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ABSTRACT

Computational discovery of cis-regulatory elements
remains challenging. To cope with the high false
positives, evolutionary conservation is routinely
used. However, conservation is only one of the
attributes of cis-regulatory elements and is neither
necessary nor sufficient. Here, we assess two
additional attributes—positional and inter-motif
distance specificity—that are critical for interac-
tions between transcription factors. We first show
that for a greater than expected fraction of known
motifs, the genes that contain the motifs in
their promoters in a position-specific or distance-
specific manner are related, both in function and/or
in expression pattern. We then use the position and
distance specificity to discover novel motifs. Our
work highlights the importance of distance and
position specificity, in addition to the evolutionary
conservation, in discovering cis-regulatory motifs.

INTRODUCTION

Eukaryotic gene transcription is controlled by a network
of transcription factor (TF) proteins (1,2). TFs bind to
specific DNA c¢is elements near transcription start sites,
and through cooperative interaction, guide Polymerase-II
complex to the transcription start site. Identification of
cis-regulatory elements for the TFs is an important first
step towards deciphering regulatory networks. This,
however, remains a practical challenge because TFs
often bind to highly diverse sequences resulting in
degenerate binding models or motifs, and searching for
putative binding sites using these degenerate motifs results
in too many false positives.

It is now well established that regions in the genome
that have been conserved over long evolutionary periods
are more likely to be functional (3). Fortunately, such
highly conserved regions make up only a small fraction of
the genome (4). Thus by restricting the search for putative

binding sites in evolutionarily conserved sequences, one
can drastically reduce false positives. This is exactly the
premise underlying the, now well established, approach of
Phylogenetic Footprinting (5-8). However, for a genomic
region to be functional, evolutionary conservation is
neither necessary (9,10) nor sufficient (11). Besides
conservation, what are other important characteristics of
functional cis elements?

The regulation of gene transcription depends
on interactions among transcription factors and the
polymerase. This imposes location constraints on the
corresponding DNA elements. For example, several cis
elements occur at a specific distance relative to the
transcription start site (TSS) (12). Additionally, several
cis elements occur in the same promoter with restricted
spacing between them. For example, in the adenovirus 2
EIB promoter, increased spacing between the GC-box
and the TATA-box diminishes in vivo transcription
significantly (13). There are other examples of such
positional and spacing restrictions (14-19). Previous
works have exploited the co-occurrence of promoter
motifs to predict interacting TFs (20,21), to model
expression regulation (22,23), and to detect regulatory
modules (24,25), and some of these works impose specific
distance constraints between co-occurring motifs.
Positional constraints provide distinguishing characteris-
tics of cis-regulatory elements in addition to evolutionary
conservation, but have not been systematically exploited
for motif discovery.

Here, we show that in human promoters a large
fraction of known motifs exhibit significant positional
constraint and a large number of motif-pairs exhibit
significant inter-motif distance constraint. The target
genes that have position-specific motifs or the distance-
specific motif-pairs tend to be co-expressed and
have similar functions. A large majority of these
positionally constrained motifs are not conserved between
human and mouse; this underscores the importance of
positional constraints in discovering cis-regulatory motifs.
Finally, to discover novel motifs, we assess the position
and distance specificity of all words (7 bases long) and
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word-pairs in human promoters that do not overlap a
known motif. After clustering of similar motifs, this
resulted in 168 position-specific novel motifs and 3708
distance-specific pairs involving a novel motif. Several of
these are highly correlated with specific expression and
function of the target genes.

RESULTS
Data preparation

We extracted 600 bp human promoter sequences (4500,
—100) corresponding to 30927 transcription start sites
from DBTSS version 5.2 (26). We also extracted the
human—-mouse conservation for these regions from
UCSC’s axtNet database (UCSC hgl7 release).
TRANSFAC v8.4 (27) describes 546 vertebrate TF
positional weight matrices (PWM). Often PWMs corre-
sponding to evolutionarily related TFs are highly similar.
To minimize the bias caused by this redundancy we
clustered the PWMs based on their similarity and then
retained 175 representative PWMs (methods). For these
175 PWMs, we scanned the 600 bp promoter sequences
using our PWM_SCAN tool (6) with a stringent P-value
threshold of ¢! (chance expectation of one hit every
10kb of human genome). Ten of the 175 PWMs did not
have any match in our promoter set; our analysis is based
on the remaining 165 TRANSFAC motifs. We used the
Novartis tissue survey data (28) for gene expression
profiles and GO (29) for functional annotation of genes.
We only use the GO ‘biological process’, and to avoid

0.4 :

non-specific biological processes we only include processes
that are associated with at most 500 genes. This includes
99% of all the GO terms and eliminates non-specific GO
terms.

A generic approach to Z-score calculation

To quantify motif conservation, motif positional specifi-
city and motif-pair distance specificity, we use a generic
procedure. Let NV be the total occurrences of a motif (or
motif-pair). Among these let n be the number of
‘successful’ occurrences. An occurrence could be called
‘successful’ if for instance, it is conserved. Given
the expected success rate py,, we assume a binomial
distribution for the number of occurrences and estimate
the Z-score as [n—(N xpo)]/[\/ (N x po x (1 = po)].
A similar procedure was used in (8). Precisely what we
mean by ‘successful” and how do we estimate p, depends
on the context and will be described later.

Evolutionary conservation of TRANSFA C motifs

We say that a motif match is conserved if the mouse
sequence aligned with the human site also matched the
PWM with a P-value <e¢ °2'. To estimate the expected
conservation rate po, we permuted each column of PWM
to shuffle the nucleotide preferences in each position and
generate a set of control matrices (five for each of the 165
TRANSFAC PWMs with a total of 819). We use
these control matrices to obtain an overall expected
conservation rate po. Figure 1 shows the conservation
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Figure 1. Conservation Z-scores for 165 TRANSFAC motifs. TRANSFAC motifs are generally more conserved compared to permuted motifs
and majority of common core motifs are highly conserved. This two plots are significantly different; the Wilcoxon rank sum test based
p-value=2 x 107'°. We have categorized motifs based on their conservation Z-scores. The high-conservation category (Z>8) has 27 motifs, the
medium conservation category (3 < Z < 8) has 27 motifs and the low conservation category (Z<3) has 111 motifs. Several core factors are conserved:

CAAT box (100.3), Spl (90.4), Oct-1 (10.1), TATA (8.4).



