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RNA sequence data are commonly summarized as read counts. By contrast, so far there is no alternative
to genotype calling for investigating the relationship between genetic variants determined by next-
generation sequencing (NGS) and a phenotype of interest. Here we propose and evaluate the direct anal-
ysis of allele counts for genetic association tests. Specifically, we assess the potential advantage of the
ratio of alternative allele counts to the total number of reads aligned at a specific position of the genome
(coverage) over called genotypes. We simulated association studies based on NGS data from HapMap
individuals. Genotype quality scores and allele counts were simulated using NGS data from the
Personal Genome Project. Real data from the 1000 Genomes Project was also used to compare the two
competing approaches. The average proportions of probability values lower or equal to 0.05 amounted
to 0.0496 for called genotypes and 0.0485 for the ratio of alternative allele counts to coverage in the null
scenario, and to 0.69 for called genotypes and 0.75 for the ratio of alternative allele counts to coverage in
the alternative scenario (9% power increase). The advantage in statistical power of the novel approach
increased with decreasing coverage, with decreasing genotype quality and with decreasing allele fre-
quency – 124% power increase for variants with a minor allele frequency lower than 0.05. We provide
computer code in R to implement the novel approach, which does not preclude the use of complementary
data quality filters before or after identification of the most promising association signals.
Author summary: Genetic association tests usually rely on called genotypes. We postulate here that the
direct analysis of allele counts from sequence data improves the quality of statistical inference. To eval-
uate this hypothesis, we investigate simulated and real data using distinct statistical approaches. We
demonstrate that association tests based on allele counts rather than called genotypes achieve higher sta-
tistical power with controlled type I error rates.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Technical advances in next-generation sequencing (NGS) have
already translated into large data collections and the need for effi-
cient techniques to analyze them. Called genotypes are typically
used to investigate the relationship between genetic variants and
a phenotype of interest [1]. Genotypes are usually called using
probabilistic methods, which rely on genotype quality scores and
allele counts computed after read alignment and base calling [2].
The development of genotype-calling algorithms is an active
research area [3–9]. Here we explore an alternative approach:
direct use of the number of reference and alternative reads aligned
at a specific position of the genome—allele counts, also referred to
as allelic depths—instead of called genotypes [10,11]. More pre-
cisely, we assess the potential advantage of the ratio of alternative
allele counts to the total number of reads aligned at a specific posi-
tion of the genome (coverage) over called genotypes.

2. Simulated datasets

We simulated association studies relying on NGS data from
1417 HapMap individuals [12]. Fig. 1 depicts the implemented
simulation steps for each of 27,139 genetic variants on chromo-
some 20. Quantitative phenotypes were assigned according to a
null and an alternative scenario for each variant. In the null scenar-
io, phenotypes were sampled from a normal distribution with
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Fig. 1. Overview of the performed simulations.
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mean 0 and standard deviation (SD) 6.5 independently of individ-
ual genotypes. In order to achieve approximately 80 % statistical
power, quantitative phenotypes were sampled from a normal dis-
tribution with mean equal to the number of individual alternative
alleles (0, 1, or 2) and SD equal to 6.5 in the alternative scenario.
Binary phenotypes were derived from quantitative phenotypes
according to median split.

We simulated genotype quality scores and allele counts for each
individual genotype based on NGS data from the Personal Genome
Project [13]. First, individual genotypes were grouped into 18 dif-
ferent categories according to the reference allele, the alternative
allele and the combined genotype (Fig. 1). Next, genotype quality
scores were randomly sampled from the observed (genotype
category-specific) distribution of genotype quality scores. Based
on the selected genotype quality score, allele counts were ran-
domly sampled from the observed bivariate distribution of refer-
ence and alternative allele counts. Finally, genotypes were called
based on simulated genotype quality scores and allele counts using
GATK Haplotype Caller, considering a flat prior (1/3 probability for
each possible genotype, https://software.broadinstitute.
org/gatk/documentation/article?id=11079), and the ratios of alter-
native allele counts to coverages were calculated.
3. Real dataset

