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A B S T R A C T

Although the functional connectivity of patients with disorders of consciousness (DOC) has been widely ex-
amined, less is known about brain white matter connectivity. The aim of this study was to explore structural
network alterations for the diagnosis and prognosis of patients with chronic DOC. Eleven DOC patients and 11
sex- and age-matched controls were included in the study. Participants underwent diffusion magnetic resonance
imaging (MRI) and T1-weighted structural MRI at 7 tesla (7 T). Graph-theoretical analysis and network-based
statistics were used to analyze the group differences. Two patients were scanned twice for a longitudinal study to
examine the relationship between connectome metrics and the patients' prognoses. Compared with healthy
controls, DOC patients showed significantly elevated transitivity (p < .001), local efficiency (p= .009), and
clustering coefficient (p= .039). When comparing the connectome metrics within the three groups (healthy
controls, minimally conscious state (MCS), and vegetative state/unresponsive wakefulness syndrome (VS/
UWS)), significant group differences were observed in transitivity (p < .001) and local efficiency (p= .031).
Significantly increased transitivity was observed in vegetative state/unresponsive wakefulness syndrome com-
pared with minimally conscious state (p= .0217, Bonferroni corrected). Transitivity showed significant negative
correlations with the Coma Recovery Scale-Revised score (r= −0.6902, p= .023), consistent with the long-
itudinal study results. A subnetwork with significantly decreased structural connections was identified using
network-based statistical analysis comparing DOC patients with healthy controls, which was mainly located in
the frontal cortex, limbic system, and occipital and parietal lobes. This preliminary study suggests that graph
theoretical approaches for assessing white matter connectivity may enable various states of DOC to be dis-
tinguished. Of the metrics analyzed, transitivity had a critical role in distinguishing the diagnostic groups. Larger
cohorts will be necessary to confirm the predictive value of 7 T MRI in the prognosis of DOC patients.

1. Introduction

To study severe brain damage like disorders of consciousness (DOC),
including vegetative state/unresponsive wakefulness syndrome (VS/
UWS) (Laureys et al., 2010) and minimally conscious state (MCS)
(Giacino et al., 2002), it is critical to understand changes in brain

connectivity networks (Smith et al., 2009; Mayer et al., 2011;
Shumskaya et al., 2012; Pandit et al., 2013; Sharp et al., 2014). DOC are
caused by disruption of neural networks that constitute consciousness
and its two essential components, arousal and awareness (Bodien et al.,
2017). Recent advances in neuroimaging techniques have enabled the
investigation of network connectivity in patients with DOC. Functional
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magnetic resonance imaging (fMRI) has become a common tool to in-
vestigate functional connectivity, which is a statistical measure of
correlation between neuronal activities (Zhou et al., 2018). A growing
number of studies have reported reduced functional connectivity in the
default mode network (DMN) (Boly et al., 2009), fronto-parietal net-
work (Long et al., 2016), and thalamo-cortical network (Crone et al.,
2014) in patients with DOC.

Recently, white matter (WM) has drawn increasing attention among
studies of DOC. The “disconnection hypothesis” has been proposed,
which postulates that WM microstructure lesions result in the inter-
ruption of communication between cortical regions, thereby resulting
in poorer cognitive performance (Cremers et al., 2016; Nazeri et al.,
2015). Indeed, WM damage is an important determinant of cognitive
impairment after brain injury. Studies on both the WM microstructure
and WM injury severity in DOC patients have been published (Galanaud
et al., 2012; Luyt et al., 2012). Laureys et al. (2006) reported increased
fractional anisotropy (FA) in posteromedial cortical areas encompassing
the cuneus and precuneus in a patient who remained in MCS for
19 years. Fernandez-Espejo et al. (2011) reported that patients with VS/
UWS and MCS had significantly different mean diffusivity (MD) values
in the subcortical WM and thalamus, but not in the brainstem. Lant
et al. (2016) observed that DOC patients showed reduced FA in sub-
cortico-cortical and cortico-cortical fiber tracts compared with controls.

The development of modern brain mapping techniques has enabled
complex network analysis and description of the important properties
of complex systems by quantifying topologies of their respective net-
work representations. These methods aim to characterize brain net-
works with a small number of neurobiologically meaningful and easily
computable measures (Rubinov and Sporns, 2010), which have been
widely used to study patients with various forms of brain injury (Catani
and Ffytche, 2005; Sporns, 2011), including patients with DOC
(Demertzi et al., 2015; Wu et al., 2015). Crone et al. (2014) reported
that compared with healthy subjects, the modularity, a graph theory
property, is reduced in patients with VS/UWS and those in MCS;
however, the path length and global efficiency did not differ between
the groups. Pandit et al. (2013), who also used a graph theory ap-
proach, observed that the small-world topology was impaired in trau-
matic brain injury. Further work has shown that the global connectivity
during rest is associated with the Coma Recovery Scale-Revised (CRS-R)
total score and arousal subscale score (Amico et al., 2017). Recently,
Weng et al. (2017) reported abnormal structural connectivity between
the basal ganglia, thalamus, and frontal cortex in patients with DOC.
They used a network-based statistical analysis and directly character-
ized the topological properties of brain axonal fiber profiles in DOC
patients. However, no significant difference was found between the
MCS and VS/UWS. However, few reports have examined alterations in
the topological metrics of WM structural networks in patients with
DOC.

