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We consider a class of viral infection dynamic models with inhibitory effect on the growth of uninfected T cells caused by infected
T cells and logistic target cell growth. The basic reproduction number 𝑅0 is derived. It is shown that the uninfected equilibrium is
globally asymptotically stable if 𝑅0 < 1. Sufficient conditions for the existence of Hopf bifurcation at the infected equilibrium are
investigated by analyzing the distribution of eigenvalues. Furthermore, the properties of Hopf bifurcation are determined by the
normal form theory and the center manifold. Numerical simulations are carried out to support the theoretical analysis.

1. Introduction

The human immunodeficiency virus (HIV) is a lentivirus,
which replicates by infecting and destroying primarily CD4+
T cells. The end stage of HIV viral progression is acquired
immune deficiency syndrome (AIDS) (see, for example, [1]),
identified when the count of individual’s CD4+ cells count
falls below 200. Since AIDS was found in America in 1981,
it spread worldwide and became the public health and social
problemwhich causes serious damage to human survival and
development. In 2016, there exist about 38 million people
living with human immunodeficiency virus (HIV) (see, for
example, [2]). Thus, it is a challenge to study and control the
virus.

It is widely known that mathematical models have made
considerable contributions to understanding the HIV infec-
tion dynamics. Nowak et al. have proposed a class of classic
mathematical model to describe HIV infection dynamics
(see, for example, [3–6]),

�̇� (𝑡) = 𝑠 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) V (𝑡) − 𝑝𝑦 (𝑡) ,
V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑢V (𝑡) , (1)

where 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) denote the concentrations of
uninfected cells, infected cells, and free virus at time 𝑡,
respectively. Uninfected cells are produced at the rate 𝑠 (𝑠 >0), die at the rate 𝑑 (𝑑 > 0), and become infected at the rate𝛽 (𝛽 > 0). The constant 𝑝 (𝑝 > 0) is the death rate of the
infected cells due either to virus or to the immune system.
The constant 𝑘 (𝑘 > 0) is the rate of production of virus by
infected cells and the constant 𝑢 (𝑢 > 0) is the rate at which
the virus is cleared.

Incorporating the life cycle of the virus in the cells,
some researchers have considered that the HIV virus from
HIV infection to produce new virus takes time. To make a
better understanding for this phenomenon in mathematics,
HIV models including time delay have been proposed (see,
for example, [4, 7–9]). Several researchers have considered
that when T cells stimulate by antigen or mitogen, this will
differentiate and increase in the number. The HIV model
with a full logistic mitosis term has been investigated (see,
for example, [6, 10, 11]). Taking into account the growth of
uninfected cells, they made a further investigation to add a
full logistic term 𝑟𝑥(𝑡)(1 − (𝑥(𝑡) + 𝑦(𝑡))/𝑇) (see, for example,
[12, 13]).

In the above model, there are two factors that accel-
erate the reduction of uninfected cells: one is the natural
death of uninfected cells and the other is that uninfected
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cells become infected cells. HIV gene expression products
can be toxic and directly or indirectly induce apoptosis in
uninfected cells. Some data show that viral proteins interact
with uninfected cells and produce an apoptotic signals that
accelerate the death of uninfected cells. Recently, Wang and
Zhang proposed a spatial mathematical model to describe the
predominance for driving CD4+ T cells death, which is called
caspase-1-mediated pyroptosis (see, for example, [14]).

Based onmodel (1), Guo and Ma have proposed a class of
delay differential equations model of HIV infection dynamics
with nonlinear transmissions and apoptosis induced by
infected cells (see, for example, [15]). And then, Cheng et
al. [16] have considered the following infection model with
inhibitory effect on the growth of uninfected cells by infected
cells: �̇� (𝑡) = 𝑠 − 𝑑𝑥 (𝑡) − 𝑐𝑥 (𝑡) 𝑦 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,̇𝑦 (𝑡) = 𝛿𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑝𝑦 (𝑡) ,

V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑢V (𝑡) , (2)

where the constant 𝑐 (𝑐 > 0) represents the rate of apoptosis
at which infected cells induce uninfected cells. 𝛿 (𝛿 > 0)
denotes the surviving rate of infected cells before they become
productively infected. The biological meanings of the other
parameters in the model (2) are similar to that in the model
(1).

Motivated by the above models, in this paper, we will
study a delay differential equation model of HIV infection
with a full logistic term of uninfected cells,

̇𝑥 (𝑡) = 𝑠 + 𝑟𝑥 (1 − 𝑥 (𝑡) + 𝑦 (𝑡)𝑇 ) − 𝑑𝑥 (𝑡)
− 𝑐𝑥 (𝑡) 𝑦 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,�̇� (𝑡) = 𝛿𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑝𝑦 (𝑡) ,

V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑢V (𝑡) .
(3)

In this model, the logistic growth of the healthy CD4+ T
cells is described by 𝑟𝑥(𝑡)(1 − (𝑥(𝑡) + 𝑦(𝑡))/𝑇). The total
concentration of CD4+ T cells is 𝑥(𝑡) + 𝑦(𝑡), where 𝑥(𝑡)
denotes the concentration of uninfected cells, 𝑦(𝑡) is the
concentration of infected cells, and 𝑇 is the maximum level
of CD4+ T cells. 𝛿 (𝛿 > 0) is the infection rate of infected
cells. The biological meanings of the other parameters in the
model (3) are similar to that in the model (2).

