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Comparative motif discovery combined with
comparative transcriptomics yields accurate
targetome and enhancer predictions
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The identification of transcription factor binding sites, enhancers, and transcriptional target genes often relies on the
integration of gene expression profiling and computational cis-regulatory sequence analysis. Methods for the prediction of
cis-regulatory elements can take advantage of comparative genomics to increase signal-to-noise levels. However, gene
expression data are usually derived from only one species. Here we investigate tissue-specific cross-species gene expression
profiling by high-throughput sequencing, combined with cross-species motif discovery. First, we compared different
methods for expression level quantification and cross-species integration using Tag-seq data. Using the optimal pipeline, we
derived a set of genes with conserved expression during retinal determination across Drosophila melanogaster, Drosophila
yakuba, and Drosophila virilis. These genes are enriched for binding sites of eye-related transcription factors including the zinc-
finger Glass, a master regulator of photoreceptor differentiation. Validation of predicted Glass targets using RNA-seq in
homozygous glass mutants confirms that the majority of our predictions are expressed downstream from Glass. Finally, we
tested nine candidate enhancers by in vivo reporter assays and found eight of them to drive GFP in the eye disc, of which
seven colocalize with the Glass protein, namely, scrt, chp, dpr10, CG6329, retn, Lim3, and dmrt99B. In conclusion, we show for the
first time the combined use of cross-species expression profiling with cross-species motif discovery as a method to define
a core developmental program, and we augment the candidate Glass targetome from a single known target gene, lozenge, to
at least 62 conserved transcriptional targets.

[Supplemental material is available for this article.]

Developmental programs depend on complex transcriptional reg-

ulation to accomplish the correct and timely expression changes of

thousands of genes during the course of patterning, cell specifi-

cation, and differentiation. The genomic code that implements

this intricate regulatory control is to a large extent contained

within cis-regulatory modules (CRM), harboring binding sites for

specific transcription factors (TF) or TF combinations. The anno-

tation and characterization of CRMs is a key challenge in genome

biology because a better understanding of cis-regulation can de-

liver mechanistic insight into developmental, evolutionary, and

disease processes. For example, the characterization of the ‘‘even-

skipped’’ stripe II enhancer, with binding sites of KR, GT, HB, and

BCD, has revealed how a striped pattern of gene expression in the

Drosophila embryo emerges from the combination of TF concen-

trations, on the one hand, and the genome sequence, on the other

hand (Small et al. 1993; Davidson 2001; Carroll et al. 2009). A

better knowledge of CRMs can also contribute to the under-

standing of disease processes, for example, by providing an in-

terpretation of polymorphisms and mutations in the noncoding

genome found to be whole-genome sequencing or GWAS studies

(Worsley-Hunt et al. 2011). Finally, CRMs can provide insight into

evolutionary processes because they account for a large fraction

of morphological divergence in the animal kingdom (Wray 2007;

Wittkopp and Kalay 2012).

Computational methods are indispensable in the quest for

CRMs in the genome and are often used in combination with high-

throughput experiments (for a recent review, see Aerts 2012). For

example, ChIP-seq against a TF yields whole-genome binding lo-

cations for the TF, which can be further classified as directly bound

regions versus indirectly bound regions using motif discovery

(Gordân et al. 2009). A second example is the application of CRM

prediction methods on whole-genome chromatin accessibility

data, such as those obtained by DNase I-seq (Sabo et al. 2006).

DNase I-seq or FAIRE-seq yield ‘‘open regions’’ that are strongly

enriched for functional enhancers. By combining such data with

motif discovery or CRM prediction, direct TF target CRMs can be

identified (Won et al. 2010; Pique-Regi et al. 2011; Song et al.

2011). A third kind of strategy involves motif discovery or CRM

prediction methods on sets of coexpressed genes, to identify

shared motifs and CRMs and to predict the upstream regulators

(Aerts et al. 2003; Frith et al. 2004; Ho Sui et al. 2007; Roider et al.

2009; McLeay and Bailey 2010). We and others have proposed

ways to increase the performance of motif discovery using whole-

genome CRM predictions across species, combined with GSEA-like

enrichment analysis (Van Loo et al. 2008; Warner et al. 2008; Aerts

et al. 2010; Potier et al. 2012). These extensions make the methods

more complex but allow analyzing much larger sequence search
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spaces around each gene in the genome, up to tens of kilobases

upstream of and downstream from a gene’s transcription start site.

Nevertheless, the result of motif discovery depends largely on the

input set of coexpressed genes, which can be noisy and usually

contains direct and indirect target genes of many different TFs.

In this study, we show a new strategy for motif discovery on

coexpressed gene sets, by determining sets of coexpressed genes

across multiple species, to focus on the conserved core of a bi-

ological process and, consequently, to improve the accuracy of

motif and CRM discovery. We apply this multispecies approach

to three Drosophila species, namely, Drosophila melanogaster,

Drosophila yakuba, and Drosophila virilis, with the aim to gain further

knowledge of the transcriptional program underlying eye devel-

opment, and to identify new eye enhancers. The master regulators

of Drosophila eye development frame the conserved retinal de-

termination gene network (RDGN), with five highly conserved TFs,

namely, eyeless (ey; PAX6 homolog), twin of eyeless (toy; PAX6 ho-

molog), dachsund (dac; DACH1-2 homolog), sine oculis (so; SIX1/2

homolog), and eyes absent (eya; EYA1-4 homolog) (Silver and

Rebay 2005; Amore and Casares 2010; Kumar 2010). Downstream

from the RDGN, cells become specified and further differentiate

either as one of the eight types of photoreceptors (R1–R8) or as

accessory cells. This system has been extensively used in forward

genetic screens and has played an important role in deciphering

signaling pathways including the Notch, EGFR, Smoothened,

Dpp, Wnt, and Hippo signaling cascades. Although a considerable

number of genes and genetic interactions are already known in

retinal determination (e.g., nearly 500 genes are annotated with

the GO term ‘‘eye development’’), little is known about the regu-

latory interactions among these genes. Indeed, only a handful of

Eyeless target genes are known (Ostrin et al. 2006), around 20

Atonal target genes have recently been described (Aerts et al. 2010),

and for other TFs, few anecdotal targets are known (e.g., Pauli et al.

2005; Rogers et al. 2005; Jemc and Rebay 2007).