The recent introduction of ultra-high-field MRI at 7 tesla (7 T) vastly
improves the image signal-to-noise ratio relative to images obtained at
lower field strengths. This approach also enables the acquisition of
images with a high resolution and high contrast-to-noise ratio (van der
Kolk et al., 2013). As such, it is a powerful means of non-invasively
assessing normal and abnormal brain tissue with a high spatial re-
solution. In the current study, a simultaneous multi-slice (SMS) se-
quence (Moeller et al., 2010; Setsompop et al., 2012; Xu et al., 2013) of
CMRR C2P for 7 T diffusion MRI (Vu et al., 2015; Sotiropoulos et al.,
2016; Gulban et al., 2018) was used to acquire diffusion data in a
shorter time. We aimed to analyze the network properties of brain WM
profiles in DOC patients and track WM changes during the recovery
process. The resultant data should provide a better understanding of
DOC and aid in the early prediction of the recovery outcomes in pa-
tients with DOC.

2. Methods

2.1. Participants

Thirty patients with severe brain injuries and 11 healthy volunteers
participated in the experiment. All the patients were from the
Department of Rehabilitation in the Hangzhou Hospital of Zhejiang
(CAPR), Hangzhou, China, from September 2016 to July 2018. Ethical
approval was obtained from the Local Research Ethics Committee of the
First Affiliated Hospital of Zhejiang University. Coma Recovery Scale-
Revised (CRS-R) (Giacino et al., 2004) was used to estimate the patients'
clinical condition on the 3 consecutive days before 7 T MRI scan by the
same two medical doctors. The inclusion criteria for the patients were
as follows: 1) disease course longer than 1 month but shorter than
1 year, 2) no history of psychological disorders, 3) no previous alcohol
or drug abuse, 4) no epilepsy or frequent spontaneous movements, 5)
no use of the benzodiazepine class of drugs, 6) no moderate or severe
hydrocephalus (excluded with 1.5 T MRI data), and 7) no metal in any
part of the body for security reasons. Eleven patients were excluded
owing to MRI contraindications, and seven patients were excluded
owing to the presence of extensive focal brain damage. One patient's
data were excluded from the analysis due to a diagnosis of locked-in
syndrome (see Table S1 for details). Finally, the data from 11 patients
with severe brain injuries were included in the analysis. Additionally,
11 age- and sex-matched healthy control subjects were enrolled. None
of the controls had a history of psychiatric or neurological illness,
psychoactive drug consumption, or drug or alcohol abuse.

All procedures performed in this study were approved by the Ethics
Committee of the First Affiliated Hospital, School of Medicine, Zhejiang
University, and written informed consents in accordance with the
Declaration of Helsinki were obtained from healthy participants and the
legal guardians of the patients to allow them to participate in the study
and for this article to be published.

2.2. Image acquisition

The MRI scan was performed with a 7 T research scanner (Siemens
Healthcare, Erlangen, Germany) equipped with a Nova 1Tx/32Rx head
coil (Nova Medical, Wilmington, MA, USA). Whole brain scanning was
performed with sagittal T1-weighted magnetization-prepared rapid
gradient echo (MPRAGE) 0.75 mm isotropic, 208 slices, echo time (TE)/
repetition time (TR)/inversion time (TI) = 2.51/2590/1050 ms, flip
angle (FA) = 7°, generalized autocalibrating partially parallel acquisi-
tions (GRAPPA) = 2, acquisition time (TA) = 5′49″. The parameters
employed for SMS DTI were: 1.25 mm isotropic, TE/TR = 66.2/
5100 ms, FA = 90°, GRAPPA = 3, multi-band (MB) = 2, b = 2000 s/
mm2, 60 directions, TA = 6′53″, performed twice with opposite phase
encoding directions with 112 slices for each direction. Six interspersed
b0 images (non-diffusion weighted, b-value = 0 s/mm2) were also ac-
quired. High-dielectric pads (Zhao et al., 2018; Teeuwisse et al., 2012;
Luo et al., 2013) were applied in one patient to enhance the signal in
the brain regions.