The main purpose of this paper is to carry out a pretty
theoretical analysis on the stability of the equilibria of the
model (3) and to analyze the Hopf bifurcation by related
theories of the differential equations. The organization of
this paper is as follows. In Section 2, we investigate the
existence and the ultimate boundedness of the solutions
of the model (3). Then we consider the global stability
of the uninfected equilibrium and the Hopf bifurcation at
the infected equilibrium. In Section 3, some properties of
Hopf bifurcation such as direction, stability, and period are
determined. In Section 4, the brief conclusions are given and
sets of numerical simulations are provided to illustrate the
main results.

2. Local and Global Stability of the Equilibria

According to biological meanings, we assume that the initial
condition of the model (3) is given as follows:𝑥 (𝜃) = 𝜙1 (𝜃) ,𝑦 (𝜃) = 𝜙2 (𝜃) ,

V (𝜃) = 𝜙3 (𝜃) (𝜃 ∈ [−𝜏, 0]) ,
(4)

where 𝜙 = (𝜙1, 𝜙2, 𝜙3)𝑇 ∈ 𝐶 such that 𝜙𝑖(𝜃) ≥ 0 (𝑖 =1, 2, 3). Here, 𝐶 = 𝐶([−𝜏, 0]; 𝑅3+) denotes the Banach space
of continuous functions mapping from the interval [−𝜏, 0] to𝑅3+ equipped with the supnorm.

The existence and uniqueness, nonnegativity, and bound-
edness of the solutions of the model (3) with the initial
condition (4) can be given as follows.

Theorem 1. �e solution (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) of the model (3) with
the initial condition (4) is existent, unique, and nonnegative on[0, +∞) and also has

lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑥0,
lim sup
𝑡→+∞

(𝑥 (𝑡) + 𝑦 (𝑡 + 𝜏)) ≤ 𝑠 + 𝑟𝑥0𝑑 ,
lim sup
𝑡→+∞

V (𝑡) ≤ 𝑘 (𝑠 + 𝑟𝑥0)𝑢𝑑 ,
(5)

where 𝑑 = min{𝑑, 𝑝} and 𝑥0 = (𝑇/2𝑟)(𝑟 − 𝑑 +√(𝑟 − 𝑑)2 + 4𝑠𝑟/𝑇).
In fact, by using standard theorems for existence and

uniqueness of functional differential equations (see, for
example, [17–19]), we can show that the solution (𝑥(𝑡),𝑦(𝑡), V(𝑡)) of the model (3) with the initial condition (4) is
existent, unique and nonnegative on [0, +∞), easily. And the
proving of ultimately bounded of the solution (𝑥(𝑡), 𝑦(𝑡), V(𝑡))
is similar to [12, 16].

We can denote the basic reproduction number of theHIV
virus for the model (3) as 𝑅0 = (𝑘𝛿/𝑝𝑢)𝑥0 (see, for example,
[3]). For the existence of nonnegative equilibria of the model
(3), we can obtain the following classifications:

(i) The model (3) always has the uninfected equilibrium𝐸0 = (𝑥0, 0, 0).
(ii) If 𝑅0 = (𝑘𝛿/𝑝𝑢)𝑥0 > 1, the model (3) has unique

infected equilibrium 𝐸∗ = (𝑥∗, 𝑦∗, V∗), where
𝑥∗ = 𝑝𝑢𝛿𝑘 ,𝑦∗ = 𝑢𝑘 V∗,
V∗ = −𝑟𝑥∗2/𝑇 + (𝑟 − 𝑑) 𝑥∗ + 𝑠𝑟𝑥∗𝑢/𝑘𝑇 + (𝑐𝑢/𝑘) 𝑥∗ + 𝛽𝑥∗ .

(6)
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Theorem 2. If 𝑅0 < 1, the uninfected equilibrium 𝐸0 of the
model (3) is globally asymptotically stable.

Proof. We consider linear system of the model (3) at 𝐸0, we
have ̇𝑥 (𝑡) = (𝑟 − 𝑑 − 2𝑟𝑇 𝑥0)𝑥 (𝑡) − ( 𝑟𝑇 + 𝑐) 𝑥0𝑦 (𝑡)− 𝛽𝑥0V (𝑡) ,�̇� (𝑡) = 𝛿𝑥0V (𝑡 − 𝜏) − 𝑝𝑦 (𝑡) ,

V̇ (𝑡) = 𝑘𝑦 (𝑡) − 𝑢V (𝑡) .
(7)

The corresponding characteristic equation is given by(𝜆 − 𝑟 + 𝑑 + 2𝑟𝑇 𝑥0) [(𝜆 + 𝑝) (𝜆 + 𝑢) − 𝑘𝛿𝑥0𝑒−𝜆𝜏] = 0. (8)

Clearly, one of the roots is 𝜆1 = 𝑟 − 𝑑 − (2𝑟/𝑇)𝑥0 =−√(𝑟 − 𝑑)2 + 4𝑟𝑠/𝑇 < 0, so the local stability depends on the
other two roots generated by𝜆2 + (𝑝 + 𝑢) 𝜆 + 𝑝𝑢 − 𝑘𝛿𝑥0𝑒−𝜆𝜏 = 0. (9)