Z-score distribution of 165 motifs. The core factors
have high conservation Z-scores: CAAT-box (100.3),
Spl (90.4), Oct-1 (10.1), TATA (8.4), etc. Figure 1 also
shows the Z-score plot for the 8§19 randomized PWMs.
Based on this plot, we arbitrarily categorize the motifs into
three classes: (i) 27 highly conserved motifs (Z-score > 8),
(i1) 27 medium-conserved motifs (3 < Z-score <8) and (iii)
remaining 111 non-conserved motifs.

Position specificity of TRANSFAC motifs

Here, we assess whether a motif preferentially occurs at a
specific position relative to the transcription start site.
Given the total occurrences of a motif and the subset of
occurrences in a window (defined by the start position and
the length), and the expected fraction of occurrences in the
window, py, we compute the Z-score. We compute the
Z-score for windows of length 20bp starting at each
position in the 600bp promoter region and retain the
maximum value for each motif among all windows; we call
this the Z-max. An important concern in estimating p, is
the GC-composition' of the motif and GC-composition of
various parts of the promoter. We have experimented with
three different controls (see Supplementary Data). Here,
we report the results based on our most stringent control.
To preserve the base composition of the motif, we
randomly permute the columns of the PWM. To ensure
a good representation we generate five permuted PWMs
for a given TRANSFAC PWM. We estimate p, based on
pooled occurrences of five permuted PWMs on the real
promoter sequence. Note that p, is specific to each PWM
and each window. It is easy to see that for instance, a G-
rich motif is not going to differ from its permuted copies
and thus will not have a high Z-score. At the risk of
missing such cases, we decided to pursue this highly
stringent control to minimize the risk of false discoveries.
Figure 2a shows the distribution of Z-max for the 165
motifs. As a negative control for the Z-max distribution,
we repeat the above process on randomized promoter
sequences. The randomized promoter is generated so as
to preserve the base composition at each position along
the 600bp region. As above, we estimate p, based on
pooled occurrences of five permuted PWMs on the
randomized promoter sequence. As shown in Figure 2a,
a large fraction of TRANSFAC motifs occur in a
position-specific fashion. As a reference, we show the
positional Z-score distribution of three core motifs that
exhibit high Z-max (Figure 2b).

Positional preferences of several core promoter motifs
have been previously investigated. In our analysis, the
GC-box binding TF, Sp-1 has a maximum Z-score at
66 bp upstream of the TSS, also observed in (8). We found
CAAT-box binding TF NF-Y to have the maximum
Z-score at position 86 bp upstream of TSS. Xie et al. have
reported a preferred position of 89bp upstream (8).
TATA-box binding TF TBP is most frequent at
~35-31bp upstream of TSS (30-32). However, the
maximum Z-score in our analysis is achieved at 45bp

! Throughout the manuscript, by ‘CG’ we mean ‘(C +G)’ and by ‘GC’
we mean the GC dinucleotide.
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upstream of the TSS. Note that in contrast to frequency,
we compute Z-score, which controls for the base
composition. There is a peak of A+ T frequency around
35-30bp upstream of TSS (33), which would lower the
Z-score exactly at those positions, and thus our Z-score
peak is slightly shifted.

Based on these distributions, we define a set of 39 (23%)
motifs to be position-specific (Z-max > 5) (Supplementary
Table T1) and another set of 38 motifs to be position-
nonspecific (Z-max < 3). Our numbers are consistent with
the previous report where 25% of the known motifs were
found to be position specific (8). Furthermore, we found
that the position-specific motifs also tend to be conserved.
Among the 39 position-specific motifs, 42% are highly
conserved (conservation Z-score > 8) whereas among the
38 position-nonspecific motifs, only 3% are highly
conserved (chi-square P-value=3 x 107°). As expected,
several known core factors like CAAT box (bound by
NF-Y), Muscle TATA box, TBP, Spl, etc. show a very
high position specificity (Supplementary Table T1).
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Figure 2. (a) Position specificity Z-max distribution for the 165 motifs.
Also shown is the Z-max for random sequences with positionally
matched base composition used as promoters. We define a set of
39 motifs to be position specific (Z-max>5) and a set of 38 motifs
to be position nonspecific (Z-max<3). (b) Position specificity
Z-score distribution for three core motifs. Transcription start site is
at position +1.
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Functional relevance of position-specific motifs

We investigated whether the presence of a position-specific
motif in the gene promoter is correlated with the gene’s
function or expression pattern. We assessed the functional
coherence of a set of target genes based on GO annotation
using the Ontologizer tool (Robinson et al., 2004). For
each target gene-set, we also randomly select the same
number of genes and subject them to same analysis. To
assess how significantly the position- specificity of a motif
correlates with the target gene function, we used three
criteria to select the target gene-sets: (i) genes that contain
position-specific motifs at specific position range where Z-
max is achieved, (ii) genes that contain position-specific
motifs at locations other than Z-max positions and (iii)
genes that contain position-nonspecific motifs at any
location. Each of the gene-sets also has a corresponding
random gene-set of the same size. The GO Ontologizer
tool compares a given gene-set with several functional
categories for significant overlaps. To control for multiple
testing, we pool the GO P-values for all gene-sets and their
corresponding randomized gene-sets for the three criteria
and based on the pooled set of P-values we estimate a
P-value cutoff corresponding to a false discovery rate,
FDR <5% (34). Table 1 shows the fraction of motifs
under each of the three criteria whose target genes show
significant GO association and also the average number of
associated GO processes. These numbers are also shown
for the matched random gene-set. Additionally, among
the motifs that do show a significant GO association, the
table also shows the fraction that is conserved. As
shown in Table 1, GO association is the greatest for
position-specific occurrence of motifs and some of
these could not be detected wusing conservation
criterion alone. We have listed the significant GO
associations under criterion A in Supplementary file
‘Motif2GOAssociation’. These include mRNA processing
and metabolism, protein localization, transcription, etc.
Next we investigated whether the gene targets of
position-specific motifs are differentially expressed in
specific tissues. For each of the 79 tissues from the
Novartis dataset, we assessed using Wilcoxon rank sum
test, whether a target gene-set had differential (up or
down) expression relative to all other genes. Each pair
of gene-set and tissue results in a P-value and based
on pooled P-values as before we estimate a cutoff
corresponding to FDR <1%?2. We consider a motif to
have differential expression if in at least one of the 79
tissues the target genes are differentially expressed with a
significant P-value. Approximately 1% of the random
gene-sets show significant differential expression at a FDR
cutoff of 1%. Thus if 1% of the P-values are significant by
chance, we expected ~55% (1 —0.997%) of the motifs will
show differential expression in at least one tissue by
chance alone. The relative-enrichment number (column 6
of Table 1) is the ratio of the ‘actual% of motifs that show
differential expression’ to 55. The average number of
tissues in which the gene-set is differentially expressed is