2.3. Image preprocessing

Structural segmentation and normalization into Montreal
Neurological Institute space (MNI-152) were performed by using the
CONN functional connectivity toolbox (www.nitrc.org/projects/conn)
(Whitfield-Gabrieli and Nieto-Castanon, 2012). Scans were inspected to
ensure appropriate normalization (Fig. S2). All DTI data was pre-
processed in FSL (Jenkinson et al., 2012) (http://fsl.fmrib.ox.ac.uk/fsl).
Diffusion preprocessing for motion, susceptibility and eddy current
distortion corrections were performed with FSL's eddy and topup tools
(Andersson et al., 2003). To reduce the effect of excessive head motion
during DTI acquisition, only participants who showed limited head
movement during imaging acquisition (i.e., translation: < 3 mm;
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rotation: < 2°; maximum absolute head motion: < 4 mm) were in-
cluded in the study. In addition, all images were visually inspected to
ensure the absence of artifacts. Non-brain regions were removed from
the b0 images using the brain extraction tool (BET). Whole-brain
images of diffusion metrics, including FA and MD were obtained via
DTIFIT, which was used to calculate the diffusion tensor model at each
voxel. The FA and MD were used to quantify the degree of WM dis-
ruption (Le Bihan et al., 2001).

2.4. Tract-based spatial statistics

Voxel-wise statistical analysis of the diffusion data, including the FA
and MD images, between patients with DOC and healthy controls was
performed using tract-based spatial statistics (TBSS) (Smith et al.,
2006). All subjects' FA data were nonlinearly aligned to the predefined
FSL FMRIB FA map and registered to the MNI-152 standard space. Next,
a mean FA skeleton was created, which represented the centers of all
tracts common to the group. The aligned FA and non-FA data of each
participant was projected onto this skeleton. Two-sample nonpara-
metric t-tests were used to obtain group differences between patients
with DOC and healthy controls, with age and sex as covariates. The
number of permutations was set at 5000. All resulting statistical maps
were family wise error (FWE) corrected based on the threshold-free
cluster enhancement (TFCE) option. The threshold for statistical sig-
nificance was set at p < .05.

2.5. Node and edge definition

Diffusion post-processing and analysis were conducted using DSI
Studio (http://dsi-studio.labsolver.org). A brain network can be de-
scribed as a graph with nodes (brain regions) and edges that form
connections between the nodes (Wen et al., 2017). The automated
anatomic labelling (AAL) atlas including a total of 116 cortical and
subcortical regions was used to define the nodes in this article. And
each edge represented the number of streamlines interconnecting each
pair of nodes.

2.6. Fiber tracking

We used a deterministic fiber-tracking algorithm (Yeh et al., 2013)
as described in our previous study (Tan et al., 2018). Spin distribution
functions were reconstructed in MNI space using q-space diffeomorphic
reconstruction (QSDR), which provides a direct way to make compar-
isons between groups (Yeh and Tseng, 2011, 2013).

2.7. Connectome construction and graph theory analyses

The overall pattern of WM connections between each pair of brain
nodes was computed using binary matrices. Nodes were defined as the
116 brain regions of the AAL atlas. This resulted in a 116 × 116 in-
terregional connectivity matrix, with each element populated by the
number of streamlines that served as a measure of connectivity
strength. The connectivity matrices and graph theoretical analysis were
conducted using the DSI Studio and network-based statistic (NBS)
Connectome (Zalesky et al., 2010). The following global network me-
trics were investigated: network density, transitivity, clustering coeffi-
cient, network characteristic path length, small world-ness, global ef-
ficiency, local efficiency, and assortativity coefficient. Table S2 lists the
definitions and descriptions of the network metrics used in this study.

2.8. Diffusion MRI connectometry

Group connectometry in DSI Studio was used to investigate the
correlation between the WM structure and each of the six CRS-R sub-
scale scores (with age, sex, and etiology included as covariates). A de-
tailed description of the diffusion MRI connectometry was provided in

the Supplementary materials.

2.9. Longitudinal study of brain connectome metrics

In this study, one VS/UWS patient was scanned 1.5 months after
brain trauma. At 5 months after the trauma, the patient had progressed
to MCS and was scanned for a second time. Another patient with cer-
ebral ischemia and hypoxia was also scanned twice. The first scan was
performed 3 months after brain injury when the patient was in MCS.
The second scan was performed 11 months after brain injury when the
patient was still in MCS. Besides, a 35-year-old healthy male subject
was scanned twice on two different days with the same scan protocol to
access the reproducibility. Within-subject comparisons were made of
the data of the two scans to observe any longitudinal differences in
brain connectivity networks.

2.10. Identification of disrupted WM connections

The NBS was used to identify subnetworks (clusters of nodes and
edges) comprising connections with a reduced streamline count in pa-
tients with DOC. A detailed description of NBS has been reported pre-
viously (Zalesky et al., 2010). Briefly, a two-sample t-test at each con-
nection was firstly performed to test for significant between-group
differences in the value of the connectivity value. Following this, a
primary component-forming threshold (p < .01, uncorrected) was
applied to form a set of suprathreshold connections. Finally, the sig-
nificance of each connected component was obtained with respect to an
empirical estimate of the null distribution of maximal component sizes
(50,000 permutations), with the component size measured as the
number of edges it comprised.