When 𝑅0 < 1, 𝑝𝑢 − 𝑘𝛿𝑥0 ̸= 0. Therefore, 𝜆 = 0 is not root
of (9). If (9) has pure imaginary root 𝜆 = 𝑖𝜔 (𝜔 > 0) for
some 𝜏 > 0, substituting it into (9) and separating the real
and imaginary parts, it has𝑝𝑢 − 𝑤2 = 𝑘𝛿𝑥0 cos𝑤𝜏,(𝑝 + 𝑢)𝑤 = −𝑘𝛿𝑥0 sin𝑤𝜏. (10)

It follows that𝑓 (�̃�) ≡ �̃�2 + (𝑝2 + 𝑢2) �̃� + 𝑝2𝑢2 − 𝑘2𝛿2𝑥20 = 0, (11)

where �̃� = 𝜔2. Since 𝑝2 + 𝑢2 > 0, 𝑝2𝑢2 − 𝑘2𝛿2𝑥20 = 𝑝2𝑢2(1 −𝑅20) > 0, we have 𝑓(�̃�) > 0, which contradicts 𝑓(�̃�) = 0. This
suggests that all the roots of (8) have negative real parts for
any time delay 𝜏 ≥ 0. Therefore, the uninfected equilibrium𝐸0 of the model (3) is locally asymptotically stable.

Define𝐺 = {𝜙 = (𝜙1, 𝜙2, 𝜙3) ∈ 𝐶 | 0 ≤ 𝜙1 ≤ 𝑥0, 𝜙2 ≥ 0, 𝜙3≥ 0} . (12)

It is easy to show that 𝐺 attracts all solutions of the model (3)
and is also positively invariant with respect to the model (3).

Motivated by the methods in [20, 21], we choose the
following Liapunov functional:

𝐿 (𝜙) = 1𝛿𝜙2 (0) + 𝑝𝛿𝑘𝜙3 (0) + ∫0−𝜏 𝜙1 (𝜃) 𝜙3 (𝜃) 𝑑𝜃 (13)

for any 𝜙 ∈ 𝐺. The time derivative of 𝐿 along the solutions of
the model (3) is�̇� = 1𝛿𝑦 (𝑡) + 𝑝𝛿𝑘V (𝑡) + 𝑥 (𝑡) V (𝑡) − 𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)= (𝑥 (𝑡) − 𝑢𝑝𝑘𝛿) V (𝑡) ≤ (𝑥0 − 𝑢𝑝𝑘𝛿) V (𝑡)

= (1 − 1𝑅0)𝑥0V (𝑡) ≤ 0,
(14)

where 𝑡 ≥ 0. By using Liapunov-LaSalle invariance principle
[18], the uninfected equilibrium𝐸0 of themodel (3) is globally
asymptotically stable.

Next, let us study the stability of the infected equilibrium𝐸∗. The linearized system of the model (3) at 𝐸∗ is𝑑𝑑𝑡𝑥 (𝑡) = −( 𝑠𝑥∗ + 𝑟𝑥∗𝑇 )𝑥 (𝑡) − 𝑟𝑥∗𝑇 𝑦 (𝑡) − 𝛽𝑥∗V (𝑡)
− 𝑐𝑥∗𝑦 (𝑡) ,𝑑𝑑𝑡𝑦 (𝑡) = 𝛿 [𝑥∗V (𝑡 − 𝜏) + 𝑥 (𝑡 − 𝜏) V∗] − 𝑝𝑦 (𝑡) ,𝑑𝑑𝑡V (𝑡) = 𝑘𝑦 (𝑡) − 𝑢V (𝑡) .

(15)

Denote

𝐵 = 𝑠𝑥∗ + 𝑟𝑥∗𝑇 ,
𝐸 = ( 𝑟𝑇 + 𝑐) 𝑥∗,
𝐹 = 𝛽𝑥∗,𝐺 = 𝛿V∗,𝐻 = 𝛿𝑥∗.

(16)

The corresponding characteristic equation is𝜆3 + (𝐵 + 𝑝 + 𝑢) 𝜆2 + (𝐵𝑝 + 𝑢𝐵 + 𝑢𝑝) 𝜆 + 𝑢𝐵𝑝+ [(𝐸𝐺 − 𝑘𝐻)𝜆 + (𝑘𝐺𝐹 + 𝑢𝐸𝐺 − 𝑘𝐵𝐻)] 𝑒−𝜆𝜏= 0. (17)

Define 𝑎1 = 𝐵 + 𝑝 + 𝑢 > 0,𝑎2 = 𝐵𝑝 + 𝑢𝐵 + 𝑢𝑝 > 0,𝑎3 = 𝑢𝐵𝑝 > 0,𝑏2 = 𝐸𝐺 − 𝑘𝐻,𝑏3 = 𝑘𝐺𝐹 + 𝑢𝐸𝐺 − 𝑘𝐵𝐻,
(18)

where 𝑏2 = 𝑝𝑢(𝑟V∗/𝑘𝑇 − 1) + 𝑐𝛿𝑥∗V∗ and 𝑏3 = 𝑝𝑢(𝛽V∗ +𝑟𝑢V∗/𝑘𝑇 − 𝐵) + 𝑐𝛿𝑢𝑥∗V∗.
Therefore, (17) becomes𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 + [𝑏2𝜆 + 𝑏3] 𝑒−𝜆𝜏 = 0. (19)