We generated whole-genome expression data in eye and wing

imaginal discs in three Drosophila species by Tag-sequencing and

derived conserved eye-enriched gene sets. By applying advanced

motif discovery methods, including CRM conservation cues, we

identify enriched motifs in these gene sets for multiple eye-related

TFs, such as Glass, SoxNeuro, Scratch, Eyeless, and Suppressor of

Hairless. We then validated the predicted conserved Glass targets

in D. melanogaster using RNA-seq in mutant eye discs and put

forward a set of 62 genes that are activated by Glass. Enhancer

validations by in vivo reporter assays, both using cloned enhancers

and using the Janelia Farm GAL4 lines (Pfeiffer et al. 2008),

achieved a success rate of 77%, with seven out of nine tested en-

hancers showing GFP expression in the eye disc in third instar

larvae and colocalizing with Glass expression. We conclude that

cross-species expression profiling, combined with robust regula-

tory sequence analysis, provides a straightforward strategy for

enhancer discovery and gene regulatory network mapping and is

generally applicable to probe homologous developmental pro-

grams across species.

Results

Tag sequencing in two tissues and three species

Tag-sequencing libraries were generated for D. melanogaster, D.

yakuba, and D. virilis eye-antennal and wing imaginal discs,

yielding between 2.4 and 6.8 million expressed sequence tags (EST)

of 21 bp (Supplemental Table S1). Gene expression levels were

obtained by a custom data processing pipeline, involving low-

count filtering and normalization (see Methods; Supplemental

Figs. S1–S5). For D. melanogaster, 89% of the uniquely mapped

reads could be assigned to an annotated gene, and expression

levels were obtained for 6021 and 5825 genes in eye-antennal and

wing imaginal discs, respectively. The log ratio of the normalized

eye-versus-wing levels was validated by qRT-PCR for eight genes

(Fig. 1A) and correlates well with previously obtained microarray

data in eye and wing imaginal discs (Supplemental Fig. S6; Ostrin

et al. 2006; Aerts et al. 2010). By ranking all genes according to

log(eye/wing) values, we found this ranking to contain a highly

significant ‘‘leading edge’’ for eye-related Gene Ontology functions

and for eye-related gene expression (using FlyBase TermLink gene

sets), providing additional confirmation for accurate gene expres-

sion measurements obtained by Tag-seq (Table 1; Supplemental

Fig. S7; Supplemental Table S2). Similar results can be obtained by

ranking all genes according to P-values for differential expression

calculated by DESeq (Anders and Huber 2010), edgeR (Robinson

et al. 2010), or NOISeq (Tarazona et al. 2011), although on this

specific data set the log-ratio ranking is slightly more robust (Sup-

plemental Fig. S6).

Next, we turned to the mapping results for D. yakuba and D.

virilis. We expected the quality of the genome annotation for these

species to be not as high as for D. melanogaster. Indeed, with a

comparable fraction of reads aligning to the genome, now the

percentage of reads that could be assigned to a gene is much lower

(41% and 50%, respectively) (Fig. 1B,C, blue bars; see Supple-

mental Fig. S8 for an example). To solve this issue, we implemented

two different procedures (Fig. 1D,E). In the first approach, we

assigned the remaining free peaks to a gene when they are located

downstream from an annotated transcript. This way, we were able

to assign an expression value to an additional 2887 genes in D.

yakuba and 3016 in D. virilis compared with the baseline, using

a maximum distance to the annotated 39 end of 5 kb (Supple-

mental Fig. S9). In the second approach, we used pairwise whole-

genome alignments and assigned peaks in D. yakuba or D. virilis to

an annotated D. melanogaster gene. This approach allows us to

assign expression values to D. melanogaster genes for an additional

2572 and 1054 genes for D. yakuba and D. virilis, respectively,

compared with the baseline (see Supplemental Fig. S10 for a com-

parison between both approaches). Note that for genes where both

approaches assign a different peak and thus a different expression

value to the same gene, we selected the value that is most similar to

the orthologous D. melanogaster gene, working under the conser-

vative assumption that the majority of genes are conserved in gene

expression rather than divergent (Supplemental Fig. S10; Supple-

mental Table S3).

Identification of tissue-specific genes across species:
Species as replicates versus rank aggregation

Having obtained normalized expression levels for as many genes

as possible in each species individually, the next step of our anal-

ysis was to use the expression data in D. yakuba, D. virilis, and

D. melanogaster to identify a core set of eye developmental genes in

Drosophila. To this end, we propose a rank aggregation method

based on order statistics (OS) (Aerts et al. 2006), integrating the

three species-specific rankings into one ‘‘conserved’’ eye-versus-

wing ranking. As species-specific rankings, we used the log-ratio-

based ranking, although rankings generated above by DESeq,

edgeR, or NOISeq can also be used (Supplemental Fig. S11). We

compared this approach with the direct statistical comparison of
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eye and wing samples, using the three species as replicates, with

edgeR (Robinson et al. 2010), DESeq (Anders and Huber 2010), or

NOISeq (Tarazona et al. 2011), and found that the OS approach

outperforms these other methods (Fig. 2A; Supplemental Fig. S12).

Importantly, regardless of the method used, the integration of

three species greatly improves the accuracy of detecting eye-spe-

cific genes, compared with D. melanogaster only. For example, the

five core RDGN genes (ey, toy, dac, eya, and so) are all ranked within

the top 170 genes in the OS cross-species ranking, compared with

the top approximately 500 in each species individually (Fig. 2B). To

prevent applying an arbitrary threshold on the OS-based ranking,

we determined the optimal threshold using Gene Ontology en-

richment with GOrilla (Eden et al. 2009) and compared the GO

enrichment in the cross-species ranking with the individual

rankings for each species (Table 1). For all GO terms related to eye,

photoreceptor, or neuronal development, the enrichment in

the cross-species rankings is higher than the enrichment in any of

the individual species. Hence, the combination of three species to

identify genes involved in a conserved process confers gene se-

lection robustness. The best enrichment of eye-antennal related

terms is for the term ‘‘compound eye photoreceptor cell devel-

opment’’ (GO:0042051; P-value is 3.6 3 10�12). This enrich-

ment is found at the optimal threshold of 245 genes, and we fur-

ther use this set of 245 genes as the conserved eye-enriched gene

set (see Supplemental Fig. S13 for a heatmap with expression

values). Interestingly, within these 245 genes, we observe a high

percentage of ‘‘unknown genes.’’ More precisely, 99 of the 245

genes (40.4%) are annotated only with a ‘‘CG number’’ and are

largely uncharacterized. For these genes, we can now assign a role

in eye development because they are highly enriched in the eye,

across three Drosophila species. Another interesting finding is that

a large proportion of these 245 genes, namely, 18.77% (28.08% of

the known genes) are TFs, as annotated by flyTF (Supplemental

Table S3; Pfreundt et al. 2010). We conclude that cross-species Tag-

seq, integrated with order statistics, identifies conserved tissue-

specific gene expression and thereby enables the association of

many unknown genes to the core eye developmental program in

Drosophila.