2.11. Statistical analysis

All statistical analyses were performed using R (R Foundation for
Statistical Computing, Vienna, Austria). Considering the sample size of
this study was small and some of the data were non-normally dis-
tributed, Exact Two-Sample Fisher-Pitman Permutation Test was used
to compare the data of the DOC and healthy control groups. Meanwhile,
Approximative K-Sample Fisher-Pitman Permutation Test (seed = 456)
was used for comparing the data of the three groups (healthy controls,
MCS, and VS/UWS). The test level was set at α = 0.05. Pairwise post-
hoc analysis was subsequently employed where significant main group
differences were observed. The corrected significance threshold was
p < .05 with Bonferroni correction. For the connectome metrics that
showed significant differences in both analyses, we plotted the receiver
operating characteristic (ROC) curve to determine whether it could
clearly distinguish DOC from healthy controls. The relationship be-
tween connectome metrics and CRS-R scores were assessed using
Pearson's correlation coefficient.

For the NBS analysis, to determine the significance levels of altered
connectivity networks, general linear models were used to examine the
mean difference in connectivity strength of any connected components
between groups. The statistical significance of each connected compo-
nent was obtained with respect to an empirical estimate of the null
distribution of maximal component sizes (50,000 permutations), with
the component size measured as the number of edges it comprised.
Significant subnetworks were initially determined at p < .05 and fur-
ther tested at p < .01 (both thresholds were permutation corrected).
We reported any components that were significant at a p-value of 0.01
after family-wise error (FWE) correction. And the BrainNet Viewer (Xia
et al., 2013) was used to display the subnetworks.
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3. Results

3.1. Demographic information

Eleven patients with severe brain injuries were enrolled based on
their CRS-R score and 1.5 T MRI scans. Five patients were diagnosed
with VS, and six patients were diagnosed with MCS. Eleven age- and
sex-matched healthy control subjects were also assessed. All patients
and control subjects included in the study were right-handed. The
clinical characteristics of the enrolled patients are shown in Table 1. All
T1-weighted MPRAGE brain structural images for the 11 patients with
DOC in this study are presented in Fig. S1 and representative axial,
coronal, and sagittal images for patients from normalized structural
dataset are shown with the overlying MNI template in Fig. S2. The
demographic data of the two groups are shown in Table 2. There were
no significant between-group differences for age or sex between pa-
tients and healthy controls (p > .05). Further, no significant group
differences in head motion were observed.

3.2. Widespread WM disruption in patients with DOC

Fig. 1 shows the differences in FA and MD between patients with
DOC and healthy controls, as identified through the voxel-wise TBSS
analysis. Widespread FA reductions in the WM of patients with DOC
were observed compared with the FA in healthy controls. Patients with
DOC also exhibited higher MD in almost the entire WM skeleton re-
lative to controls at the same contrast. Conversely, no WM regions with
higher FA or lower MD in patients with DOC relative to controls were
found.

3.3. Connectome metrics in patients with DOC compared to healthy controls

Significant between-group differences were detected for transitivity
(p < .001), local efficiency (p= .009), and clustering coefficient
(p= .039). All three metrics were significantly increased in DOC pa-
tients compared with healthy controls (Fig. 2).

3.4. Comparison of connectome metrics among healthy controls, MCS, and
VS/UWS

Fig. 3 shows the connectome metrics of the healthy controls, MCS,
and VS/UWS groups. Controlling for age and gender, statistical analysis
showed significant group differences in transitivity (p < .001) and
local efficiency (p= .031). Post-hoc analyses indicated that the VS
group had greater transitivity compared with that of healthy controls
(p < .001, Bonferroni corrected) and MCS (p= .0217, Bonferroni
corrected). The VS group had greater local efficiency compared with
that of healthy controls (p= .039, Bonferroni corrected). There was no
significant difference between healthy controls and MCS for local effi-
ciency after post-hoc analyses. There were no significant group differ-
ences in the remaining connectome metrics (p > .05).

3.5. ROC curve analysis

Fig. 4 shows the differentiation rate derived from ROC analysis for
the brain connectome metrics of transitivity. With good classification
accuracy, the value of transitivity that was significantly increased had
the greatest ability to distinguish DOC patients from controls
(AUC = 0.9871, sensitivity = 1.000, specificity = 1.000, effi-
ciency = 1.000; p < .001).

3.6. Correlation between transitivity and CRS-R scores

As shown in Fig. 5, the value of transitivity showed a significant
negative correlation with the CRS-R score, with a correlation coefficient
of −0.6902 (p < .05).