2 At a higher FDR threshold, a random gene-set shows significant
enrichment in at least one of the 79 tissues, simply by chance.

also of interest. Table 1 shows the fraction of motifs under
each of the three criteria whose target genes are
differentially expressed, as well as the average number of
tissues. These numbers are also shown for the matched
random gene-set. Additionally, among the motifs that
are differentially expressed, the table also shows the
fraction that is conserved. Similar to our conclusions
based on GO analysis, the tissue-specific differential
expression is most prevalent among the position-specific
occurrence of motifs and many of these motifs could not
be detected using conservation criterion alone. Only
about half of tissue-associated motifs are conserved.
The top five most significant tissues under criterion
A are SuperiorCervicalGanglion, Skin, PrefrontalCortex,
PB-CD8 + TCells, Ovary and Atrioventricular node.

Thus our results highlight the importance of position
specificity of cis elements and that it should be used in
conjunction with conservation to identify cis-regulatory
motifs. Supplementary Table T1 lists 39 representative
position-specific TRASNFAC motifs. Most of these
are known to be involved in condition-specific regulation
(as opposed to basal transcription).

Distance specificity of TRANSFAC motif-pairs

Next we assessed how often a motif-pair preferentially
occurs at a specific distance from each other. Given the
total number of occurrences of a motif-pair and the
subset that falls within a distance range, defined by the
minimum distance and the range, and the expected
fraction, p,, we compute the Z-score. Here, the locations
of individual motifs are irrelevant and only the distance
between them is of concern. Much like position
specificity analysis, we compute the Z-score for 50bp
ranges starting at each position and retain for each
motif-pair the maximum value, the Z-max. Our control is
analogous to that for the position specificity analysis, i.e.
we randomly permute the columns of each PWM to
generate the background matches. Figure 3 shows the
distribution of Z-max for the 21777 motif-pairs on real
promoters and permuted PWMs on the random promo-
ter sequences with positionally conserved GC composi-
tion. Two position-specific motifs will obviously manifest
as distance specific. To unambiguously reveal distance
specificity, we require that at least one of the motifs in
the pair must be position nonspecific. Figure 3 also
shows the distribution of Z-max for this reduced set of
motif-pairs, and for comparison the motifs pairs where
both motifs are position specific. From the reduced set
(pairs with at least one non-position-specific motif),
based on Z-max distributions, we define a set of 915
motif-pairs to be distance specific (Z-max >4) (listed in
Supplementary Table T2) and another set of 865 motif-
pairs to be distance nonspecific (Z-max<2). The
distance-specific pairs involve 41 position-specific motifs
and 38 position-nonspecific motifs. For comparison and
subsequent analyses, we also included pairs where both
motifs are position specific, using the same Z-score cutoff
(Z>4) we get 410 motif-pairs.
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Table 1. Functional relevance of known motifs. Gene targets were obtained for motifs based on three different criteria

Criterion Number Number associated with ~ Average number

Percent of

Relative enrichment ~ Average number  Percent of

of Motifs GO process with of associated GO-associated in tissue-associated of tissues tissue-associated
FDR <5% GO processes motifs that motifs motifs that
are conserved are conserved
Real Random Real Random  Real Real Random Real Random  Real
A 39 6 (15%) 0 (0%) 3 0 4/6 (67%) 1.6 0.3 31 8 17/35 (49%)
B 39 1 (3%) 0 (0%) 1 0 1/1 (100%) 0.9 0.3 22 4 11/21 (52%)
C 38 1 (3%) 1 (3%) 1 2 0 (0%) 0.6 0.1 9 0 1/14 (7%)

(A) Gene promoters containing position-specific motif in the preferred window, (B) Gene promoters containing position-specific motif at any
position, (C) Gene promoters containing position-nonspecific motif at any position. For each ‘Real’ target gene-set a ‘Random’ gene-set of the same
size was selected. Table shows for each criterion: col2: number of gene-sets, col3: fraction of gene-sets that associated with a GO process
(FDR <5%), col4: the average number of GO processes, col5: among the motifs that associated with a GO process, the fraction that was conserved,
col6: ratio of the ‘actual% of motifs that show differential expression (FDR <1%)’ to the expected fraction of 55 (see text for how 55 was
calculated), col7: the average number of such tissues, col8: among the motifs that associated with tissue, the fraction that was conserved. For each of
these columns we show the figures for both the ‘Real’ and the ‘Random’ gene-set.
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Figure 3. Distribution of the distance-specificity Z-max distribution for the 21777 motif-pairs on real promoters are shown in blue. The Z-max
distribution for permuted PWM pairs on random promoter sequences is shown in cyan. Distribution for pairs with at least one non-position-specific
motif (7804 pairs) is shown in green and pairs with both position-specific motifs comprise (1618 pairs) is shown in red.