Motif discovery on conserved eye-specific genes

To identify novel regulatory interactions underlying eye photore-

ceptor development, we analyzed the set of 245 conserved eye-

specific genes across species for shared motifs in their regulatory

Figure 1. Tag-seq analysis D. melanogaster and other species. (A) Relative expression measures of eye-antennal imaginal discs versus wing imaginal
discs, as fold-changes, of eight genes involved in eye development, namely, ey, lz, nerfin-1, oc, repo, retn, scrt, and SoxN. (Blue) Measures by qRT-PCR;
(green) microarray; (orange) Tag-seq. (B) Percentage of mapped reads falling within the currently available species-specific gene annotation (blue),
compared with reads falling 1 kb (yellow), 2 kb (green), 5 kb (red), or >5 kb (purple) downstream from an annotated gene. (C ) Number of genes with
more than 10 mapped reads in any of the two tissues, using different annotation procedures. (D,E ) Overview of the two different methods to obtain gene
expression levels in the other species, one using species-specific annotation with 39 extension (D), the other by exploiting orthologous positions in
D. melanogaster with D. melanogaster gene annotations (E ).
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Figure 2. Cross-species analysis more robustly identifies eye-specific genes. (A) Comparison of rank aggregation using Order Statistics (OS; black
curves) to integrate expression levels across species, with differential expression analysis using the species as replicates (blue, green, red); and with a single-
species log-ratio ranking (cyan). (Black dashed curve) The recovery using all genes; (solid curves) using only genes with expression values in the three
species (no missing values). The true-positive set is 507 eye-enriched genes from D. melanogaster obtained from microarray data (Ostrin et al. 2006). (B)
Schematic visualization of individual and cross-species eye-versus-wing rankings, indicating the rank position of the RDGN genes so, toy, ey, eya, and dac,
showing an increasing rank for all RDGN members in the cross-species ranking, in particular the OS ranking.
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sequences. We used the method cisTargetX (Aerts et al. 2010; Potier

et al. 2012), which combines whole-genome scorings of clustered

binding sites for a library of position weight matrices (PWMs),

across all sequenced Drosophila species, with enrichment analysis.

Out of 3731 PWMs, our set of genes showed an over-representation

of 47 motifs with a normalized enrichment score (NES) >2.5. Due

to motif redundancy, the 47 motifs could be clustered in 16 sig-

nificantly distinct motifs (Mahony and Benos 2007). The highest

enriched motif is for Glass (GL; rank = 1, NES = 4.7523), a TF pre-

viously known to be involved in photoreceptor differentiation

(Moses et al. 1989). Thus far, and to our knowledge, only one target

gene is known for Glass at the same developmental time point,

namely, lozenge (lz) (Yan et al. 2003). (A second known Glass target,

ninaE, is activated during pupal development and is not expressed

in the tissue under study [Moses and Rubin 1991].) From the 245

genes as input, cisTargetX predicts 96 direct target genes of Glass,

including lz, and also predicts gl itself as an auto-regulatory target

gene (Table 2; Supplemental Table S4).

Among the remaining enriched motifs, several more are re-

lated to TFs that play a role in eye development, such as a Sox-

related motif for SoxNeuro (SoxN); the motif for SU(H); and the

motif for the Zinc Finger TF Scratch (SCRT) (Fig. 3; Zhu et al. 2011).

SOXN and SCRT are themselves among the list of 245 conserved

eye-specific genes, which justifies the assignment of these TFs to

their candidate motifs. Although the SCRT motif is similar to an

E-box motif (CANNTG), such as the one bound by Atonal, the

SCRT motif identifies a significantly different set of target genes

compared with ATO. Indeed, by comparing the SCRT targetome

found here, with ATO target predictions from our earlier work

(Aerts et al. 2010), we find 81 specific SCRT targets, 71 specific ATO

targets, and 17 genes in common. Therefore, we believe that the

SCRT motif is indeed related to SCRT target genes, rather than target

genes of a basic helix–loop–helix factor such as Atonal. From the

analysis of the top 245 conserved eye-specific genes, we did not

find motifs for the RDGN factors, such as Eyeless. However, when

we increased the stringency of the cutoff, using, for example, only

the top 75 or top 100 of conserved eye-specific genes, we found the

Eyeless motif (PAX6 position weight matrix) significantly enriched

(Fig. 3). When the motif discovery results on conserved eye-

enriched genes are compared with the motif discovery results on

single-species gene expression data, only one of these five mean-

ingful motifs could be identified, illustrating the robustness of

motif discovery after cross-species integration of tissue-specific

gene expression (Supplemental Figs. S14, S15). Putting all the

regulator-target interactions together yields a gene regulatory

network (Fig. 3B), which shows a high degree of regulatory cross

talk, with many genes regulated by more than one of these TFs. The

highly interconnected network contains 96 potential Glass targets,

39 SU(H) targets, 17 SOXN targets, 99 SCRT targets, and 18 EY

targets (Fig. 3B; Supplemental Table S4).

Validation of predicted Glass target genes by RNA-seq
in D. melanogaster

To validate the target gene predictions in the above gene regulatory

network, we focus on one of the five TFs, for which the targetome

was largely unknown before—Glass. For glass, homozygous viable

mutant lines are available, and glass phenotypes have been de-

scribed as having disrupted ommatidial patterning and a lack of

photoreceptors (PR) (Moses et al. 1989; Ellis et al. 1993). To validate

our Glass target gene predictions, we performed RNA-seq on D.

melanogaster glass mutant eye-antennal imaginal discs and wild-

type discs (see Methods). We found that the set of 96 predicted

Glass targets is significantly enriched at the top of the wild-type-

versus-mutant gene ranking, by a Gene Set Enrichment Analysis

(GSEA FDR <0.001) (Fig. 4A, inset), regardless of the method used

to assess differential expression between wild-type and mutant

samples (DESeq, edgeR, NOISeq, or the log ratio) (see Supple-

mental Fig. S16). This result globally validates our direct target gene

predictions based on cisTargetX. To assess the significance further,

we compared the fold changes of the 96 predicted Glass targets in

mutant versus wild-type discs with several other gene sets and

found that the predicted Glass targets are significantly more down-

regulated than any control set (P < 0.005 by Wilcoxon test) (Fig.