3.7. Diffusion connectometry results

The connectometry analysis identified tracks with enhanced con-
nectivity that were related to the CRS-R subscale score of language
(false discovery rates = 0.09) in patients with DOC (Fig. S3).
Widespread WM regions were correlated with the language subscale
score. The relationships between the tract connectivity and other CRS-R
subscale scores had high false discovery rates (> 0.50).

3.8. Longitudinal study of brain connectome metrics

Table 3 lists the detailed information of the two patients who

Table 1
Details of the clinical characteristics and scores on the CRS-R for the 11 DOC patients used in this study.

Index Patient Gender/age (years) Etiology Duration (months) CRS-R (sub-scores)

1 VS/UWS 1 M/23 TBI, L-basal ganglia 1.5 4 (0/0/2/0/0/2)
2 VS/UWS 2 M/72 TBI, R-frontal-temporo-parietal lobe 3 4 (0/0/1/1/0/2)
3 VS/UWS 3 M/68 TBI, diffuse axonal injury 3 7 (1/1/2/1/0/2)
4 VS/UWS 4 M/53 TBI, R-frontal lobe 1.5 4 (0/0/2/0/0/2)
5 VS/UWS 5 F/36 HIE, cardiopulmonary arrest 3 4 (1/0/1/0/0/2)
6 MCS 1 M/56 TBI, R-frontal lobe 7 11 (2/3/4/0/0/2)
7 MCS 2 M/53 HIE, carbon monoxide poisoning 3.5 10 (1/3/4/0/0/2)
8 MCS 3 M/50 HIE, subarachnoid hemorrhage 5 14 (2/3/3/2/1/3)
9 MCS 4 M/49 TBI, diffuse axonal injury 3 9 (1/3/3/0/0/2)
10 MCS 5 M/16 TBI, R-frontal & L-parietal lobe 1.5 8 (1/1/3/1/0/2)
11 MCS 6 M/68 HIE, cardiopulmonary arrest 8 8 (1/3/1/1/0/2)

Abbreviations: MCS, Minimally Conscious State; VS/UWS, Vegetative State/Unresponsive Wakefulness Syndrome; HIE, Hypoxic Ischemic Encephalopathy; TBI,
Traumatic Brain Injury; CRS-R, Coma Recovery Scale-Revised. R, right; L, left. CRS-R sub-scores: auditory-visual-motor-oromotor-communication-arousal.

Table 2
Demographic and clinical characteristics.

DOC HC p-Value

Number 11 11 NA
Age/years, median (range) 52(16–72) 52(24–67) NA
Sex, male (%) 90.91% 90.91% NA
Handedness, right (%) 100% 100% NA
Diagnosis (MCS/VS/UWS) 6/5 NA NA
Etiology (HIE/TBI) 4/7 NA NA
Translation of DTI scan (mm) 0.38 ± 0.17 0.47 ± 0.26 0.38b

Rotation of DTI scan (degree) 0.709 ± 0.368 0.575 ± 0.285 0.35b

Abbreviations: MCS, Minimally Conscious State; VS/UWS, Vegetative State/
Unresponsive Wakefulness Syndrome; HIE, Hypoxic Ischemic Encephalopathy;
TBI, Traumatic Brain Injury; CRS-R, Coma Recovery Scale-Revised. N/A, not
applicable.

b p-Value was obtained using the two-sample two-tailed t-test.
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participated in the longitudinal study. In addition, Fig. S3 displays the
fractional anisotropy (FA) maps of patients' brain in the longitudinal
study. (A) 1.5 months and (B) 5 months after initial injury for patient
01. (C) 3.5 months and (D) 11 months after initial injury for patient 07.
Zoomed in coronal view of DTI principal direction of diffusion (PDD)
maps overlaid on corresponding FA maps for patient 01 were shown in
(E) 1.5 months and (F) 5 months after initial injury. Due to the high
resolution, obvious white matter damage could be observed in the
zoomed PDD maps for patient 01 in fig. S3(F). Fig. 6 shows that the
value of transitivity for the patient who spontaneously recovered from
UWS to MCS decreased in the second scan; however, the transitivity
value was increased in the patient whose CRS-R score remained un-
changed in the second scan. Furthermore, the intra-subject variation in
transitivity for the healthy control participant was smaller than that for
the patients.

3.9. Network-based statistical analysis of structural connectivity

Through NBS analysis and comparison between the DOC patients
and healthy controls, a structural subnetwork was revealed, wherein
the connectivity of this subnetwork was greater in the healthy controls
than in the DOC patients. Specifically, this subnetwork of reduced
connectivity in the DOC patients included 24 edges connecting 22 re-
gions (p= 6 ∗ 10−5, FWE corrected). A significant difference was also
observed in the strength of interhemispheric connection between the
DOC group and the HC group.

All connections contributing to this subnetwork and their corre-
sponding t-statistics are listed in Table 4. The nodes and edges con-
tributing to this subnetwork are shown in Fig. 7, indicating that the
subnetwork of decreased structural connectivity comprised of 22 nodes
and is positioned in the frontal cortex, occipital lobe, and limbic system.