Functional relevance of distance-specific motif-pairs

We investigated whether the presence of a motif-pair at a
specific distance range is correlated with the gene’s
function or expression pattern. To assess the correlation
between distance specificity and the target gene function,
we used four criteria to select the target gene-sets: (i) genes
that contain distance-specific motifs at Z-max distance
where both the motifs are position specific, (ii) genes that
contain distance-specific motifs at the Z-max distance and
at least one of the motif is position nonspecific, (iii) genes
that contain distance-specific motifs at any distance other

than the Z-max distance where at least one of the motif is
position nonspecific and (iv) genes that contain distance-
nonspecific motifs at arbitrary distance. We also generate
a random gene-set for each of the gene-sets obtained using
the above four criteria.

We performed the GO and tissue expression analy-
sis using same procedure as that for the analysis of position-
specific motifs above and the result summarized in Table 2
is organized similarly to Table 1. The gene promoters
containing  distance-specific  motif-pairs  that are
both position specific at a preferred distance have
highest association with GO process and highest
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Table 2. Functional relevance of known motif pairs. Gene targets were obtained for motif-pairs based on four different criteria

Criterion Number Number associated with Average number Percent of Relative enrichment ~ Average number  Percent of
of motifs GO process with of associated GO-associated in tissue-associated of tissues tissue-associated
FDR < 5% GO processes motifs that motifs motifs that
are conserved are conserved

Real Random Real Random  Real Real Random Real Random  Real

A 245 61 (25%) 12 (5%) 4 1 37/61 (61%) 1.6 0.6 36 10 78/217 (36%)

B 321 35 (11%) 16 (5%) 3 1 4/35 (11%) 1.5 0.4 25 6 8/266 (3%)

C 321 31 (10%) 12 (4%) 2 1 2/31 (7%) 1.1 0.4 18 7 16/196 (8%)

D 417 24 (6%) 15 (4%) 2 1 1/24 (4%) 1.1 0.3 16 7 3/254 (1%)

For each criterion, for all the gene-sets with significant GO processes (FDR < 5%) were computed. Four criteria were used to select target gene-sets:
(A) genes that contain distance-specific motifs at Z-max distance and both the motifs are position specific, (B) genes that contain distance-specific
motifs at the Z-max distance and at least one of the motif is position nonspecific, (C) genes that contain distance-specific motifs at any distance
other than the Z-max distance where at least one of the motif is position nonspecific and (D) genes that contain distance-nonspecific motifs at
arbitrary distance. For each ‘Real’ target gene-set, a ‘Random’ gene-set of the same size was selected. See Table 1 legend for the description of the

columns 2-8.

fold-enrichment for differential expression in tissues. By
far, most of these motifs are more conserved compared
with the gene-sets using other criteria. Particularly of
interest, criterion B, that includes gene promoters contain-
ing distance-specific motif-pairs where at least one motif is
non-position specific, show significant association with GO
processes and differential expression in tissues. Moreover,
the functional and expression associations for criterion B is
stronger than that for criterion C, which includes all
occurrences of the motif-pair, as opposed to only distance-
specific occurrence in criterion B. Supplementary Table T2
lists the top 100 of the 7804 distance-specific motif-pairs
where at least one of the pair is position nonspecific. In fact
in 826 pairs, both motifs are position nonspecific. A cursory
inspection of literature shows support for many of these.
Muscle-specific motif (derived from actin promoter among
other genes) has a Z-score of 11.63 with NF-Y which is
known to form a complex on the alpha-actin-4 promoter
(35). Ets and Pax5 (BSAP) with Z-score =6.91 are known
to interact physically to regulate a B-cell specific promoter
(36). SREBP-1 and NF-Y show a Z-score of 5.6; expression
of mouse gene ACBP is induced in hepatocytes by SREBP1
and this induction also requires a NF-Y-binding site (37).
We have listed the significant GO associations under
criteria A and B in  Supplementary file
‘Motif2GOAssociation’. These include protein localiza-
tion/transport, regulation of lipid metabolism, biopolymer
metabolism, RNA processing/metabolism, regulation of
transcription, negative regulation of biological process, etc.
The top five most significant tissues under criteria A
and B include several CD cells, dendritic cell,
T cell, ColorectalAdenocarcinoma, PrefrontalCortex,
OccipitalLobe, Subthalamicnucleus and Hypothalamus.
This is consistent with previous report by Xie et al., where
the two main groups of motif-associated tissues were found
to be brain and immunity related (8).

Novel motifs in human promoters

For a majority of human transcription factors, their
DNA-binding specificities are not known. De novo
motif discovery thus remains important in analyzing

transcriptional networks. Our analysis of known motifs
shows that position and distance constraints, in addition
to conservation, are important attributes of cis-regulatory
motifs and thus can be used to detect novel motifs. To
ensure that the motifs we detect do not correspond to any
of the 175 representative TRANSFAC motifs, we start by
masking all positions in all human promoters that
matched any of the TRANSFAC motifs based on
P-value threshold (see above). We then extract all
7-mers from the unmasked portion of the promoters,
while allowing for at most two bases overlap with the
masked portion on either side. We then cluster these
7-mers; two 7-mers were clustered if either they had at
most 1 mismatch or they had 6 identical bases (after 1 base
shift) including the reverse complement. All 7-mers within
a cluster were aligned and a PWM was derived from each
cluster. The set of 661 PWMs were then subject to same
analysis as the TRANSFAC motifs to compute their
conservation, position specificity and distance specificity.
Seventy four of these 661 were conserved (Z > 8) and 168
were position specific (Z > 6) and 3708 pairs were distance
specific (see below). We report a subset of 74 novel
conserved motifs in Supplementary Table T3 along with
their corresponding position and distance specificity
properties. The Logos of the top 10 conserved motifs are
shown in Supplementary Table T3a. We found that a large
fraction of position-and distance-specific motifs are
conserved and this fraction increases with increasing
position or distance specificity. Figures 4 and 5 show the
relationship between conservation and respectively the
position and the distance specificity.

Functional analysis of novel motifs

We analyzed the target gene-sets of the novel motifs
for their functional coherence and for tissue-specific
differential expression. For each novel motif, to define
the gene targets, we applied each criterion that it was
detected by. For instance, if a motif was detected by
position specificity, we consider a gene promoter as a
target if the motif is at specific position. Each gene target



set thus obtained is subject to GO and expression analysis
as for the TRANSFAC motifs described above.