4A). Analysis of differential expression using DESeq identifies a

subset of 62 validated direct Glass targets (FDR <0.05), which we

define as the ‘‘Glass targetome’’ (boxed network in Fig. 4B). Note

that we choose DESeq because of its slightly better GSEA results

compared with the other methods (Supplemental Fig. S16).

Based on existing knowledge and tools available for some of

the predicted targets, we could confirm that using ‘‘down-regulation

in the glass mutant ’’ as a filter is useful to distinguish true-positive

from false-positive predictions. Among the set of 34 invalidated

targets, we found several genes that are unlikely to be Glass targets,

either because they are known to act upstream of glass in the eye

gene regulatory network (Amore and Casares 2010; Aerts et al.

2010; Kumar 2010), such as eyes absent, Optix, and atonal, or be-

cause they are not expressed in differentiating photoreceptors,

Table 2. Selection of predicted Glass target genes

Gene
D. melanogaster

gene FBgn
D. melanogaster

wild typea
D. yakuba
wild typea

D. virilis
wild typea gl[60j]b

cisTargetX predicted Glass
binding region

gl FBgn0004618 8.34 5.03 8.10 �1.27 chr3R:14199286–14201326
chp FBgn0000313 3.54 4.51 6.85 �4.44 chr3R:27035441–27035982
dpr10 FBgn0052057 2.49 3.60 1.43 �2.67 chr3L:10166262–10167555
Lim3 FBgn0002023 3.73 2.97 3.67 �2.07 chr2L:19085176–19086688
amon FBgn0023179 4.89 1.72 4.59 �1.89 chr3R:22530095–22531144
retn FBgn0004795 6.82 5.18 3.83 �1.81 chr2R:19523270–19524801
lz FBgn0002576 6.38 3.99 4.50 �1.75 chrX:9180815–9181775
dmrt99B FBgn0039683 2.71 3.51 6.56 �1.72 chr3R:25514163–25515780
scrt FBgn0004880 5.97 5.04 7.05 �1.68 chr3L:3981801–3982640
CG6329 FBgn0033872 4.68 0.73 3.78 �1.66 chr2R:9715391–9716094
Nrt FBgn0004108 2.72 2.38 2.45 �0.46 chr3L:16754263–16755474

aLog2(eye/wing) of Tag-seq-derived expression values.
bLog2(eye gl[60j]/eye wild type) of RNA-seq-derived expression values.
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such as Awh (Curtiss and Heilig 1997; Roignant et al. 2010) and Dfd

(Diederich et al. 1991). For several of these genes, we could verify

by immunohistochemistry that their expression is indeed in-

dependent of Glass and also that Glass is not repressing these genes

(see Supplemental Fig. S17).

Next, we compared the 62 validated targets with the 34 inval-

idated genes to search for characteristic features of true-positive

predictions (Fig. 4C). An additional cisTargetX analysis on the 62

validated targets finds the Glass motif more strongly enriched than

in the original set of 245 genes, while a cisTargetX analysis of the 34

invalidated genes does not find the Glass motif over-represented.

This suggests that there indeed exist differences between both gene

sets at the motif level (Supplemental Fig. S18). First, we found that

the genomic rank given by cisTargetX of the validated targets is

better than the genomic rank of the nonvalidated targets (a median

rank of 900 vs. 1602, respectively). Interestingly, using the top 500 as

genomic rank cutoff instead of the automatically calculated cutoff at

3327 yields 27 predicted targets, of which 24 are validated in the

RNA-seq experiment (Supplemental Fig. S19), representing an in-

crease of the positive predictive value (PPV) from 64.5% (62/97) to

88.9%. Therefore, the cisTargetX ranking can be used as a valid filter.

Second, the validated targets are enriched for Glass-only target

Figure 3. Motif discovery results from cisTargetX. (A) Motifs and candidate TFs found by cisTargetX, using different gene set sizes as input (top 75, 100,
245, and 545 genes from the OS-based integrative ranking). (NES) Normalized enrichment score from cisTargetX; (Motif Rank) rank of the motif from
a collection of 3731 motifs used by cisTargetX. (B) Gene regulatory network showing the predicted regulatory interactions of Glass, SCRT, SU(H), SOXN,
and EY, obtained from the cisTargetX analyses on the top100 and the top245 eye-specific genes. (Dashed arrows) Glass target gene predictions that are
found to be up-regulated in the glass mutant by RNA-seq.

Naval-Sánchez et al .

80 Genome Research
www.genome.org



Figure 4. (Legend on next page)

Genome Research 81
www.genome.org



predictions, while the 34 invalidated targets are enriched for tar-

gets of multiple TFs (e.g., Glass + Scratch). The Glass-only targets

are much more strongly down-regulated than the targets with

multiple inputs (see bean plot in Fig. 4A). This means that the node

in degree can be used as a post-filter, retaining 30 genes from the

initial set of 96 genes, of which now 21 can be validated. Several

other features we investigated were not significantly different be-

tween these sets. For example, we found no obvious difference

between the maximal scoring PWM instances in both sets, in-

dicating that the differences in binding site clustering and con-

servation at the CRM-level (jointly captured by the cisTargetX

ranking) are more indicative for being a true target gene than dif-

ferences in nucleotide preference in one single binding site (Sup-

plemental Fig. S20). Also, using smaller sizes of input genes (75 or

100 genes) did not result in a lower false-positive rate (although

using a larger size, namely, 545 genes, resulted in a higher false-

positive rate) (Supplemental Fig. S21). Based on these results, we

combined the two best filters (top 500 for cisTargetX and Glass-

only targets) into a high-stringency filter. Although this filter re-

tains only eight predicted Glass target genes (including chp and

the positive control lozenge), it corresponds to a PPV of 100%, be-

cause all eight targets are validated by RNA-seq (orange diamond

in Fig. 4C).