4. Discussion

This study investigated the whole-brain WM connectome in patients
with DOC and healthy controls. The main findings yielded from the
current study were as follows. First, DOC patients displayed elevated
transitivity, local efficiency, and clustering coefficient of connectome
metrics compared to those of healthy controls. When comparing the
connectome metrics within the three groups (healthy controls, MCS,
and VS/UWS), the VS group had greater transitivity compared with that

of healthy controls and MCS. Notably, the connectivity alterations of
transitivity significantly differentiated the diagnostic groups. Second, a
longitudinal evaluation of brain connectome metrics in two patients
showed that transitivity decreased in the patient who recovered from
VS/UWS to MCS. In contrast, the patient whose CRS-R score remained
unchanged demonstrated increased transitivity compared with the
value obtained 10 months prior, which was consistent with its negative
correlation with CRS-R score. Finally, NBS analysis revealed sig-
nificantly decreased structural connectivity, which consisted of 22
nodes mainly in the frontal cortex, limbic system, occipital, and parietal
lobes.

Consistent with prior findings, both the DOC patients and healthy
controls in our study had small-world properties in their WM networks
(Bullmore and Bassett, 2011; Crone et al., 2014; Weng et al., 2017).
Small-world refers to networks that have similar characteristic path
lengths but are more clustered, as opposed to random networks (Watts
and Strogatz, 1998). Their topology reflects an optimal balance be-
tween global integration, which is essential for the high level func-
tioning of human brain networks (Honey and Sporns, 2008). We ob-
served that DOC patients showed increased small-world properties,
which contrasts with the findings of Weng et al. (2017); however, this
increase did not reach statistical significance. In our study, the DOC
patients' networks showed significantly elevated clustering coefficient
and local efficiency, although characteristic path length and global ef-
ficiency were similar to those of healthy controls. Elevated local effi-
ciency, clustering coefficient, small-world properties, and similar
characteristic path lengths in DOC patients may indicate more efficient
use of local neural resources in DOC (Wen et al., 2017).

In the present study, the DOC patients' networks had greater tran-
sitivity, an outcome that has not been previously reported in the DOC
graph theory literature. In our study, transitivity and clustering coef-
ficient were both elevated in DOC patients compared with healthy
controls. However, when comparing the metrics among healthy con-
trols, MCS, and VS/UWS, only transitivity displayed significant differ-
ences among the three groups. Transitivity reflects the likelihood of a
network to have interconnected nodes adjacent to one another and to
be regulated by the global network. It is a more robust parameter than
the clustering coefficient and is often used as an alternative to the latter,
as it is not influenced by nodes with fewer connections (Newman,
2003). Our findings suggest that the distribution of information pro-
cessing may be restricted to a group of densely interconnected regions

Fig. 1. Results of the voxel-wise tract-based spatial statistics (TBSS) analysis of the differences in fractional anisotropy (FA) and mean diffusivity (MD) between
patients with DOC and healthy controls. Red-yellow represents areas with reduced FA, whereas blue-light represents areas with elevated MD in the DOC vs. healthy
control group (thickened for better visibility).
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Fig. 2. Global topologic network parameters of brain white matter comparing disorders of consciousness (DOC) patients with healthy controls (HC). The horizontal
scale represents the different groups, while the vertical scale refers to the values of connectome metrics. The short lines stand for their median for each group.
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Fig. 3. Global topologic network parameters of brain white matter comparing among healthy controls (HC), minimally conscious state (MCS), and vegetative state/
unresponsive wakefulness syndrome (VS/UWS). The horizontal scale represents the different groups, while the vertical scale refers to the values of connectome
metrics. The short lines stand for their median for each group.
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of the brain network in DOC patients. A similar dichotomy of inter-
group differences in clustering has previously emerged in graph theory
studies of Alzheimer's disease (Daianu et al., 2015; de Haan et al., 2009)
and late life depression (Ajilore et al., 2014; Li et al., 2015). More
importantly, in this study, a significant difference in transitivity was
found between the MCS and VS/UWS groups. A similar trend was ob-
served in the two patients examined longitudinally, which is consistent

with its negative correlation with CRS-R. It remains to be confirmed in
further studies whether transitivity can be used as an auxiliary diag-
nostic tool to differentiate MCS from VS/UWS, or as an indicator for
early prognosis of recovery outcomes in DOC patients.