When 𝜏 = 0, (19) becomes 𝜆3+𝑎1𝜆2+(𝑎2+𝑏2)𝜆+(𝑎3+𝑏3) = 0.
Notice that𝑎1 > 0, 𝑎3+𝑏3 = 𝑝𝑢(𝛽V∗+𝑟𝑢V∗/𝑘𝑇)+𝑐𝛿𝑢𝑥∗V∗ > 0.
Thus, if 𝑅0 > 1 and Δ 2 = 𝑎1(𝑎2 + 𝑏2) − (𝑎3 + 𝑏3) > 0 hold,
by Routh-Hurwitz criterion, the infected equilibrium 𝐸∗ is
locally asymptotically stable when 𝜏 = 0.

Now, let us investigate the stability of 𝐸∗ when 𝜏 > 0.
Rewriting (19) as 𝑃 (𝜆) + 𝑄 (𝜆) 𝑒−𝜆𝜏 = 0, (20)
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where 𝑃 (𝜆) = 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3,𝑄 (𝜆) = 𝑏2𝜆 + 𝑏3. (21)

Since 𝑎3+𝑏3 = 𝑢𝐵𝑝+𝑝𝑢(𝛽V∗+𝑟𝑢V∗/𝑘𝑇−𝐵)+𝑐𝛿𝑢𝑥∗V∗ > 0,𝜆 =0 is not the root of (19). Assume that (19) has pure imaginary𝜆 = 𝑖𝑤 (𝑤 > 0) for some 𝜏 > 0; substituting it into (19), it has−𝑖𝑤3 − 𝑎1𝑤2 + 𝑖𝑎2𝑤 + 𝑎3 + (𝑖𝑏2𝑤 + 𝑏3)(cos𝑤𝜏 − 𝑖 sin𝑤𝜏) = 0,
and separating the real and imaginary parts, we have𝑤3 − 𝑎2𝑤 = 𝑏2𝑤 cos𝑤𝜏 − 𝑏3 sin𝑤𝜏,𝑎1𝑤2 − 𝑎3 = 𝑏2𝑤 sin𝑤𝜏 + 𝑏3 cos𝑤𝜏. (22)

Therefore, it has 𝑤6 + 𝑐1𝑤4 + 𝑐2𝑤2 + 𝑐3 = 0, (23)

where 𝑐1 = 𝑎21 − 2𝑎2, 𝑐2 = 𝑎22 − 2𝑎1𝑎3 − 𝑏22 , 𝑐3 = 𝑎23 − 𝑏23 . Denote
V = 𝑤2; (23) becomes

V3 + 𝑐1V2 + 𝑐2V + 𝑐3 = 0. (24)

Define ℎ (V) = V3 + 𝑐1V2 + 𝑐2V + 𝑐3, (25)

hence ℎ(V) = 3V2 + 2𝑐1V + 𝑐2. Considering3V2 + 2𝑐1V + 𝑐2 = 0. (26)

It has two real roots, given as V1 = (−𝑐1 + √Δ)/3 and V2 =(−𝑐1 − √Δ)/3, where Δ = 𝑐21 − 3𝑐2.
Now, we will illustrate the following conclusions, and it

has been proved in [22].

Lemma 3. For the polynomial (24), the following conclusions
are given:

(i) If 𝑐3 < 0, (24) has at least one positive root.
(ii) If 𝑐3 ≥ 0 and Δ < 0, (24) has no real root.
(iii) If 𝑐3 ≥ 0 andΔ > 0, if and only if V1 = (−𝑐1+√Δ)/3 > 0

and ℎ(V1) ≤ 0, (24) has real roots.
Assume that ℎ(V) = 0 has positive real roots. Generally,

we may suppose that (24) has 𝑘 (1 ≤ 𝑘 ≤ 3) positive real
roots, denoted as V1, V2, and V3. Then, (23) has positive real
roots 𝜔𝑘 = √V𝑘. From (22), we attain

cos𝜔𝜏 = 𝑏2𝑤4 + (𝑎1𝑏3 − 𝑎2𝑏2) 𝑤2 − 𝑎3𝑏3𝑏22𝑤2 + 𝑏23 . (27)

Then, we get the corresponding 𝜏(𝑛)
𝑘

> 0 such that (19) has
pure imaginary 𝜆 = 𝑖𝑤𝑘, where
𝜏(𝑛)𝑘 = 1𝑤𝑘 {arccos(𝑏2𝑤4𝑘 + (𝑎1𝑏3 − 𝑎2𝑏2)𝑤2𝑘 − 𝑎3𝑏3𝑏22𝑤2𝑘 + 𝑏23 )
+ 2𝑛𝜋} , 𝑘 = 1, 2, 3, 𝑛 = 0, 1, 2, . . . . (28)

Define 𝜏∗ = min
𝑘∈[1,2,3]

{𝜏(0)𝑘 } . (29)