In conclusion, the RNA-seq data validate a significant number

of the 96 initially predicted Glass targets and show that Glass

mainly acts as an activator (also see Discussion). The rate of true

positives can be increased from 64.5% to 100% using additional

filters, providing an interesting strategy when additional tran-

scriptomics data in a TF perturbation are not available. In this

study, having RNA-seq data available, we continue using the set of

62 validated target genes in the remainder of the text. A selection of

these genes is shown in Table 2 (namely, lozenge, glass, and nine

genes for which we test the enhancer in the next section), together

with their expression levels across the three species and the change

in expression in the glass mutant (for all genes, see Supplemental

Table S5).

Validation of predicted Glass binding sites by in vivo
enhancer-reporter assays

Each of the 62 predicted Glass target genes is based on a high-

scoring cis-regulatory module (CRM) harboring a cluster of one or

more Glass binding sites (Table 2). To test some of these CRM

predictions, we made use of the collection of GAL4 lines made

available from Janelia Farm (Pfeiffer et al. 2008). By overlapping

our CRM predictions with the currently available GAL4 lines in the

Bloomington stock center (3029 lines on November 28, 2011), we

found nine GAL4 lines that cover a predicted CRM. We crossed

these lines to UAS-GFP and assayed GFP expression, in combina-

tion with the expression of Glass and Elav (Fig. 5; Supplemental

Fig. S22). We found eight of the nine lines to drive GFP in the eye

disc, of which seven are active in photoreceptor cells and overlap

with Glass and ELAV (Fig. 5). Only the CRM prediction for the

amon gene showed no GFP in the eye-antennal disc, and the CRM

prediction for Nrt showed GFP in the eye disc, but in glial cells

rather than in photoreceptor cells (Supplemental Fig. S23).

Some of the GAL4 lines are constructed with relatively large

genomic regions. We assessed for three positive CRMs whether the

actual CRM prediction recapitulates the GFP expression pattern

observed for the encompassing GAL4 line. We chose the CRM lo-

cated near chp because it shows a delay in expression compared

with glass; and the CRMs near scrt and retn, because these are in-

teresting TFs themselves with phenotypes manifest in the eye or

photoreceptors (FlyBase phenotypes). Transgenic flies carrying the

scrt, chp, and retn CRMs, directly linked with GFP, generate the

same expression pattern as their corresponding GAL4 lines in

the Rubin GAL4 collection (Fig. 5). Finally, we verified for all three

CRMs whether the CRM activity is affected in the glass mutant, by

crossing the enhancer-GFP reporter into the homozygous glass

mutant background. Indeed, for all three enhancers, the activity is

entirely gone (Fig. 5; Supplemental Fig. S24). We could further-

more confirm that the Chaoptic and Lozenge proteins, for which

antibodies are available, are either gone (Chaoptic) or severely af-

fected (Lozenge) in the glass mutant (Supplemental Fig. S17), in

agreement with previous reports (Treisman and Rubin 1996; Firth

and Baker 2007). Overall, we have achieved a high success rate of

Glass target gene predictions, both in terms of their perturbation in

the mutant eye, and in terms of PR-specific enhancer-reporters.

Discussion
Sequencing-based expression profiling using RNA-seq or Tag-seq

provides the opportunity to obtain genome-wide quantitative

gene expression levels in any tissue and in any species (McManus

et al. 2010; Hong et al. 2011). Here we use comparative tran-

scriptomics in combination with comparative motif discovery. The

comparative transcriptomics was performed during retinal de-

termination in three Drosophila species (D. melanogaster, D. yakuba,

and D. virilis) using Tag-sequencing (Tag-seq, sometimes also called

EDGE) (Saha et al. 2002; Hong et al. 2011). By using Tag-seq, the

expression levels are based on one expressed sequence tag (EST) per

transcript, corresponding to the 21 bp downstream from the most

39-located NlaIII restriction site. After mapping the sequence reads,

assigning ESTs to genes, and optimizing the filtering and normal-

ization steps, we found this technique to deliver accurate gene

expression levels in D. melanogaster. The nonmodel species D.

yakuba and D. virilis have a lower-quality genome annotation and

therefore require annotation amendments toward the 39 end.

Taking these annotation imperfections into account, either by

extending the 39 end of a gene, or by comparing the EST location to

Figure 4. Validation of predicted Glass target genes by RNA-seq. (A) Bean plots representing the log2 (gl[60j]/wild-type) for the 96 predicted Glass
target genes, compared with the same values for control gene sets. As control sets we used three sets of genes expressed upstream of glass, namely, all
genes from the Retinal Determination Gene Network (RDGN) from Amore and Casares (2010); Eyeless target genes from Ostrin et al. (2006); and Atonal
target genes from Aerts et al. (2010). We also used five other negative control sets, unrelated to eye development. (***) Significant difference (Wilcoxon
FDR <0.05), compared with the Glass target sets. (Inset) Gene Set Enrichment Analysis (GSEA) showing a significant (FDR <0.001) enrichment of the 96
genes at the top of the ranking. (B) The predicted Glass targetome with 96 genes, showing overall down-regulation (green). (Dashed red edges) Up-
regulation; (blue edges) no expression changes in the mutant. (C ) Comparison of the amount of validated, or true-positive Glass target predictions (x-axis;
genes that are down-regulated in the glass mutant) and invalidated, or false-positive predictions (y-axis; genes that are not down-regulated in the mutant).
All situations show a higher number of true positives than false positives. (Blue diamonds) Different filters based on the cisTargetX genomic ranking; (green
diamond) the situation in the text (62/96 validated targets); (orange diamond) a very stringent filtering with 100% positive predictive value, although
retaining only eight Glass target genes.
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orthologous positions in D. melanogaster, we were able to obtain

accurate expression measures for D. yakuba and D. virilis.

To compare gene expression between species, we first nor-

malized the gene expression levels in each species separately by

dividing the expression in the eye disc by the expression in the

wing imaginal disc. The wing imaginal disc is a good control be-

cause it also consists of epithelium and is taken at the same de-

velopmental time. Through a post-analysis, we confirmed that eye-

enriched genes compared with the wing disc are also eye-enriched

compared with the entire larva (Supplemental Fig. S25). We then

focused on conserved eye-specific genes across the three species

by ranking all genes according to the eye-versus-wing differential

expression and integrating these rankings by order statistics (OS).