A subnetwork that decreased structural connections was identified
using the NBS approach. However, our results were discordant with
those of Weng et al. (2017), who reported abnormal structural con-
nectivity between the basal ganglia, thalamus, and frontal cortex in
DOC patients. Our subnetwork consisted of 22 nodes among the frontal
cortex, limbic system, occipital, and parietal lobes. Nine of 22 nodes
were located in the frontal cortex. The frontal cortex constitutes two
thirds of the human brain and plays an important role in a multitude of
cognitive processes, such as executive function, attention, memory, and
language (Chayer and Freedman, 2001). The medial prefrontal cortex
(mPFC) participates in virtually all self-related processing: affecting
human identity, altering attentional processes, decision-making, goal-
directed behavior, and working memory (Goldman-Rakic et al., 1984;
Vertes, 2004; Van Overwalle, 2009). Furthermore, the mPFC is a
component of the DMN, which mediates internally oriented awareness
and spontaneous cognition (Vanhaudenhuyse et al., 2011), and is
widely reported in DOC (Crone et al., 2011; Kotchoubey et al., 2013;
Vanhaudenhuyse et al., 2010; Norton et al., 2012). The mPFC is asso-
ciated with consciousness level and its outcome in patients with ac-
quired brain injury (Liu et al., 2017). Seven nodes were located in the
limbic system. The cingulate cortex is also a component of the DMN.
Chatelle et al. (2014) reported that the anterior cingulate cortex (ACC)
could have an important role in pain processing and gating at the
cortical level within the fronto-parietal network. Naro et al. (2015) used
a repetitive transcranial magnetic stimulation (rTMS) approach to
trigger fronto-parietal output in chronic DOC patients. They observed
that rTMS over the ACC may be a useful approach to better investigate
the level of consciousness impairment. Five nodes were located in the
occipital lobe. Severe traumatic, anoxic, or hemorrhagic brain injuries
can lead to VS/UWS in which the eyes are open but there is no evidence
of a meaningful response; visual pursuit is considered to be one of the
first signs appearing during recovery of consciousness (Giacino et al.,
2002). The calcarine cortex is commonly defined as the primary visual

Fig. 4. ROC curve of transitivity based on structural connections. Transitivity
had a strong ability to discriminate the disorders of consciousness (DOC) pa-
tients from healthy controls (AUC = 0.9871).

Fig. 5. Values of transitivity (y-axis) correlated to CRS-R scores (x-axis) with a
correlation coefficient of −0.6902. CRS-R: Coma Recovery Scale-Revised.

Table 3
Demographic and clinical characteristics of the DOC patients in the longitudinal study.

No. Patient Age (year) Etiology Time post-onset (months) CRS-R Total CRS-R score

P01 VS/UWS 23 TBI 1.5a/5b 0/0/2/0/0/2a 4a/16b

4/4/4/0/1/3b

P07 MCS 53 HIE 3.5a/11b 1/3/4/0/0/2a 10a/10b

1/3/4/0/0/2b

Abbreviations: MCS, Minimally Conscious State; VS/UWS, Vegetative State/Unresponsive Wakefulness Syndrome; HIE, Hypoxic Ischemic Encephalopathy; TBI,
Traumatic Brain Injury; CRS-R, Coma Recovery Scale-Revised.

a The data from the first scan.
b The data from the second scan.

Fig. 6. Values of transitivity (y-axis) for subjects in the longitudinal study of
brain connectome metrics.
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cortex (Belliveau et al., 1991) or V1 (Lalli et al., 2006). An important
role for visual sensory systems in early recovery of a patient who
spontaneously recovered from VS/UWS to MCS with severe brain injury
has been reported in our previous study (Tan et al., 2018). Finally, one
node was located in the parietal lobe. Collectively, our subnetwork has
been included in a meso-circuit model that attempts to explain DOC
after brain injuries (Schiff, 2010). Although the thalamus was not in the
subnetwork, the inclusion of the ACC is similarly recruited by a wide
range of cognitive demands and shows graded activity with increasing
cognitive load. This suggests that this component of the frontal ex-
ecutive systems may drive, or reciprocally increase activity, with the
central thalamus in response to increasing cognitive demands (Stuss
and Alexander, 2007).

There are several strengths to our study. First, ultra-high field (7 T)
MRI was utilized to gain higher resolution, signal to noise ratio (SNR),
and contrast-to-noise ratio (CNR). Vu et al. (2015) has reported that the
higher spatial resolution of the 7 T data provides excellent detail in-
cluding bands of low FA along the gray-white matter borders.

Heidemann et al. (2012) also reported similar findings in zoomed dMRI
studies with partial-brain coverage. In our study, obvious white matter
damage could be observed in the zoomed PDD maps for patient 01 in
the long longitudinal study due to the high resolution. Further analysis
with the high resolution will be carried out in the future. Second, dif-
ferences in network metrics for the structural connectome were ob-
served not only between DOC patients and healthy controls, but also
between MCS and VS/UWS. Furthermore, longitudinal examination of
brain connectome metrics was performed, although only two patients
were studied. Finally, a significant subnetwork was identified when
comparing DOC patients with healthy controls, which may help to
promote understanding of the mechanisms underlying DOC.