We categorized the 661 7-mer motifs into 168
(25%) position-specific motifs (Z>6) and 123 position-
nonspecific motifs (Z < 3). In a previous analysis, Xie et al.
have reported 35% of novel motifs to be position
specific (Supplementary Table T4 shows these 168 motifs
and associated information). The Logos of the top 10
position-specific motifs are shown in Supplementary Table
T4a. We applied the previously described three criteria to
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Figure 4. For the 661 novel motifs, as we increase the threshold for the
position specificity, the fraction of qualifying motifs that are conserved
increases. At a stringent position-specificity Z-score > 8, 46% of motifs
are conserved compared to only 20% among the motifs that have
position-specificity Z-score > 4.
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Figure 5. For all 79576 motif-pairs (at least 1 motif is non-position
specific), as we increase the threshold for the distance specificity, the
fraction of qualifying motifs that are conserved increases. At a stringent
distance-specificity Z-score >9, 19% of motifs are conserved compared
to only 11% among the motifs that have distance-specificity
Z-score > 4.
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select the target gene-sets and Table 3 shows the results of
the GO and tissue expression analysis. As was the case for
the TRANSFAC motifs, very few motifs show strong
GO association, but a large fraction show a strong
association to tissue expression. The trend across
the three criteria is, however, similar to that for
the TRANSFAC motifs (compare Table 1 and Table 3).
We have listed the significant GO associations under
criterion A in Supplementary file ‘Motif2GOAssociation’.
These includle RNA/mRNA metabolism/processing,
reproduction and pregnancy. The top five most signifi-
cant tissues under criterion A are PrefrontalCortex,
OccipitalLobe, Hypothalamus, Amygdala and Thyroid.
This is consistent with what was reported in (8).

For distance specificity between these 661 7-mer motifs,
we have a total of 285762 motif-pairs that have at least
100 non-overlapping occurrences in all the promoter
regions. A further requirement that at least one of
the motifs be position-nonspecific results in 79576
pairs to analyze. We categorized these motif-pairs

into 3708 distance-specific motif-pairs (Z>5) and
9204 distance-nonspecific motif-pairs (Z<2). The
distance-specific  motif-pairs are provided in a

Supplementary file. Because the numbers are very large,
we randomly selected 200 pairs from each group and did
the GO and tissue expression analysis. We applied
the previously described four criteria to select the
target gene-sets and Table 4 shows the results of the
GO and tissue expression analysis. Overall the results
are consistent with that for the TRANSFAC motif-
pairs (compare Table 2 and Table 4). We have listed
the significant GO associations under criteria A and B
in Supplementary file ‘Motif2GOAssociation’. These
include regulation of transcription, regulation of cellular/
biological  process, protein/biopolymer  modifica-
tion, phosphorylation/phosphate metabolism, chromatic
modification, reproduction, pregnancy, etc. The top five
most significant tissues under criteria A and B
include several CD cells, dendritic cell, B cell and pre-
frontal cortex.

DISCUSSION

Comprehensive identification of genomic cis-regulatory
elements is an important long-term goal. Cis-regulatory

Table 3. Functional assessment of novel motifs. Gene targets were obtained for motifs based on four different criteria

Criterion Number Number associated with ~ Average number  Percent of Relative enrichment ~ Average number  Percent of
of Motifs GO process with of associated GO-associated in tissue-associated of tissues tissue-associated
FDR <5% GO processes motifs that motifs motifs that
are conserved are conserved

Real Random Real Random  Real Real Random Real Random  Real

A 168 2 (1%) 0 (0%) 3 0 1/2 (50%) 1.6 0.3 32 9 48/146 (33%)

B 168 0 (0%) 0 (0%) 0 0 0/0 (0%) 1.1 0.3 20 10 35/98 (36%)

C 123 0 (0%) 0 (0%) 0 0 0/0 (0%) 0.5 0.1 7 7 2/29 (7%)

For each criterion, for all the gene-sets with significant GO processes (FDR < 5%) were computed. Three criteria were used to select target gene-sets:
(A) gene promoters containing position-specific motif in the preferred window, (B) gene promoters containing position-specific motif at any position
and (C) gene promoters containing position-nonspecific motif at any position. For each ‘Real’ target gene-set and ‘Random’ gene-set of the same size
was selected. See Table 1 legend for the description of the columns 2-8.
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Table 4. Functional assessment of novel motif-pairs. Gene targets were obtained for motif-pairs based on four different criteria

Criterion Number Number associated with Average number Percent of Relative enrichment ~ Average number  Percent of
of motifs GO process with of associated GO-associated in tissue-associated of tissues tissue-associated
FDR < 5% GO processes motifs that motifs motifs that
are conserved are conserved

Real Random Real Random  Real Real Random Real Random  Real

A 200 23 (12%) 8 (4%) 3 1 6/23 (26%) 1.7 0.9 44 15 44/189 (23%)

B 200 17 (9%) 6 (3%) 3 1 4/17 (24%) 1.6 0.6 32 10 14/172 (8%)

C 200 16 (8%) 5 (3%) 3 1 3/16 (19%) 1.3 0.6 29 13 15/148 (10%)

D 200 3 (2%) 3 (2%) 1 1 2/3 (67%) 1.0 0.4 16 10 0/107 (0%)

For each criterion, for all the gene-sets with significant GO processes (FDR < 5%) were computed. Four criteria were used to select target gene-sets:
(A) gene promoters containing distance-specific motif-pairs that are also position specific at the preferred distance, (B) gene promoters containing
distance-specific motif-pairs (at least one motif is non-position specific) at the preferred distance, (C) gene promoters containing distance-specific
motif-pairs (at least one motif is non-position specific) at any distance and (D) gene promoters containing distance-nonspecific motif-pairs at
any distance. For each ‘Real’ target gene-set, a ‘Random’ gene-set of the same size was selected. See Table 1 legend for the description of the

columns 2-8.

elements are often characterized by evolutionary
conservation. In order to reduce false positives, the
search for cis-regulatory elements is traditionally restricted
to evolutionarily conserved regions of the genome.
However, both, lack of conservation among cis-regulatory
elements, as well as lack of functionality among conserved
elements has been previously reported (9-11). Here, we
have assessed the importance of two additional attributes
of cis-regulatory elements—their position specificity from
the TSS, as well as the spacing between them (14-19).