Differentiating the two sides of (19) with respect to 𝜏, it
follows that

(3𝜆2 + 2𝑎1𝜆 + 𝑎2) 𝑑𝜆𝑑𝜏 + 𝑏2𝑒−𝜆𝜏 𝑑𝜆𝑑𝜏− 𝜏 (𝑏2𝜆 + 𝑏3) 𝑒−𝜆𝜏 𝑑𝜆𝑑𝜏 − 𝜆 (𝑏2𝜆 + 𝑏3) 𝑒−𝜆𝜏 = 0. (30)

Thus, we get

(𝑑𝜆𝑑𝜏)−1𝜆=𝑖𝑤𝑘 = (𝑎2 − 3𝑤2𝑘) + 2𝑎1𝑤𝑘𝑖(𝑎2𝑤2𝑘 − 𝑤4𝑘) − (𝑎3𝑤𝑘 − 𝑎1𝑤3𝑘) 𝑖
+ 𝑏2−𝑏2𝑤2𝑘 + 𝑏3𝑤𝑘𝑖 .

(31)

Then

[𝑑 (Res (𝜆))𝑑𝜏 ]−1
𝜆=𝑖𝑤𝑘

= (𝑎2 − 3𝑤2𝑘) (𝑎2𝑤2𝑘 − 𝑤4𝑘) − 2𝑎1𝑤𝑘 (𝑎3𝑤𝑘 − 𝑎1𝑤3𝑘)(𝑎2𝑤2𝑘 − 𝑤4𝑘)2 + (𝑎3𝑤𝑘 − 𝑎1𝑤3𝑘)2
+ −𝑏22𝑤2𝑘−𝑏22𝑤4𝑘 + 𝑏23𝑤2𝑘 .

(32)

From (22), we obtain 𝑏22𝑤2 + 𝑏23 = (𝑤3 − 𝑎2𝑤)2 + (𝑎1𝑤2 − 𝑎3)2.
Therefore,

[𝑑 (Res (𝜆))𝑑𝜏 ]−1
𝜆=𝑖𝑤𝑘

= 3V3𝑘 + 2𝑐1V2𝑘 + 𝑐2V𝑘𝑤2
𝑘
[𝑏22𝑤2𝑘 + 𝑏23 ]

= V𝑘ℎ (V𝑘)𝑤2
𝑘
[𝑏22𝑤2𝑘 + 𝑏23 ] .

(L)
Since V𝑘 > 0, we get Re(𝑑𝜆(𝜏)/𝑑𝜏)|𝜏=𝜏(𝑛)

𝑘

and ℎ(V𝑘) have the
same sign. Combining Lemma 3 with the above (L), we have
the following conclusions.

Theorem 4. 𝜏(𝑛)
𝑘

and 𝜏∗ are defined by (28) and (29). If𝑅0 > 1,
the following results hold:

(i) If 𝑐3 ≥ 0 and Δ ≤ 0, then infected equilibrium𝐸∗(𝑥∗, 𝑦∗, V∗) is locally asymptotically stable.

(ii) If 𝑐3 < 0 or 𝑐3 ≥ 0 and Δ > 0, then infected equilibrium𝐸∗(𝑥∗, 𝑦∗, V∗) is locally asymptotically stable when 𝜏 ∈[0, 𝜏∗) and unstable when 𝜏 > 𝜏∗.
(iii) If the conditions of (ii) are all satisfied and ℎ(V𝑘) ̸=0, then model (3) undergoes a Hopf bifurcation at 𝐸∗

when 𝜏 = 𝜏(𝑛)
𝑘

(𝑛 = 0, 1, 2, . . .).
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3. Properties of Hopf Bifurcation

In the above section, we have given the sufficient condition
where the model (3) undergoes a Hopf bifurcation at 𝐸∗.
In this section, we will use the normal form method and
the center manifold theory provided in [23, 24] to analysis
direction, stability, and the period of the bifurcating periodic
solution. By setting 𝜏 = 𝜏∗+𝜇, then𝜇 = 0 is aHopf bifurcation
value of themodel (3). Let𝜇1 = 𝑥−𝑥∗, 𝜇2 = 𝑦−𝑦∗, 𝜇3 = V−V∗,
and 𝑢 (𝑡) = (𝜇1 (𝑡) , 𝜇2 (𝑡) , 𝜇3 (𝑡))𝑇 ∈ 𝑅3+,𝑢𝑡 (𝜃) = 𝑢 (𝑡 + 𝜃) (𝜃 ∈ [−𝜏, 0]) . (33)

Then, the model (3) is equivalent to the functional differ-
ential equations �̇�𝑡 = 𝐿𝜇(𝑢𝑡) + 𝑓(𝜇, 𝑢𝑡), defined in 𝐶 :=𝐶([−𝜏, 0], 𝑅3+), where𝑓 (𝜇, 𝜑)
= (− 𝑟𝑇𝜑21 (0) − ( 𝑟𝑇 + 𝑐)𝜑1 (0) 𝜑2 (0) − 𝛽𝜑1 (0) 𝜑3 (0)𝛿𝜑1 (−𝜏) 𝜑3 (−𝜏)0 ) . (34)

For 𝜑 = (𝜑1, 𝜑2, 𝜑3)𝑇 ∈ 𝐶, define 𝐿𝜇𝜑 = 𝐴𝜑(0) + 𝐷𝜑(−𝜏).
Here,

𝐴 = (−𝐵 −𝐸 −𝐹0 0 𝐻0 0 0 ) ,
𝐷 = (0 0 0𝐺 −𝑝 00 𝑘 −𝑢) .