We compared this procedure with a direct statistical assessment of

eye-specific gene expression, using the three species as replicates

(three eye samples vs. three wing samples). None of the available

packages (DESeq, NOISeq, edgeR) outperformed the OS integrated

ranking. Interestingly, the OS-based integration is robust to miss-

ing values, and genes with strong eye-enrichment for two species,

but a missing value in the third species can still be ranked very

high (for example, no orthologous gene exists in one species; or

the transcript has no NlaIII site; or the coverage is too low). On the

other hand, the statistical methods used for differential expression

across the species are very sensitive to missing values, and we even

had to restrict our comparison to 1-1-1 orthologs. This finding is

important when more species are included in the analysis, which

would result in too stringent filtering if expression levels are re-

quired for all species analyzed.

For the comparative motif discovery, we used a cross-species

approach called cisTargetX. We have shown before that this ap-

proach delivers accurate motif discovery and CRM prediction re-

sults (Aerts et al. 2010) . This method takes a set of coexpressed

genes as input and identifies enriched motifs (present in the 5 kb

upstream and first intron regions) using whole-genome scoring for

homotypic motif clusters across the 12 sequenced Drosophila spe-

cies. As an input set, we selected the top 245 genes from the OS-

based cross-species gene ranking. This cutoff was determined based

on the finding that this ‘‘leading edge’’ contains the strongest

enrichment of genes involved in photoreceptor differentiation, as

determined by a ranking-based GO analysis (Eden et al. 2009). This

finding is not unexpected because at this stage of development, the

eye-antennal disc is strongly enriched for photoreceptor cells. We

analyzed this set of 245 eye-specific genes for enriched motifs us-

ing cisTargetX and identified motifs for several eye-related TFs,

including Glass, SU(H), SOXN, and Scratch. For each of the enriched

motifs, cisTargetX predicts the optimal subset of direct target genes,

which is then considered as the candidate ‘‘targetome’’ of the

corresponding transcription factor. Putting the targets for all fac-

tors together in a network allowed us to connect already 149 of the

245 input genes. Although additional regulators and TF–target

interactions can be found when alternative input sets are used

(e.g., the top 545 genes, or filtered gene sets using other data sets)

(see Supplemental Table S6), it remains a future challenge to pre-

dict a regulator for all genes in a signature.

We focused on the targetome of the highest ranked motif,

namely, Glass, which consists of 96 predicted Glass target genes

(out of the 245 genes used as input). Thus far, only one direct target

gene of Glass has been reported in the tissue under study, namely,

lozenge, which is an activating regulatory interaction. Together

with the fact that we start from highly eye-enriched genes, often

also highly expressed genes, we expected to find additional target

genes that are activated by Glass, rather than repressed. In agree-

ment with this hypothesis, we find a significant amount of pre-

dicted Glass targets to be down-regulated in the glass mutant. This

results in 62 direct and activated candidate Glass target genes, in-

cluding lozenge. If we include more genes as input to cisTargetX,

additional Glass target genes are found (for example, Pph13, a

known TF involved in photoreceptor morphogenesis) (Zelhof et al.

2003; Mishra et al. 2010), but we decided to present the core set of

62 targets in this work (the larger list of targets is available from our

website, through the cisTargetX results). To test these candidate

targets further, we examined the predicted CRMs with Glass

binding sites using in vivo reporter assays. To this end, we have

made use of a recently available collection of GAL4 lines from

Janelia Farm (Pfeiffer et al. 2008) that contains overlapping geno-

mic regions around genes involved in the development and

functioning of the central nervous system. Because we are studying

eye development and photoreceptor neuron differentiation, many

of the eye-enriched genes also play a role in the CNS, and therefore

we found several GAL4 lines, nine in particular, for genomic re-

gions that overlap our CRM predictions (based on the current

availability in the Bloomington stock center). Remarkably, eight of

the nine tested lines (88.8%) show expression in the eye disc,

downstream from Glass, and for seven of these eight GFP colo-

calizes with Glass in photoreceptor cells. This brings the number of

in vivo–validated eye enhancers activated by Glass from one (the lz

eye enhancer) (Yan et al. 2003) to eight. Note that these enhancers

are found ab initio, without starting from a set of ‘‘training en-

hancers.’’ Indeed, many computational methods for CRM pre-

diction rely on a training set (for review, see Aerts 2012), but in our

case, as in many other circumstances, such data are not available.

Here we show that, purely based on gene expression measure-

ments in wild-type tissue, enhancers with a specific function, and

activated by a specific TF, can be identified on a genome-wide scale.

Following the identification of many true-positive targets, we

also examined the set of invalidated genes that are not significantly

down-regulated in the glass mutant, such as eya (fold-change = 1.14

up), ato (fold-change = 0.90 down), and phyl (fold change = 1.00 up).

Among these 34 are also 11 genes that are significantly up-regulated

in the glass mutant, although we note that the fold-change in ex-

pression is markedly smaller than the fold-changes of the down-

regulated genes, with examples such as Optix (1.32-fold up) and Dfd

(1.61-fold up). Using antibodies against some of the encoded pro-

teins (eya, Optix, Dfd, Ato) (see Supplemental Fig. S17) or crossing

candidate CRMs into a glass mutant background (phyl) (see Sup-

plemental Fig. S24), we found no obvious changes in expression in

the glass mutant, suggesting that they are, indeed, most likely false-

positive predictions. Importantly, we find no evidence that Glass

could have a repressive role, because (1) there is overall very little

up-regulation in the glass mutant, compared with the very strong

down-regulation of validated targets (up to 1000-fold); (2) the

entire RDGN is, independently of Glass, slightly up-regulated be-

cause of noncell-autonomous effects (see bean plot in Fig. 4A); and

(3) genes that are not expressed in Glass-expressing cells in wild-

type discs are not activated in these cells in the glass mutant, as we

have shown for Optix and Dfd. Altogether, we conclude that Glass

is mainly an activator, and that the RNA-seq-based filter for down-

regulation in the mutant allows separating true- from false-positive

predictions. Interestingly, we identified particular parameter set-

tings and filters that can shift the ratio of false-positive predictions,

one of which leads to eight predicted Glass targets with a 100%

positive predictive value.

Finally, to give nuances to the above separation of true and

false positives, we note that such separation depends on the res-

Naval-Sánchez et al .