Several potential limitations of this study should be considered.
First, the sample size was relatively small. As no metal in any body part
was permitted in patients with DOC undergoing 7 T MRI scans, very few
patients met the inclusion criteria. A second limiting factor was concern
from family members. Third, the normalization of MR images was an
issue in patients with DOC. Often, misalignment between the b0 images

Table 4
Subnetwork composed of significantly decreased connections in the DOC patients compared to the healthy controls (HC), identified by a network-based statistic
(NBS) approach (p= 6.0 ∗ 10−5, family-wise error (FWE) corrected).

Connection between t-Stat p-Value Connection between t-Stat p-Value

Frontal_Sup_R-Supp_Motor_Area_L. 4.09 0.000569 Frontal_Sup_Medial_L-Occipital_Sup_L. 3.54 0.002067
Supp_Motor_Area_L-Supp_Motor_Area_R. 5.86 9.83E-06 Calcarine_R-Occipital_Sup_L. 3.18 0.004693
Frontal_Sup_L-Frontal_Sup_Medial_R. 3.29 0.003692 Cuneus_R-Occipital_Sup_L. 5.36 3.05E-05
Frontal_Mid_L-Frontal_Sup_Medial_R. 3.36 0.003099 Hippocampus_R-Precuneus_L. 3.29 0.003687
Supp_Motor_Area_L-Frontal_Sup_Medial_R. 3.71 0.00139 ParaHippocampal_L-Precuneus_L. 3.43 0.002625
Frontal_Sup_Medial_L-Frontal_Sup_Medial_R. 3.67 0.001535 Postcentral_R-Precuneus_L. 3.95 0.000791
Frontal_Sup_Medial_R-Cingulum_Ant_L. 3.16 0.004906 Supp_Motor_Area_R-Paracentral_Lobule_L. 4.85 9.75E-05
Supp_Motor_Area_L-Cingulum_Ant_R. 3.44 0.002561 Cingulum_Mid_R-Paracentral_Lobule_L. 3.41 0.002802
Frontal_Sup_Medial_L-Cingulum_Ant_R. 3.17 0.004798 Postcentral_R-Paracentral_Lobule_L. 3.16 0.004971
Supp_Motor_Area_L-Cingulum_Mid_R. 3.1 0.005615 Cingulum_Mid_L-Paracentral_Lobule_R. 3.75 0.001275
Calcarine_L-Cuneus_R. 3.37 0.003011 Precuneus_L-Paracentral_Lobule_R. 3.83 0.001051
Cuneus_L-Cuneus_R. 3.91 0.000867 Paracentral_Lobule_L-Paracentral_Lobule_R. 3.48 0.002343

L, left; R, right; table lists all connections that form part of the subnetwork identified as significant by NBS for comparison between DOC and HC arranged by the t-
statistic for each connection.

Fig. 7. The lateral and medial sides of each hemi-
sphere, and the dorsal and ventral sides and the
anterior and posterior sides of the subnetwork are
shown. The nodes showing significant group differ-
ences comparing DOC patients with healthy controls
are extracted from the AAL atlas and the radius of
the edges represent the connectivity strengths be-
tween each pair of two nodes. Decreased structural
connectivity, which consisted of 22 nodes mainly in
the frontal cortex, limbic system, occipital, and par-
ietal lobes.
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and diffusion-weighted images for small ROIs can lead to imperfect
registration to the MNI-152 space. Thus, we excluded patients with
extensive focal brain damage. Fourth, considering the clinical feasi-
bility and compliance, we did not perform 3 T MRI scanning for these
patients, which resulted in the inability to perform comparisons among
different field strengths (3 T and 7 T). In addition, more individualized
analyses that take advantage of the 7 T resolution should be taken into
consideration in the future. Finally, in this study, some of the patients
with DOC had traumatic brain injury while others had hypoxic-is-
chemic encephalopathy, and as such, they had different pathogeneses.
It would be better to divide patients into different subgroups based on
the patients' various etiologies and to study the relationship between
brain dysfunction and abnormal structural topologies in these different
subgroups separately in the future.

5. Conclusions

In this study, non-invasive ultra-high field (7 T) MRI and graph
theoretical analyses were used to reveal global network disruptions in
DOC. The DOC network was highly segregated with significantly higher
transitivity, local efficiency, and clustering coefficient of WM structural
networks. Elevated transitivity in VS/UWS was also found compared
with MCS. The findings from our longitudinal assessment also sup-
ported the view that transitivity would decrease if the patient's condi-
tion improved, which was consistent with its negative correlation with
CRS-R score. A significant subnetwork was identified when comparing
DOC patients with healthy controls, which may help to promote un-
derstanding of the mechanisms underpinning DOC. This preliminary
study sheds light on the pivotal role of transitivity in distinguishing the
various states of DOC based on graph theoretical approaches, which
will help promote the cyborg intelligent systems (Wu et al., 2013, Yu
et al., 2016) in the future.
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