(35)

Using the Riesz representation theorem, there is a 3 × 3
bounded variation matrix function 𝜂(𝜃, 𝜇), which exists for𝜃 ∈ [−𝜏, 0], such that 𝐿𝑢𝜑 = ∫0

−𝜏
𝑑𝜂(𝜃, 𝜇)𝜑(𝜃) holds for any𝜑 ∈ 𝐶. We can choose 𝜂(𝜃, 𝜇) = 𝐴𝜌(𝜃) − 𝐷𝜌(𝜃 + 𝜏), where

𝜌 (𝜃) = {{{
1, 𝜃 = 0,0, 𝜃 ̸= 0. (36)

For 𝜑 ∈ 𝐶([−𝜏, 0], 𝑅3), define
𝐴 (𝜇) 𝜑 = {{{{{{{

𝑑𝜑 (𝜃)𝑑𝜃 , 𝜃 ∈ [−𝜏, 0) ,
∫0
−𝜏
𝑑𝜂 (𝑠, 𝜇) 𝜑 (𝑠) , 𝜃 = 0,

𝑅𝜑 = {{{
0, 𝜃 ∈ [−𝜏, 0) ,𝑓 (𝜇, 𝜑) , 𝜃 = 0.

(37)

Then, the system is equivalent to the following operator
equation: �̇�𝑡 = 𝐴 (𝜇) 𝑢𝑡 + 𝑅𝑢𝑡. (38)

Let 𝐶∗ = 𝐶([0, 𝜏], (𝑅3)∗), and adjoint operator 𝐴∗ of 𝐴 is
defined by

𝐴∗𝜓 (𝜉) = {{{{{{{
−𝑑𝜓 (𝜉)𝑑𝜉 , 𝜉 ∈ (0, 𝜏] ,
∫0
−𝜏
𝑑𝜂 (𝑠, 0) 𝜓 (−𝑠) , 𝜉 = 0. (39)

Define the bilinear inner product of 𝜑 ∈ 𝐶 and 𝜓 ∈ 𝐶∗ as
⟨𝜓 (𝜉) , 𝜑 (𝜃)⟩ = 𝜓 (0) 𝜑 (0)

− ∫0
𝜃=−𝜏

∫𝜃
𝑠=0

𝜓 (𝑠 − 𝜃) 𝑑𝜂 (𝜃) 𝜑 (𝑠) 𝑑𝑠, (40)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Since 𝐴(0) and 𝐴∗(0) are adjoint operator and ±𝑖𝜔∗ is

the eigenvalue of 𝐴(0), therefore ±𝑖𝜔∗ also is the eigenvalue
of 𝐴∗. Suppose that the eigenvector of 𝐴(0) with respect
to the eigenvalue 𝑖𝜔∗ is 𝑞(𝜃); the eigenvector of 𝐴∗ with
respect to the eigenvalue −𝑖𝜔∗ is 𝑞∗(𝜉), and they all satisfy⟨𝑞∗(𝜉), 𝑞(𝜃)⟩ = 1.

We choose 𝑞(𝜃) = (1, 𝑞2, 𝑞3)𝑇𝑒𝑖𝜔∗𝜃, 𝜃 ∈ [−𝜏, 0], and𝑞∗(𝜉) = 𝑅(1, 𝑞∗2 , 𝑞∗3 )𝑒𝑖𝜔∗𝜉, 𝜉 ∈ [0, 𝜏]. Since 𝐴(0)𝑞(𝜃) =𝑖𝜔∗𝑞(𝜃), 𝐴∗𝑞∗(𝜉) = −𝑖𝜔∗𝑞∗(𝜉), we get
𝑞2 = −(𝑖𝜔∗ + 𝑢) (𝑖𝜔∗ + 𝐵)𝐸 (𝑖𝜔∗ + 𝑢) + 𝑘𝐹 ,
𝑞3 = − 𝑘 (𝑖𝜔∗ + 𝐵)𝐸 (𝑖𝜔∗ + 𝑢) + 𝑘𝐹,
𝑞∗2 = −𝑖𝜔∗ − 𝐵𝐺𝑒𝑖𝜔∗𝜏∗ ,
𝑞∗3 = 𝐸𝑘 + (𝑖𝜔∗ − 𝐵) (𝑖𝜔∗ − 𝑠)𝑘𝐺𝑒𝑖𝜔∗𝜏∗ .