Several previous works have shown cis-regulatory
motifs to be positionally constrained. Xie et al. have
reported a large number of motifs in the human genome
based on multiple genome comparison (8). Although they
have shown that some of the novel motifs are position
specific relative to the TSS, this position specificity of the
motifs was not used in the discovery process itself. In
another work, motifs in Escherichia coli were ranked
based on the enrichment of specific spacing between them
and were experimentally validated for their functionality
in binding sites (38). We have previously reported a
promoter model that captures the position and distance
specificities of motifs (39). Other previous works have
exploited the co-occurrence of promoter motifs to predict
TF interactions and TF modules (20-25). Here, we have
explicitly and extensively assessed the importance of two
attributes of cis-regulatory elements—position and dis-
tance specificity—independent of evolutionary conserva-
tion. Our results indicate that even though evolutionary
conservation is the most important attribute of cis-
regulatory elements, these additional attributes are impor-
tant, especially to detect the species-specific elements. We
emphasize that our work does not represent a novel motif
discovery tool, in the traditional sense of the term.
Traditionally, the term ‘motif discovery’ refers to identi-
fication of motifs potentially mediating the regulation of a
set of co-expressed genes (40). Our work, by exploiting the
positional and distance constraints, however does identify
a global set of motifs in the human gene promoters that
potentially mediate transcriptional regulation.

Although we have controlled for base composition, we
have not controlled for dinucleotide composition,

especially for CG dinucleotide frequency. Clearly, using
more stringent di- and tri-nucleotide controls will result in
increased specificity in motif detection, however at the risk
of decreased sensitivity. The compositional bias in certain
genomic regions may have been preserved over evolu-
tionary period precisely for the maintenance of cis-
regulatory elements and thus using the extremely stringent
local composition as a control will result in failed
detection of these cis-regulatory motifs on statistical
grounds. We have mentioned the example of TATA box
earlier, where, because of a local (A 4+ T) frequency peak
at ~35bp upstream, where TATA box is most abundant,
we detect the position of most specificity at a slightly
shifted position of 45 bp upstream. The CG dinucleotides
are of special concern because of their association with
DNA methylation and transcriptional regulation (41).
Several of the detected position-specific motifs have one or
more CG dinucleotides; indeed there is an enrichment of
CG-containing motifs among the position-specific motifs,
both in known and novel motifs. Similar to previous
observation, these position-specific motifs mostly occur in
100 bp upstream of the TSS (8). We have performed a
number of cautionary analyses to ensure that CG-
containing motifs are not detected simply because of
lack of control for CG dinucleotides. We have summar-
ized these analyses in the Supplementary material.

For both, known and novel motifs, our analysis shows
the importance of position specificity in determining the
functional and tissue association of the target genes. These
findings are consistent with the shifting view of core
promoter as an active participant in the regulation of
eukaryotic gene expression (42). Besides the top five
tissues mentioned earlier that are enriched for targets of
position-specific motifs, fetal brain and fetal liver are also
among the significant tissues; this is also true for distance-
specific motif-pairs. Although our result shows a greater
tissue enrichment for position- and distance-specific
motifs, the specific tissues revealed by our analysis may
be over-interpreted; permutation-based test for tissue
enrichment may be more stringent. The relative enrich-
ment of tissue-associated motifs is much higher when the
position-specific motifs occur at their preferred positions



(compare column 6 for rows A and B in Table 1 and Table
3) thus underscoring the importance of position specificity
for cis-regulatory motifs. Furthermore, although there is a
strong correlation between position specificity and the
conservation (Figure 4), more than half of the position-
specific motifs that drive tissue-specific expression are not
conserved (last columns in Table 1 and Table 3), thus
underscoring the importance of position specificity for
motif discovery independent of conservation.

Similar conclusions can be made regarding the
importance of distance specificity in the discovery of
cis-regulatory  motifs.  Distance-specific ~ motif-pairs
that are comprised of position-specific motifs (row A in
Table 2 and Table 4) by far show the most functional
association, tissue association and conservation. In fact
there is a correlation between distance specificity and
conservation (Figure 5). Nevertheless the distance-specific
motif-pairs that include non-position-specific motifs
(row B) show a comparable tissue association and slightly
lower functional association, and yet a large majority of
these are not conserved and would be missed by a
conservation-only based approach. Thus, based on an
unbiased comprehensive analysis we have shown
the importance of position and distance specificity in
discovering cis-regulatory motifs beyond the use of
evolutionary conservation alone, which is likely to miss
species-specific cis-regulatory motifs.

METHODS

Clustering of TRANSFAC PWMs to obtain representative
PWMs

We have previously reported an information-theoretic
approach to compute the similarity between a pair of
PWMs (43). Here, we introduce the approach briefly and
provide the details in the Supplementary Data. To
compute the similarity between a pair of PWMs, we use
a symmetric derivative of the standard relative entropy
measure (44). This measure is transformed into a Z-score,
and eventually into a P-value, based on empirically
derived distributions. We allow for shifts between the
PWMs and our measure accounts for the PWM widths.
Using an appropriate P-value threshold for the pairwise
similarity, we then compute clusters of similar PWMs; we
use bi-connected components (in contrast to single-linkage
clusters) as our clusters. Finally, for each cluster, we select
the median PWM as the cluster representative. See
Supplementary Data for further details.

Z-score computation

We use Z-score to quantify motif conservation, motif
positional specificity and motif-pair distance specificity.

Assuming a binomial distribution, the Z-score is
defined as:

—(N
S = xp)]

[V 500 x (T=po)]
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For conservation. N =total number of occurrences of a
motif.
n=number of conserved occurrences of a motif.
po=Dbackground conservation rate, i.e. the expected
fraction of occurrences that are conserved based on
permuted PWMs.

For position specificity. N =total number of occurrences
of a motif.

n=number of occurrences of a motif at a particular bin
position.

po=expected fraction of occurrences at a particular bin
based on permuted PWM:s.