We also compared the two competing approaches based on real
data from 193 individuals in the 1000 Genomes Project: 101 Yor-
uba in Ibadan, Nigeria (YRI) and 92 Utah residents with northern
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and western European ancestry [14]. Variants in the ASIP gene on
chromosome 20 have been associated with red hair color, freckling,
burning, and sun sensitivity [15]. We therefore retrieved called
genotype and allele count data on the ASIP gene region from a pub-
licly available Variant Call Format (VCF) file. (ftp://ftp.1000gen-
omes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/
working/20170124_grch38_chr20_recall/lc_bams.gatk.20170111.
vcf.gz). The real dataset included 398 biallelic variants with com-
plete information on called genotypes and allele counts. Binary
phenotypes identified whether the individual was YRI or not
(Please note that population stratification, typically a confounding
factor in genetic association studies, was the phenotype of interest
here).
4. Methods

Our goal was to compare two methods for testing genetic asso-
ciation: the standard method that investigates the relationship
between called genotypes and phenotypes, and the novel approach
that tests the direct association between allele counts and pheno-
types, avoiding genotype calling.

We conducted simulations to compare both the standard
method and the novel approach with the ideal situation in which
real genotypes were known, sometimes referred to as the ‘‘Oracle
scenario”. In other words, three different associations were tested
based on simulated data: (1) between real genotypes as response
variable and phenotypes as explanatory variable by ordinal logistic
regression; (2) between called genotypes as response variable and
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phenotypes as explanatory variable by ordinal logistic regression;
and (3) between the ratio of alternative allele counts to coverage
as response variable and phenotypes as explanatory variable by
linear regression (Fig. 1). The type I error rate was calculated in
the null scenario and the statistical power was quantified in the
alternative scenario for the three investigated associations.

We used not only simulated but also real data to examine the
potential improvement in the quality of statistical inference by
direct use of allele counts instead of called genotypes. The relation-
ship between genetic variability in the ASIP gene region and Yoru-
ban ancestry was evaluated by testing the association between (1)
called genotypes as response variable and YRI descent as explana-
tory variable by ordinal logistic regression; and (2) the ratio of
alternative allele counts to coverage as response variable and YRI
descent as explanatory variable by linear regression. Probability
values for each variant were represented in a Manhattan plot,
which was complemented with a linkage disequilibrium (LD) plot
to refine the region of interest.

VCFtools (v0.1.13 version) was used to extract the information
needed: allele counts (AD field in the FORMAT tag of the VCF file),
called genotypes (GT field), and genotype quality scores (GQ field).
Coverage was calculated as the sum of the reference and the alter-
native allele counts. Minor allele frequencies (MAF) were calcu-
lated using PLINK (v1.07 version). The computer code in R to
reproduce all described calculations is provided as supplementary
material.

5. Results

The median coverage was 22 reads (SD 2.2) in the simulated
datasets and 7 reads (SD 1.5) in the dataset from the 1000 Gen-
omes Project. The analysis of simulated data revealed no inflation
of type I error rates: in the null scenario the average proportion
of probability values lower or equal to 0.05 amounted to 0.0472
for real genotypes, 0.0496 for called genotypes, and 0.0485 for
Table 1
Type I error rate and statistical power for binary phenotypes (overall and stratified by cov

Investigated association Regression
model

Stratification

Real genotype � Phenotype Ordinal logistic None
Called genotype � Phenotype Ordinal logistic
Alternative allele counts/

Coverage � Phenotype
Linear

By coverage
Real genotype � Ordinal (reads)
Phenotype logistic

Called genotype � Ordinal
Phenotype logistic

Alternative allele Linear
counts/Coverage �
Phenotype

By genotype
Real genotype � Ordinal quality (6
Phenotype logistic (scores) (8

Called genotype � Ordinal (6
Phenotype logistic (8

Alternative allele Linear (6
counts/Coverage � (8
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the ratio of alternative allele counts to coverage (Table 1). Fig. 2A
shows type I error rates stratified by MAF. With the exception of
the conservative results for called genotypes and variants with
MAF lower than or equal to 0.05, all three evaluated genetic asso-
ciation tests adequately controlled false-positive rates for each
MAF category.