(41)

From ⟨𝑞∗(𝜉), 𝑞(𝜃)⟩ = 1 and the similar arguments as in [20–
22], we attain the following formula:

𝑅 = [1 + 𝑞∗2𝑞2 + 𝑞∗3𝑞3 + 𝑞∗2𝜏∗ (𝐺 + 𝑞3𝐻) 𝑒−𝑖𝜔∗𝜏∗]−1 . (42)

Following the algorithms given in [23] (see, also [13, 24–26]),
it then follows that

𝑔20 = 2𝑅[− 𝑟𝑇 (1 + 𝑞2) − 𝑐𝑞2 − 𝛽𝑞3 + 𝑞∗2𝑞3𝛿𝑒−2𝑖𝜔∗𝜏∗] ,𝑔11 = 𝑅 [− 𝑟𝑇 (2 + 𝑞2 + 𝑞2) − 𝑐 (𝑞2 + 𝑞2) − 𝛽 (𝑞3 + 𝑞3)
+ 𝑞∗2𝛿 (𝑞3 + 𝑞3)] ,

𝑔02 = 2𝑅[− 𝑟𝑇 (1 + 𝑞2) − 𝑐𝑞2 − 𝛽𝑞3 + 𝑞∗2𝑞3𝛿𝑒2𝑖𝜔∗𝜏∗] ,
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𝑔21 = 2𝑅{− 𝑟𝑇 [2𝜔(1)11 (0) + 𝜔(1)20 (0) + 𝜔(2)11 (0)
+ 𝜔(2)20 (0)2 + 𝑞2−𝜔(1)20 (0)2 + 𝑞2𝜔(1)11 (0)]
− 𝑐 [𝜔(2)11 (0) + 𝜔(2)20 (0)2 + 𝑞2−𝜔(1)20 (0)2
+ 𝑞2𝜔(1)11 (0)] − 𝛽[𝜔(3)11 (0) + 𝜔(3)20 (0)2
+ 𝑞3−𝜔(1)20 (0)2 + 𝑞3𝜔(1)11 (0)]
+ 𝑞∗2𝛿[𝜔(3)20 (−𝜏∗)2 𝑒𝑖𝜔∗𝜏∗ + 𝜔(3)20 (−𝜏∗) 𝑒𝑖𝜔∗𝜏∗
+ 𝑞3𝜔(1)11 (−𝜏∗) 𝑒𝑖𝜔∗𝜏∗]} ,

(43)

where

𝜔20 (𝜃) = 𝑖𝑔20𝜔∗ 𝑞 (0) 𝑒𝑖𝜔∗𝜃 + 𝑖𝑔023𝜔∗ 𝑞 (0) 𝑒−𝑖𝜔∗𝜃 + 𝐸1𝑒2𝑖𝜔∗𝜃,
𝜔11 (𝜃) = 𝑖𝑔11𝜔∗ 𝑞 (0) 𝑒𝑖𝜔∗𝜃 + 𝑖𝑔11𝜔∗ 𝑞 (0) 𝑒−𝑖𝜔∗𝜃 + 𝐸2,
𝐸1 = 2( 2𝑖𝜔∗ + 𝐵 𝐸 𝐹−𝐺𝑒−2𝑖𝜔∗𝜏∗ −2𝑖𝜔∗ + 𝑝 −𝐻𝑒−2𝑖𝜔∗𝜏∗0 −𝑘 2𝑖𝜔∗ + 𝑢 )

−1

×(− 𝑟𝑇 − − 𝑟𝑇𝑞2 − 𝑐𝑞2 − 𝛽𝑞3𝛿𝑞3𝑒−2𝑖𝜔∗𝜏∗0 ) ,

𝐸2 = ( 𝐵 𝐸 𝐹−𝐺 𝑝 −𝐻0 −𝑘 𝑢 )−1

×(−2𝑟𝑇 − 𝑟𝑇 (𝑞2 + 𝑞2) − 𝑐 (𝑞2 + 𝑞2) − 𝛽 (𝑞3 + 𝑞3)𝛿 (𝑞3 + 𝑞3)0 ) .

(44)

Then we can obtain the following quantities:

𝐶1 (0) = 𝑖2𝜔∗ (𝑔11𝑔20 − 2 𝑔112 − 𝑔0223 ) + 𝑔212 ,
𝜇2 = − Re (𝐶1 (0))

Re (𝜆 (𝜏∗)) ,𝛽2 = 2Re (𝐶1 (0)) ,

𝑇2 = − Im (𝐶1 (0)) + 𝜇2 Im (𝜆 (𝜏∗))𝜔∗ .
(45)

These quantities determine the properties of bifurcating
periodic solutions. From the previous discussions, we have
the following conclusions.

Theorem 5. Suppose that the conditions in (iii) of �eorem 4
hold, then the infected equilibrium 𝐸∗ undergoes a Hopf
bifurcation at 𝜏 = 𝜏∗, and 𝜇2, 𝛽2, 𝑇2 determine the direction,
stability, and period of the Hopf bifurcation, respectively,

(i) If 𝜇2 > 0, a bifurcating periodic solution exists in the
sufficiently small 𝜏∗-neighbourhood.

(ii) If 𝛽2 < 0 (𝛽2 > 0), the bifurcating periodic solution is
stable (unstable) when 𝑡 → +∞ (𝑡 → −∞).

(iii) If𝑇2 < 0 (𝑇2 > 0), the period of the bifurcating periodic
solution decreases (increases).

4. Simulations and Conclusions

For the main results in Sections 2 and 3, we now give some
numerical simulations.