For distance specificity. N =total number of occurrences
of a motif-pair.
n=number of motif-pair occurrences where the motifs
occur at a specific distance range, or distance bin.
po=cxpected fraction of occurrences where the
motifs occur at a specific distance bin based on
permuted PWMs.

GO analysis

For both, position specificity and distance specificity,
gene-sets are generated for particular motifs or motif-pairs
according to different criteria (see Results Section). For
each of these gene-sets, a matched random control set of
genes is generated with equal number of genes. These sets
of genes are then fed into GO Ontologizer tool (45) and
P-values are generated for significance of motif to a
GO-term association. A 5% FDR cutoff are applied to
these P-values. We only used the biological process
GO terms that have at most 500 genes to avoid ubiquitous
classes.

Tissue differential expression analysis

Similar to GO analysis, real and random set of genes are
generated for particular motifs or motif-pairs. For each
gene-set, and for each of the 79 tissues in the GNF tissue
survey data (28), we test whether the genes in the set are
differentially expressed in the tissue using Wilcoxon rank
sum test. Each pair of gene-set and tissue results in a
P-value and based on pooled P-values, we estimate a
cutoff for FDR < 1%. We consider a gene-set differentially
expressed, if it is differentially expressed (FDR < 1%) in at
least one of the 79 tissues.

Clustering novel 7-mers to form PWMs

All 7-mers motifs that are not covered by a TRANSFAC
match are ranked according to their conservation Z-score
with highly conserved motifs appearing nearer to the top
of the list. We then walked down the list and clustered
current motif with motifs we have already encountered
according to the following criteria. Two 7-mers were
clustered if either they had at most 1 mismatch (including
the reverse complement) or they had 6 identical bases
(after 1 base shift). All 7-mers within a cluster were aligned
and a PWM was derived from each cluster.
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ADDITIONAL FILE

There are three additional files. They are as follows:

Filel: PositionalMotifs_AdditionalFile, this includes
Supplementary results.

File2: Motif2GOAssociation, this includes the signifi-
cant GO associations for known and novel position/
distance-specific motifs.

File3: DistanceSpecificMotifs, this includes all novel
distance-specific motif-pairs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.

ACKNOWLEDGEMENT

This work and the Open Access publication charges were
funded by NIH grant R21GM078203.

Conflict of interest statement. None declared.

REFERENCES

1. Ptashne,M. (2004) 4 Genetic Switch3rd edn. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, New York.

2. Kadonaga,J.T. (2004) Regulation of RNA polymerase II
transcription by sequence-specific DNA binding factors. Cell, 116,
247-257.

3. Thomas,J.W., Touchman,J.W., Blakesley,R.W., Bouffard,G.G.,
Beckstrom-Sternberg,S.M, Margulies,E.H, Blanchette,M.,
Siepel,A.C, Thomas,P.J et al. (2003) Comparative analyses of
multi-species sequences from targeted genomic regions. Nature, 424,
788-793.

4. Waterston,R.H., Lindblad-Toh,K., Birney,E., Rogers.,J., AbrilJ.F.,
Agarwal,P., Agarwala,R., Ainscough,R., Alexandersson,M. et al.
(2002) Initial sequencing and comparative analysis of the mouse
genome. Nature, 420, 520-562.

5. Wasserman,W.W. and Fickett,J.W. (1998) Identification of
regulatory regions which confer muscle-specific gene expression.

J. Mol. Biol., 278, 167-181.

6. Levy,S. and Hannenhalli,S. (2002) Identification of transcription
factor binding sites in the human genome sequence.
Mamm. Genome, 13, 510-514.

7. Kellis,M., Patterson,N., Endrizzi,M., Birren,B. and Lander,E.S.
(2003) Sequencing and comparison of yeast species to identify genes
and regulatory elements. Nature, 423, 241-254.

8. Xie,X., Lu,J., Kulbokas,E.J., Golub,T.R., Mootha,V.,
Lindblad-Toh,K., Lander,E.S. and Kellis,M. (2005) Systematic
discovery of regulatory motifs in human promoters and 3’ UTRs by
comparison of several mammals. Nature, 434, 338-345.

9. Plessy,C., Dickmeis,T., Chalmel,F. and Strahle,U. (2005)
Enhancer sequence conservation between vertebrates is favoured in
developmental regulator genes. Trends Genet., 21, 207-210.

10. Emberly,E., Rajewsky,N. and Siggia,E.D. (2003) Conservation
of regulatory elements between two species of Drosophila.

BMC Bioinformatics, 4, 57.

11. Nobrega,M.A., Zhu,Y., Plajzer-Frick,I., Afzal,V. and Rubin,E.M.
(2004) Megabase deletions of gene deserts result in viable mice.
Nature, 431, 988-993.

12. Lim,C.Y., Santoso,B., Boulay,T., Dong,E., Ohler,U. and
Kadonaga,J.T. (2004) The MTE, a new core promoter element for
transcription by RNA polymerase II. Genes Dev., 18, 1606-1617.

13. Grace,M.L., Chandrasekharan,M.B., Hall,T.C. and Crowe,A.J.
(2004) Sequence and spacing of TATA box elements are critical
for accurate initiation from the beta-phaseolin promoter.

J. Biol. Chem., 279, 8102-8110.

14. Kadonaga,J.T. (2002) The DPE, a core promoter element for

transcription by RNA polymerase II. Exp. Mol. Med., 34, 259-264.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

. Butler,J.E. and Kadonaga,J.T. (2001) Enhancer-promoter specificity

mediated by DPE or TATA core promoter motifs. Genes Dev., 15,
2515-2519.

. Spek,C.A., Bertina,R.M. and Reitsma,P.H. (1999) Unique

distance- and DNA-turn-dependent interactions in the human
protein C gene promoter confer submaximal transcriptional activity.
Biochem. J., 340(Pt 2), 513-518.

Wu,L. and Berk,A. (1988) Constraints on spacing between
transcription factor binding sites in a simple adenovirus promoter.
Genes Dev., 2, 403-411.

Sugiyama,T., Scott,D.K., Wang,J.C. and Granner,D.K. (1998)
Structural requirements of the glucocorticoid and retinoic acid
response units in the phosphoenolpyruvate carboxykinase gene
promoter. Mol. Endocrinol., 12, 1487-1498.

