCS can inhibit tumor cell proliferation, invasion
and migration through modulating the Wnt/beta-catenin signaling pathway [90], or causing a
reduction in telomerase activity, restoring the expression of methylation-silenced tumor suppressor
genes and promoting Smac demethylation [87,95,96] to regulate key components of other signal
pathways to inhibit the tumor cell growth, induce cell apoptosis and autophagy. Besides inhibiting
tumor cells directly, TCS also enhances anti-tumor immunity via regulating the expression of tumor
suppressors in cancer cells and modulating its interaction with protein interacting partners in T
cells [86]. Combining all these reports, TCS generally exploits apoptosis and autophagy related
pathways to exert its anti-tumor activity. We may categorize the anti-tumor mechanism into two types;
apoptosis related and autophagy related strategies. According to the antitumor effects of TCS, the
apoptosis related type can be further classified into four types (Figure 4).
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Figure 4. Plausible mechanism of anti-tumor and TCS-induced apoptosis pathways. Arrows
represent the activation of signal transduction receptors, red blunt arrows represent inhibition
of signal transduction receptors. Small upward/downward red arrows represent the
upregulation/downregulation initiated by TCS treatment. Ca2+ is calcium ions; c represents the
cytochrome c; P represents phosphorylation.

Apoptosis Related Anti-Tumor Mechanism

(1) Inhibition of Tumor Cell Proliferation

TCS may activate the JNK/MAPK signaling pathway to inhibit the cell viability and proliferation
of human epithelial type 2 (HEp-2) and AMC-HN-8 human laryngeal epidermoid carcinoma cells [97].
In HeLa cells, TCS can suppress adenylyl cyclase (AC) activity and initiate the increase of cytosolic
calcium to reduce cyclic AMP (cAMP) levels [94]. The decreased cAMP level could inhibit the PKA
and PKC activities, suppress the cAMP/PKA and PKC/MAPK signaling pathways to attenuate
the phosphorylation of the downstream transcriptional factor cAMP response element-binding
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(CREB) protein [93,98]. Furthermore, TCS down-regulates nuclear factor kappa B (NF-kB) and
cyclooxygenase-2 (COX-2) expression in hepatoma HepG2 cells [99,100]. This induces rapid
decline of p210 (Bcr-Abl), protein tyrosine kinase (PTK), and heat shock protein 90 (Hsp90) in
chronic myelogenous leukemia K562 cells [101]. TCS eventually regulates all these downstream
proliferation-associated genes and proteins to inhibit the proliferation of cancer cells (Figure 4).

(2) Induction of Intrinsic and Extrinsic Apoptosis in Tumor Cells

TCS treatment could induce elevation of intracellular calcium ions (Ca2+) and ROS production
in HeLa [59,102], JAR [94] and K562 cell lines [83]. The production of ROS promotes the activation
of executioner caspase 3 via mitochondrial apoptosis pathway [58,59]. In TCS-treated HeLa cells,
CREB was activated and Bcl-2 protein content was decreased. On the other hand, TCS treatment
upregulated Bax expression also leading to the inhibition of Bcl-2 in murine prostatic cancer RM-1
cell [102]. The inhibitory effect on Bcl-2 would trigger cytochrome c release from mitochondria,
thus inducing the apoptosis pathway. Besides, TCS can activate the caspases 6, 8 and 9 and lead
to Smac release from mitochondria into the cytosol to induce apoptosis in HeLa-60 cells through
a Fas-mediated pathway [83]. TCS elevated the nitric oxide synthase (iNOS) expression level and
induced the augmentation of nitric oxide (NO) and activated the NO-mediated apoptosis pathway
to inhibit antigen-specific T cell expansion [92]. Moreover, TCS upregulated the chaperone BiP
and transcription factor CHOP, and also activated caspase 4 in HeLa-60 cells thus triggering the
endoplasmic reticulum (ER) stress apoptotic pathway [83]. In addition, TCS treatment can markedly
decrease the expression level of leucine rich repeat containing G-protein-coupled receptor 5 (LGR5)
and repress key proteins in the Wnt/beta-catenin signaling pathway to induce apoptosis in glioma
cells (Figure 4), thereby inhibiting glioma cell proliferation, invasion and migration [90].

(3) Regulation of Apoptosis-Associated Genes

Recent reports showed that TCS could inhibit DNA methyltransferase 1 (DNMT1) and restore the
expression of methylation-silenced tumor suppressor genes in adenomatous polyposis coli (APC) and
tumor suppressor gene in lung cancer 1 (TSLC1) [95]. TCS acts as a demethylation agent promoting
mitochondrial protein Smac demethylation and increases its expression in cervical cancer cells [96].
In nude mice, TCS suppresses telomerase activity and induces cell apoptosis to inhibit the growth of
nasopharyngeal carcinoma cell lines, CNE1 and CNE2 [87]. TCS not only affects tumor cells directly,
but also enhances anti-tumor immunity via regulating the expression and modulating the interaction
of tumor suppressor TSLC1 and T cell-associated molecule CRTAM in the 3LL Lewis lung carcinoma
tumor model [86] (Figure 4).