84 Genome Research
www.genome.org



olution of the assay. One can imagine that the global mRNA ex-

pression level of a gene does not change significantly in the mu-

tant versus wild-type tissue. For example, it is likely that for many

targets, Glass is not the only regulator, so removing Glass may not

entirely abolish the activation of the target, but only cause a subtle

change. Also, we find that Glass directly activates several repres-

sors, such as Lozenge and Scratch, which, in turn, may also bind to

Glass target CRMs (many genes in the network of Fig. 3B are pre-

dicted as targets of Glass and Scratch) yielding incoherent feed-

forward loops. Removing Glass could result in a decrease of the

repressor and a derepression (hence up-regulation) of the shared

targets. One intriguing CRM we predicted where Glass could act

as a cofactor is Eya. The predicted Glass binding sites are located

right inside the known eye enhancer located just upstream of

the eya transcription start site, where Eyeless is known to bind

(Bui et al. 2000). Although the RNA-seq data invalidated the

Glass ! eya interaction, we investigated this candidate further

because of the very strong CRM score (ranked 188th in the entire

genome) and because eya is expressed in two domains, namely,

anterior to the morphogenetic furrow (in the RDGN), and pos-

terior to the furrow in all differentiating photoreceptors. Par-

ticularly, we assessed the levels of EYA protein quantitatively

inside ELAV-positive versus ELAV-negative cells, before and after

the morphogenetic furrow, in wild-type and glass mutant discs,

and could detect a small change of EYA expression inside ELAV-

positive cells posterior to the furrow (Supplemental Fig. S25). We

believe that in future work, quantitative expression analysis will

play an important role to identify small quantitative effects and

to begin modeling the networks we began to map here ( Jaeger

et al. 2004).

In this study, we show that for systems that are not easily

amenable to ChIP, cross-species transcriptomics followed by com-

putational motif discovery allows accurate predictions of targets

and CRMs. Subtle interactions remain uncertain at the resolution

of our assays, such as the Glass ! eya interaction. Such inter-

actions would benefit from complementary ChIP-seq data against

Glass and cofactors. Currently, to our knowledge, no ChIP-seq has

been performed yet against sequence-specific TFs in specific cell

types within eye imaginal discs. This may become possible in the

future because technological advances, including recombineering-

mediated tagging of transcription factors (Venken et al. 2008) and

miniaturization of ChIP protocols (Adli and Bernstein 2011), are

paving the way to overcome the challenge of ChIP on low input

material and the need for ChIP-grade antibodies for every TF.

Because such approaches will remain costly and technically

challenging, we believe our strategy provides a straightforward

alternative to map gene regulatory networks.

In conclusion, by integrating gene expression across three

Drosophila species, we obtain a high-quality set of conserved tissue-

specific genes, representing the core of the developmental process

under study, in our case, Drosophila retinal determination. This

core set of eye-specific genes shows stronger functional enrich-

ment than eye-specific genes obtained from a single species only.

The motif discovery results on the conserved set are more accurate,

both in terms of specificity and sensitivity, which indicates that

the genes with conserved expression are more tightly coregulated

than genes derived from one species. This strategy is generally

applicable to conserved organs and allows us to probe wild-type

tissues without the requirement of genetic perturbations of tran-

scription factors, or other enrichment procedures (e.g., cell-type-

specific expression profiling using cell sorting, or chromatin im-

munoprecipitation). Massively parallel sequencing technologies

thus allow using ‘‘species as replicates’’ to discover the conserved

patterns in a developmental program.

Methods

Fly stocks and antibodies
The fly strains used were D. melanogaster Canton-S and yw. For D.
yakuba and D. virilis, we used the sequenced strains, obtained from
the San Diego Stock Center (stock number 14021-0261.01 and
15010-1051.87, respectively). All flies were raised at 25°C on
standard fly food. For immunohistochemistry, imaginal discs of
wandering third instar larva were dissected and processed as de-
scribed (Wang et al. 2002). The anti-Optix antibody was a kind gift
of F. Pignoni, and anti-Dfd of T. Kaufman. The antibodies against
CHP raised by S. Benzer, LZ raised by U. Banerjee, ELAV and Glass
raised by G.M. Rubin, and REPO raised by C. Goodman were
obtained from the Developmental Studies Hybridoma Bank
(DSHB), developed under the auspices of the NICHD, and main-
tained by The University of Iowa, Department of Biology (Iowa
City, IA).

Imaginal disc dissections, RNA extraction, and qRT-PCR

Imaginal discs of wandering third instar larvae were dissected in
PBS, and RNA for Tag-seq, RNA-seq, or qRT-PCR was extracted with
the Mini RNA Isolation Kit (ZymoResearch). For qRT-PCR, we ap-
plied relative quantification with the comparative ddCT method
(SDS User bulletin 2; Applied Biosystems) with the Roche Light-
cycler 480 SYBR Green Master Mix 2 (Roche Diagnostics) on the
Roche Lightcycler 480 instrument. Total RNA of eye-antennal
imaginal discs was converted to cDNA using the QuantiTect Re-
verse Transcription Kit (QIAGEN). Primers were designed with
a Roche Lightcycler 480 probe design and are available upon re-
quest. As housekeeping gene, we used rpl32. RNA of eye-antennal
imaginal discs of Canton-S wild type was used as the control
sample. After an initial denaturation step for 10 min at 95°C,
thermal cycling conditions were 15 sec at 95°C and 1 min at 60°C
for 40 cycles.

Illumina Tag-sequencing

Around 1–3 mg of total RNA was used per sample (70–80 larvae),
and NlaIII-Digital Gene Expression libraries were generated fol-
lowing the Illumina guidelines. In brief, the total RNA per sample
was bound to oligo(dT) beads. Double-stranded cDNA was syn-
thesized and digested using an NlaIII restriction enzyme. Next,
adapters were added to the 59 end of the fragments. A second di-
gestion with MmeI cuts 17 bp downstream from the NlaIII site and
is followed by 39-adapter ligation and tag enrichment by PCR. Fi-
nally, sequencing was performed on the Illumina Genome Ana-
lyzer (GAII). Illumina’s Pipeline’s FireCrest was used to convert
sequencing cycle images to signal intensities, and the Bustard al-
gorithm (Bentley et al. 2008) was run to perform base and calculate
quality scores for every base. Quality assessment analysis of Phred
scores per sequencing cycle and per lane was performed using the
ShortRead Bioconductor package (Morgan et al. 2009).