In the alternative scenario the average proportion of probability
values lower or equal to 0.05 amounted to 0.77 for real genotypes
(maximum attainable statistical power, ‘‘Oracle scenario”), 0.69
for called genotypes, and 0.75 for the ratio of alternative allele
counts to coverage. Results from power calculations stratified by
MAF are shown in Fig. 2B. Association tests based on allele counts
achieved a higher statistical power than tests based on called geno-
types for each MAF category. For example, the average statistical
power for variants with MAF lower than or equal to 0.05 was 0.10
for called genotypes, compared with 0.23 for the ratio of alternative
allele counts to coverage ([0.1004–0.2249]/0.1004 = 124 % relative
increase in statistical power). Calling genotypes using low-coverage
sequencing data is computationally challenging [16], and the
advantage in statistical power of the novel approach increasedwith
decreasing coverage: the first coverage quartile (Q1) was 21 reads,
the third coverage quartile (Q3) was 24 reads, and the relative
increase in statistical power amounted to 15.6 % for �21 reads
[Q1] compared to 5 % for >24 reads [Q3] (Table 1). The advantage
in statistical power of the novel approach also increased with
decreasing genotype quality (22.7 % power increase for genotype
quality score �69.2 [Q1] compared to 4.2 % power increase for
genotype quality score >96.2 [Q3]). Detailed results stratified by
coverage, genotype quality, MAF, reference and alternative allele,
and results for quantitative phenotypes are provided as supplemen-
tary material (Tables S1-S8). For example, in the alternative sce-
nario for continuous phenotypes the average proportion of
probability values lower or equal to 0.05 amounted to 0.90 for real
genotypes (Oracle scenario), 0.83 for called genotypes, and 0.88 for
the ratio of alternative allele counts to coverage (Table S4).
erage and genotype quality scores).

Null scenario Alternative scenario

#pvals %non-missing pvals < 0.05 %non-missing pvals < 0.05

– 27,139 0.0472 0.7717
– 27,139 0.0496 0.6878
– 27,139 0.0485 0.7487

�21 9315 0.0466 0.6454
(21,22] 4408 0.0429 0.7867
(22,24] 9085 0.0488 0.8427

>24 4331 0.0496 0.8785
�21 9315 0.0479 0.5381

(21,22] 4408 0.0449 0.7035
(22,24] 9085 0.0525 0.7717

>24 4331 0.0517 0.8181
�21 9315 0.0498 0.6218

(21,22] 4408 0.0420 0.7641
(22,24] 9085 0.0500 0.8187

>24 4331 0.0494 0.8589
�69.2 6831 0.0469 0.5475

9.2,84.1] 6739 0.0432 0.7798
4.1,96.2] 6801 0.0512 0.8615

>96.2 6768 0.0476 0.8989
�69.2 6831 0.0504 0.4264

9.2,84.1] 6739 0.0453 0.6930
4.1,96.2] 6801 0.0538 0.7939

>96.2 6768 0.0488 0.8400
�69.2 6831 0.0505 0.5232

9.2,84.1] 6739 0.0450 0.7601
4.1,96.2] 6801 0.0501 0.8377

>96.2 6768 0.0485 0.8754



Fig. 2. Type I error rate and statistical power for binary phenotypes stratified by minor allele frequency, and Manhattan and LD plots for the ASIP gene region.
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Fig. 2C depicts the Manhattan and LD plots for the investigated
ASIP gene region. Blue dots represent the association between Yor-
uban ancestry and called genotypes (standard method), while
green dots show the relationship between Yoruban ancestry and
the ratio of alternative allele counts to coverage (novel approach).
The star in the LD plot indicates the chromosomal position of a
peak where nearby correlated variants showed consistent associa-
tion signals. The association peak was evident only when the new
approach based on allele counts was used.
6. Conclusions

Results based on simulated and real data demonstrate that
genetic association tests based on allele counts may result in
higher statistical power, with controlled type I error rates, and
clearer association signals than the classical investigation of called
genotypes. The relative gain in statistical power can be particularly
relevant for rare variants and positions with low coverage.

The investigation of differential gene expression based on RNA
sequence data commonly relies on count data [17]. By contrast,
the direct investigation of allele counts from DNA sequence data
is still at a very early stage of development in diploid organisms,
including humans [10]. The use of the ratio of alternative allele
counts to coverage is better covered in the polyploid literature,
especially in plant genetics [18–23]. We demonstrate here that
direct analysis of allele counts may boost the statistical power. It
is well known that NGS data are noisy and Hardy–Weinberg equi-
librium tests based on called genotypes as well as user-defined fil-
ters (for example, setting minimum coverage) are often applied to
control data quality. The proposed approach does not preclude the
use of complementary quality filters before or after identification
of the most promising association signals relying on allele counts.
This short communicationmay guide and motivate the comparison
of alternative genotype calling approaches (e.g. different prior
probabilities for the Haplotype Caller, Bcftools, VarScan2 or Free-
Bayes) and different handling of allele counts (e.g. categorisation
to assess non-additive genetic effects) in the future [7–9].
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