Based on the numerical simulations in [16, 27–29], take
the following data: 𝑠 = 0.1,𝑟 = 0.01,𝑇 = 200,𝑑 = 0.02,𝑐 = 0.001,𝛽 = 0.0027,𝛿 = 0.002,𝑝 = 0.3,𝑘 = 0.1,𝑢 = 0.01.

(46)

We can get 𝑅0 = 0.6363 < 1 and 𝐸0 = (9.5445, 0, 0) by
direct calculations. The uninfected equilibrium 𝐸0 is globally
asymptotically stable byTheorem 2. Figure 1 gives the curves
and orbits of the model (3) with appropriate initial condition.

Furthermore, we also simulate the occurrence of Hopf
bifurcations as the time delay 𝜏 increases. Take the following
data: 𝑠 = 0.1,𝑟 = 1.01,𝑇 = 200,𝑑 = 0.02,
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Figure 1: (a) The solution curves of the model (3) with 𝑅0 < 1. (b) The orbits of the model (3) when 𝑅0 < 1.
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Figure 2: (a), (b), and (c) The solution curves of the model (3) with 𝑅0 > 1, 𝜏 = 10 < 𝜏∗. (d) The orbits of the model (3) when 𝑅0 > 1,𝜏 = 10 < 𝜏∗.
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Figure 3: (a), (b), and (c) The solution curves of the model (3) with 𝑅0 > 1, 𝜏 = 12 > 𝜏∗. (d) The orbits of the model (3) when 𝑅0 > 1,𝜏 = 12 > 𝜏∗.
𝑐 = 0.001,𝛽 = 0.0027,𝛿 = 0.002,𝑝 = 0.3,𝑘 = 0.1,𝑢 = 0.01.

(47)

By direct calculations, we get that (24) has a positive root
V∗ = 0.0175 > 0, 𝑅0 = 13.0761 > 1, and 𝐸∗ =(15, 27.8643, 278.6435). And by simple computations, we
attain 𝜔∗ = 0.1322, 𝜏∗ = 10.6528, and ℎ(V∗) = 0.0027 ̸=0. From Theorem 4, the infected equilibrium 𝐸∗ is locally
asymptotically stable when 0 < 𝜏 < 𝜏∗ and unstable when

𝜏 > 𝜏∗. Figure 2 gives the stable phase trajectories and orbits
of the model (3) when 𝜏 = 10 < 𝜏∗. Figure 3 gives the phase
trajectories and orbits of model (3) when 𝜏 = 12 > 𝜏∗ and it
suggests that Hopf bifurcations occur. From (45), we obtain
Re(𝐶1(0)) = −1.1035 × 10−6 < 0 for 𝜏 = 12. Therefore, both
bifurcating periodic solutions are stable.

In this paper, we have proposed a delay HIV infection
model (3)with a full logistic term 𝑟𝑥(1−(𝑥(𝑡)+𝑦(𝑡))/𝑇).Then,
using the basic reproduction number 𝑅0 = (𝑘𝛿/𝑝𝑢)𝑥0, we
discuss the existence of the uninfected equilibrium𝐸0 and the
infected equilibrium 𝐸∗ = (𝑥∗, 𝑦∗, V∗). By Routh-Hurwitz
criterion, Liapunov-LaSalle invariance principle, and Hopf
bifurcation method, we prove the following results.

If 𝑅0 ≤ 1, the uninfected equilibrium 𝐸0 is globally
asymptotically stable when 𝜏 ≥ 0. That is to say, any solution(𝑥(𝑡), 𝑦(𝑡), V(𝑡)) trends to 𝐸0. Biologically, this means that
the virus cannot successfully invade uninfected cells and will
soon be cleared of the immune system. And as the time 𝑡
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increases, the virus will disappear. This suggests that we can
control the disease by controlling the 𝑅0.

If 𝑅0 > 1, there exists a unique infected equilibrium 𝐸∗.
The result of Theorem 4 implies that the time delay 𝜏 can
destabilize the stability of the infected equilibrium 𝐸∗ and
leads to the occurrence of Hopf bifurcations. And if 𝜏 ∈[0, 𝜏∗), the infected equilibrium 𝐸∗ is locally asymptotically
stable. Biologically, this means that the HIV infection may
become chronic.The infected equilibrium 𝐸∗ will be unstable
and Hopf bifurcation occurs under some conditions when
the time delay 𝜏 exceeds 𝜏∗. In biology, this implies that the
concentrations of uninfected cells, infected cells, and free
virus will first tend to be constants and then oscillate as the
time delay 𝜏 increases. In the immune response, this situation
is very important for choosing the adequate drug treatment
programs.

It can be found that the basic reproduction number 𝑅0
for the model (3) is not the same as that for model (2). It is
independent on the constant 𝑐, which represents inhibitory
effect on the growth of uninfected cells by infected cells. But𝑅0 depends on the coefficient 𝑟 of the full logistic term 𝑟𝑥(1−(𝑥(𝑡) + 𝑦(𝑡))/𝑇). Furthermore, the value of 𝑥∗ is independent
on the coefficient 𝑟. And the values of 𝑦∗ and V∗ are the
increasing functions with respect to 𝑟. And this paper shows
that the time delay 𝜏 can produce richer dynamic behavior.
As the time delay increases, the stability changes and periodic
oscillations occur.
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