Tag-seq data analysis

Sequencing reads corresponding to 17-bp tags were converted to
21-bp tags by adding the 59 NlaIII restriction site (CATG). The 21-
bp tags were aligned to the corresponding FlyBase genome as-
semblies: Drosophila melanogaster release 5, Drosophila yakuba and
Drosophila virilis release 1. D. yakuba and D. virilis samples were also
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mapped to University of California, Santa Cruz (UCSC) genome
assemblies (WUGSC 7.1/droYak2) and (droVir3), respectively. The
mappings were performed using bowtie (Langmead et al. 2009)
with maximally two mismatches per read. Only tags mapping
uniquely to the reference genome were processed further. For each
gene, we considered the position with the maximal number of tags
to determine the gene expression level. Applied normalization
methods were total count normalization, upper-quartile normali-
zation (Bullard et al. 2010) and trimmed mean of M-values (TMM)
(Robinson and Oshlack 2010). Total count and upper-quartile
normalization consisted of dividing each expression value for the
total sum of counts assigned to genes (library size), or by the upper
quartile of gene counts and multiplied by the average total-count
or upper-quartile gene counts between samples. TMM normaliza-
tion was performed using the calcNormFactors function from the
edgeR package and multiplying with the scaling factor for each
library size. Differential expression (DE) analysis was performed by
edgeR (version 2.05) (Robinson et al. 2010), DESeq (version 1.2.1)
(Anders and Huber 2010), and NOISeq (Tarazona et al. 2011)
packages. Zero values were adjusted by adding 1, to avoid missing
values (infinity) in the log ratios.

Cross-species integration, coordinate orthology, and gene
orthology

Gene orthology was obtained from EnsemblCompara GeneTrees
(Vilella et al. 2009). Coordinate orthology was obtained from
whole-genome alignment (.chain) files from the UCSC Genome
Browser and the liftOver tool (Fujita et al. 2010). Order statistics
was used as described (Aerts et al. 2006).

Comparison to publicly available data sets

Data set GSE4008 (Ostrin et al. 2006) was analyzed from the CEL
files using BioConductor, RMA for normalization, and Limma for
differential expression, yielding 507 D. melanogaster eye-enriched
genes with log2(eye/wing) >2 and FDR <0.05. ROC curves were
performed using the ROCR (version 1.0-4) BioConductor package.

Motif discovery

Motif discovery was performed with cisTargetX (http://med.
kuleuven.be/lcb/cisTargetX) as described before (Aerts et al. 2010;
Herrmann et al. 2012) using version 1 of the motif collection (3731
position weight matrices), and using the 5 kb upstream and first
intron as search space. For each motif, this search space is scored
for clusters of PWM matches using a Hidden Markov Model, and
orthologous regions of 11 other Drosophila species are scored in
parallel. This results in 12 whole-genome rankings per motif, and
these are combined by rank aggregation into one whole-genome
ranking for each motif. For an input set of genes, the motifs for
which the gene ranking is significantly enriched for input genes at
the highly ranked genes are identified, and for each significant
motif, the optimal threshold is determined through a Receiver
Operator Characteristic curve. For details, we refer to the original
cisTargetX and i-cisTarget publications. Full analysis results are
available from the cisTargetX website.

Gene Regulatory Network visualization

Gene Regulatory Network visualization was performed using
Cytoscape 2.8.1 (Smoot et al. 2011). Expression levels for the three
species were represented as log2(eye-antennal/wing) values in
node colors using the MultiColoredNodes cytoscape plugin (ver-
sion 2.4.12) (Warsow et al. 2010).

RNA-seq

Fly stocks from D. melanogaster wild type (Canton-S and strain RAL-
208 from the inbred collection of T. Mackay) (Jordan et al. 2007;
Ayroles et al. 2009) and the glass mutant line (gl[60j], stock 507
from the Bloomington Stock Center) were maintained at room
temperature. Eye-antennal and wing imaginal discs were dissected,
followed by RNA extraction, yielding ;3 mg of total RNA per
sample, to be processed to libraries according to the Illumina
TruSeq protocol with appropriate indices, pooled, and sequenced
on the Illumina HISeq 2000.

RNA-seq data analysis

Reads containing residuals of adapter sequences were discarded
(FastX clipper version 0.0.13 with option -M15). Quality control
assessment on raw sequenced reads was performed using the
software FastQC (version 0.9), checking for PHRED quality >20 and
different primer contaminations. Reads passing the filtering were
mapped against the D. melanogaster FlyBase genome release 5 with
TopHat v.2.0 (default parameters) (Trapnell et al. 2009). Gene ex-
pression measures were computed by HT-Seq (Anders and Huber
2010) (option -str=no) using D. melanogaster gene annotation re-
lease 5.30. Differential expression between [gl60j] and wild type
(Canton-S and strain RAL-208 from the inbred collection of T.
Mackay) ( Jordan et al. 2007; Ayroles et al. 2009) was calculated
with DESeq (v.1.2.1) using FDR <0.05, where only genes with more
than 1 read per million in two samples were assessed for differen-
tial gene expression.

Enhancer-reporter assays

Out of 3029 GAL4 lines made available from Janelia Farm (Pfeiffer
et al. 2008) in Bloomington stock center (28 November 2011), nine
GAL4 lines covered the cisTargetX-predicted glass binding CRM.
We crossed these lines to UAS-GFP lines, to assess whether GFP
expression was observed in D. melanogaster eye-antennal third
instar wandering larvae. Enhancer regions containing the pre-
dicted glass-binding motif were PCR-amplified from genomic DNA
of D. melanogaster or of D. virilis and cloned into the phiC31 and
Gateway compatible reporter vector pH-attB-Dest (Aerts et al.
2010), injected into VK37 (Venken et al. 2006) by Genetivision,
and crossed together to generate homozygous stocks.

Quantitative immunohistochemical analysis

To quantify changes of EYA expression in the glass mutant, con-
focal stacks of immunostained samples, including DAPI as nuclear
marker, were used. Single nucleus resolution samples were ob-
tained by thresholding the DAPI staining signal and fitting the
spots to geometric spheroids by scanning different major semiaxis
lengths within an interval that is characteristic of nuclear size in
the eye imaginal disc. These data were spatially transformed along
the anterior–posterior axis and registered relative to the morpho-
genetic furrow, so that the negative semiaxis corresponds to pre-
cursor cells anterior to the furrow, and the positive semiaxis cor-
responds to the differentiated photoreceptors and accessory cells,
posterior to it. A full account of the imaging and computational
method will be described elsewhere.

Data access
Tag-seq data (two tissues, three species) and RNA-seq data (two
wild-type D. melanogaster strains, and the glass mutant) are avail-
able from GEO (accession number GSE39784). CisTargetX and
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the results from our cisTargetX analyses are available from the
cisTargetX website at http://med.kuleuven.be/lcb/cisTargetX.
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