. Senger,K., Armstrong,G.W., RowellLW.J., Kwan,J.M.,

Markstein,M. and Levine,M. (2004) Immunity regulatory DNAs
share common organizational features in Drosophila. Mol. Cell, 13,
19-32.

Hannenhalli,S. and Levy,S. (2002) Predicting transcription factor
synergism. Nucleic Acids Res., 30, 4278-4284.

Pilpel,Y., Sudarsanam,P. and Church,G.M. (2001) Identifying
regulatory networks by combinatorial analysis of promoter
elements. Nat. Genet., 29, 153-159.

Beer,M.A. and Tavazoie,S. (2004) Predicting gene expression from
sequence. Cell, 117, 185-198.

Thompson,W., Palumbo,M.J., Wasserman,W.W., Liu,J.S. and
Lawrence,C.E. (2004) Decoding human regulatory circuits.
Genome Res., 14, 1967-1974.

SegalLE. and Sharan,R. (2004) In Proceedings of the Eigth

Annual International Conference on Computational Molecular
Biology. ACM Press, New York, NY, USA, San Diego, CA,

pp. 141-149.

Hannenhalli,S. and Levy,S. (2003) Transcriptional regulation of
protein complexes and biological pathways. Mamm. Genome, 14,
611-619.

Suzuki,Y., Yamashita,R., Sugano,S. and Nakai,K. (2004) DBTSS,
DataBase of Transcriptional Start Sites: progress report 2004.
Nucleic Acids Res., 32, D78-D81.

Wingender,E., Dietze,P., Karas,H. and Knuppel,R. (1996)
TRANSFAC: a database on transcription factors and their DNA
binding sites. Nucleic Acids Res., 24, 238-241.

Su,A.l., Wiltshire,T., Batalov,S., Lapp,H., Ching,K.A., Block,D.,
Zhang,J., Soden,R., Hayakawa,M. et al. (2004) A gene atlas

of the mouse and human protein-encoding transcriptomes.

Proc. Natl. Acad. Sci. USA, 101, 6062-6067.

Harris,M.A., Clark,J., Ireland,A., Lomax,J., Ashburner,M.,
Foulger,R., Eilbeck,K., Lewis,S., Marshall,B. er al. (2004) The
Gene Ontology (GO) database and informatics resource.

Nucleic Acids Res., 32, D258-D261.

Gershenzon,N.I. and loshikhes,I.P. (2005) Synergy of human Pol II
core promoter elements revealed by statistical sequence analysis.
Bioinformatics, 21, 1295-1300.

Ohler,U., Liao,G.C., Niemann,H. and Rubin,G.M. (2002)
Computational analysis of core promoters in the Drosophila
genome. Genome Biol., 3, RESEARCHO0087.

Juven-Gershon,T., Hsu,J.Y. and Kadonaga,J.T. (2006) Perspectives
on the RNA polymerase II core promoter. Biochem. Soc. Trans., 34,
1047-1050.

Schug,J., Schuller,W.P., Kappen,C., Salbaum,J.M., Bucan,M. and
Stoeckert,C.J.Jr (2005) Promoter features related to tissue
specificity as measured by Shannon entropy. Genome Biol., 6,
R33.

Storey,J.D. and Tibshirani,R. (2003) Statistical significance

for genomewide studies. Proc. Natl. Acad. Sci. USA, 100,
9440-9445.

Poch,M.T., Al-Kassim,L., Smolinski,S.M. and Hines,R.N. (2004)
Two distinct classes of CCAAT box elements that bind nuclear
factor-Y /alpha-actinin-4: potential role in human

CYPIALI regulation. Toxicol. Appl. Pharmacol., 199, 239-250.
Fitzsimmons,D., Hodsdon,W., Wheat,W., Maira,S.M., Wasylyk,B.
and Hagman,J. (1996) Pax-5 (BSAP) recruits Ets

proto-oncogene family proteins to form functional

ternary complexes on a B-cell-specific promoter. Genes Dev., 10,
2198-2211.



37.

38.

39.

40.

41.

Neess,D., Kiilerich,P., Sandberg,M.B., Helledie,T., Nielsen,R. and
Mandrup,S. (2006) ACBP-a PPAR and SREBP modulated
housekeeping gene. Mol. Cell. Biochem., 284, 149-157.
Bulyk,M.L., McGuire,A.M., Masuda,N. and Church,G.M. (2004)
A motif co-occurrence approach for genome-wide prediction of
transcription-factor-binding sites in Escherichia coli. Genome Res.,
14, 201-208.

Wang,J. and Hannenhalli,S. (2006) A mammalian promoter model
links cis elements to genetic networks. Biochem. Biophys. Res.
Commun., 347, 166-177.

Tompa,M., Li,N., Bailey,T.L., Church,G.M., De Moor,B.,
Eskin,E., Favorov,A.V., Frith M.C., Fu,Y. et al. (2005) Assessing
computational tools for the discovery of transcription factor
binding sites. Nat. Biotechnol., 23, 137-144.

Cross,S.H. and Bird,A.P. (1995) CpG islands and genes. Curr. Opin.
Genet. Dev., 5, 309-314.

42.

43.

44.

45.

Nucleic Acids Research, 2007, Vol. 35, No. 10 3213

Burke, T.W. and Kadonaga, J.T. (1997). The downstream core
promoter element, DPE, is conserved from Drosophila to humans
and is recognized by TAFII60 of Drosophila. Genes Dev., 11(22),
3020-31.

Everett,L., Wang,L.S. and Hannenhalli,S. (2006)

Dense subgraph computation via stochastic search:

application to detect transciptional modules. Bioinformatics, 22,
el17-el123.

Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998)

Biological Sequence Analysis. Cambridge University Press,
Cambridge, UK.

Robinson,P.N., Bohme,U., Lopez,R., Mundlos,S. and
Nurnberg,P. (2004) Gene-Ontology analysis reveals

association of tissue-specific 5 CpG-island genes with
development and embryogenesis. Hum. Mol. Genet., 13,
1969-1978.