(4) Regulation of Cytoskeleton

TCS can induce specific changes, such as depolymerizing microfilaments (MF) and ring-shaped
microtubules (MT) structure in cytoskeleton configuration in apoptotic HeLa cells [103] (Figure 4). MF
rearrangement could decrease actin and tubulin gene expression levels and lead to execution of HeLa
cell apoptosis and the shift from apoptosis to necrosis [103].

Autophagy-Related Anti-Tumor Mechanism

Recent studies have demonstrated that TCS exerts significant anti-tumor effect on human gastric
cancer MKN-45 cells via up-regulation of the autophagy protein 5 (Atg5), and conversion of the
autophagosome marker LC3 I to LC3 II, then activates NF-kB/p53 pathway, thereby inducing the
generation of reactive oxygen species (ROS) to induce gastric cancer cell autophagy [104]. However, it is
unclear if the TCS-induced apoptosis or autophagy is dependent on its N-glycosidase activity [105,106].
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3.3. The Immunomodulatory Activity of TCS

A previous study showed that TCS is a potent immunosuppressive protein which could affect
humoral immunity through regulating the ratio of immunoregulatory T lymphocytes cells [19,107]
and induce immunosuppression of the non-toxic T-lymphoproliferative responses [25,26]. It has
been shown that TCS could inhibit the immune response and specifically induce the expression of
cytokines of T helper 2 immune response pathway in mouse splenocytes [108], effectively preventing
allograft rejection and prolonging graft survival in a murine skin transplantation model [20]. TCS could
up-regulate interleukin (IL)-4 gene expression while suppressing interferon (IFN)-γ gene expression in
TCS-immunized mice [27]. It was further shown that TCS plays an important role for the expansion of
CD4+CD25+ regulatory T cells, thus prolonging survival duration and preventing graft-versus-host
disease in the mice model [28]. It has been found that TCS could affect the immune effector, class
I-restricted T cell-associated molecule (CRTAM) in effector T cells in lung cancer model [86]. These
results also suggest the potential therapeutic value of TCS for transplantation rejection and other
inflammatory diseases.

4. TCS-Derivatives Are Promising Therapeutic Agents

To promote the potential use of TCS as a therapeutic agent, there are attempts to use different
approaches to modify TCS as summarized in a previous review [16]. Monoclonal antibody-conjugated
TCS changes its specificity and could enhance its antitumor efficacy [10]. TCS-conjugated to
anti-hepatoma monoclonal antibody has specific cytotoxicity and effective anti-tumor activity to
human hepatoma cells [109]. It has been found that the immunogenicity of TCS is reduced and the
biological activity has not been altered by modifying the epitopes of TCS [53]. So far, antigenicity
and other side effects, such as poor tumor targeting, short half-life, insufficient tumor accumulation
and cell penetration, have precluded further clinical translation of TCS [110]. Efforts to reduce the
antigenicity of TCS by molecular manipulation and coupling to PEG have been made [66]. Site-directed
PEGylation of TCS retains its anti-HIV activity with reduced potency in vitro [66]. The further
bioengineered PEGylated matrix metalloproteinase (MMP)-switchable cell-penetrating TCS showed
potent prodrug-like feature and effective synergy effect with paclitaxel in treating multidrug resistance
cancer both in vitro and in vivo [21]. Another study utilized a nanotechnology-based co-delivery of
TCS protein and albendazole [63] as a combination therapy to overcome drug resistance and inhibit
tumor metastasis. Besides, a 15-aa-long TCS-derived peptide can suppress type 1 immune responses,
through TLR2-dependent activation of CD8 (+) CD28 (−) Tregs, as effectively as full-length TCS
without exhibiting cytotoxicity [111]. Researchers also attempted to explore the potential application
of TCS in cancer immunotherapy. They found that TCS may sensitize HepG2 tumor cells to cytotoxic
T lymphocyte-mediated tumor cell apoptosis and enhance the efficacy of cancer immunotherapy in a
nude mice model [112]. A recent study also showed that TCS fused with intracellular delivery vehicles
can drastically improve the TCS intracellular efficiency, specificity and enhance its cytotoxicity. For
example, TCS fused with a heparin-binding peptide (HBP) altered its intracellular delivery route and
increased its cytotoxicity to tumor cells [113]. After combination with a human derived cell-penetrating
peptide HBD, TCS showed an efficient delivery into tumor cells [114].

5. Conclusions

TCS possesses a number of biological activities, including anti-virus, anti-tumor and
immune-regulatory functions. Existing reports showed that the anti-tumor properties and the
mechanism of TCS vary in different tumor cell lines, including inhibition of viability and proliferation,
induction of expression of apoptosis-related genes, regulation of cytoskeleton structure and activation
of multiple intrinsic and extrinsic apoptosis/autophagy pathways of tumor cells. Also, TCS exploits
different antivirus approaches toward various viruses. Although the mechanism of action of TCS has
not yet been solved, there are ongoing efforts to further modify TCS to promote its pharmacological



Toxins 2018, 10, 335 10 of 15

properties and explore the potential medicinal applications of TCS in cancer immunotherapy. TCS may
also have potential therapeutic value for transplantation rejection and other inflammatory diseases
for its immunomodulatory effects. Further research on the mechanism and the pharmacological
application of TCS will not only increase the translational values of this important protein, but the
effort may also be extended to RIPs found in other plants, bacteria and mushrooms.
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