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Abstract: Wearable vital signs monitoring and specially the electrocardiogram have taken important
role due to the information that provide about high-risk diseases, it has been evidenced by the
needed to increase the health service coverage in home care as has been encouraged by World Health
Organization. Some wearables devices have been developed to monitor the Electrocardiographic
in which the location of the measurement electrodes is modified respect to the Einthoven model.
However, mislocation of the electrodes on the torso can lead to the modification of acquired signals,
diagnostic mistakes and misinterpretation of the information in the signal. This work presents a
volume conductor evaluation and an Electrocardiographic signal waveform comparison when the
location of electrodes is changed, to find a electrodes’ location that reduces distortion of interest
signals. In addition, effects of motion artifacts and electrodes’ location on the signal acquisition are
evaluated. A group of volunteers was recorded to obtain Electrocardiographic signals, the result
was compared with a computational model of the heart behavior through the Ensemble Average
Electrocardiographic, Dynamic Time Warping and Signal-to-Noise Ratio methods to quantitatively
determine the signal distortion. It was found that while the Einthoven method is followed, it
is possible to acquire the Electrocardiographic signal from the patient’s torso or back without a
significant difference, and the electrodes position can be moved 6 cm at most from the suggested
location by the Einthoven triangle in Mason–Likar’s method.

Keywords: bioelectromagnetism; electrocardiography; instrumentation and measurement; motion
artifacts; sensitivity analysis

1. Introduction

One of the main millennium challenges identified by the World Health Organiza-
tion (WHO), is to increase the health service coverage that currently is around 40 %, where
Europe and the Americas stand out with the highest level in health services [1]. An impor-
tant topic to improve is the continuous patients’ monitoring that until the end of the 20th
century was carried out only in care centers [2]. Nowadays, in countries of the European
Union (EU) and the Organization of American States (OAS) it is possible monitoring the
vital signs of patients in places different to care centers, even with patients in their homes
while their health status is registered [3,4]. This has been possible through advances in in-
formation and communication technologies, which currently allow the remote monitoring
of patients as well as medical consultations through digital platforms [5,6].

A medical exam that has been extended to this type of platform is Electrocardiographic
(ECG), thanks to its usefulness in potentially life-threatening diseases diagnosis. The
information provided by the ECG is so critical that the professionals must take special care
in location of the electrodes on the patient’s torso since this can lead to misdiagnosis of
heart disease [7]. On the other hand, the movement of the person and the misplacement of
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the electrodes cause the signal to be contaminated with artifacts [8,9], which has caused
misdiagnosis from 17 % to 24 % of cases [10].

The correct location of the electrodes on the patient’s torso plays a fundamental role in
the correct measurement of the physiological signals, and is something that has been treated
for decades with the Einthoven triangle as the Mason–Likar’s method proposes [11,12].
This reinforces the idea that a small variation in the location of electrodes on the volume
conductor can lead to obtain a distorted signals altering the diagnosis [13,14]. However,
wearable devices have been developed to measure ECG in which the location of electrodes
on the volume conductor is modified, with the purpose of reduce the size of the devices in
such a way that their wear results more comfortable for the people [15,16].

This change in the electrodes position also has the purpose of reducing the noise
and artifacts influence, trying to place the electrodes on places with less adipose tissue,
which acts as a dielectric that modifies unpredictably the electrical properties of the volume
conductor when the subject makes movement, altering the signal waveform [13,15,16].
However, this sacrifices the quality of the ECG signal obtained in the monitoring using
these devices due to most of the time these configurations do not follow the Einthoven
triangle method producing some distortion in the acquired signal.

For this reason, if it is possible to determine through a computational model the
influence that the location of electrodes has on the measurement in the volume conductor, it
could be used to determine the distortion level introduced in the ECG signal, allowing that
the measured signals can be adjusted to the leads proposed in the Einthoven triangle. In
addition, it would be possible to know the position where the signal shows little distortion
and obtain a significant reduction of motion artifacts. This model could be used as a pattern
for the design of wearable devices that can be used in the measurement of ECG in everyday
environments and for home health care.

This paper presents the determination of a sensitivity and adjustment model for the
measurement of changes in the ECG signal waveform when it is acquired in different
positions of the torso and the back of the subject, making use of a computational model
that describes the electrical signal propagation phenomena in biological tissues simulating
cardiac depolarization (QRS complex), cardiac repolarization (ST-TU segments) and electric
current propagation through the volume conductor. The obtained model is compared
with measurements performed in healthy volunteers recorded in conditions of rest and
controlled walking movement, with the purpose of determining the distortion introduced
by the variation in electrodes’ location over the acquired ECG signal, and performing the
fitting of ECG signal acquired from a non-conventional placement respect to the general
use placement.

2. Materials and Methods

This work presents a sensitivity and adjustment model to compare the ECG signals
acquired in different points of volunteers’ torso, the possibility of adjusting an ECG signal
acquired in a non-conventional torso location to a standard location defined by Einthoven
triangle in Mason–Likar’s method [12], and the distortion introduced in ECG signal wave-
form by the variation in the location of these points and motion artifacts is also presented.

A database registered for this purpose, composed of real ECG signals from healthy
volunteers was used, and a computational model of the electrical behavior of the heart in
the volume conductor is presented. This section describes the database, computational
model, and comparison measures used to determine the changes in the signals.

2.1. Data Recording and ECG Measurement Points

The connection of an electrophysiological signal recording equipment was made to
acquire biopotentials in torso and back of 20 volunteers, locating a network of sensors
distributed over their torso and back. The distribution of the electrodes had as reference
the location recommended by the triangle of Einthoven in Mason–Likar’s method, and
according to anthropometric measurements, the position of the other electrodes was shifted
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0.125 times the distance between the two clavipectoral triangles on the horizontal axis, and
0.125 times the distance between the upper part of the sternal angle and the lower part of
the umbilical region on the vertical axis [17]. These anatomical distances were different
for each volunteer, a length of 28.8± 1.4 cm on the horizontal axis and 43.2± 3.3 cm on
the vertical axis in the reference location was estimated for the volunteers. The average
displacement distance of the electrodes for each modified position was 3.6± 0.1 cm on the
horizontal axis and 5.4± 0.4 cm on the vertical axis. The distribution of the electrodes over
the volume conductor is presented in Figure 1.

Figure 1. Electrodes distribution for ECG measurement on the torso and back of healthy volunteers
with anatomical references. The location of the displaced electrodes is shown with reference to
anatomical points recommended by the Einthoven ECG triangle in Mason–Likar’s method.

The population consisted of 20 healthy male subjects aged 26.3± 5.7 and a BMI of
24.4± 4.8. Each volunteer was asked to remain at rest for 5 min and then perform a walk
movement in a controlled laboratory environment for 5 min while their ECG signals were
recorded with a sampling frequency of 250 Hz, in order to obtain information about the
dynamics of ECG signal both by the movement of the subject and by the change in the
electrodes position on the volume conductor. The ethics committee for human studies of
the Universidad de Antioquia approved the register protocol (Approval report 16-59-711).

2.2. Computational Model of Heart Electrical Activity

A three-dimensional computational model of anatomical and physiological approxi-
mation of the heart electrical activity and its interaction with the volume conductor was
modified, to consider the electrical properties of the different structures of the heart and
the surrounding tissues (torso, lungs, blood, bone, among others) [18]. From this com-
putational model, the potential difference between different test points on the torso and
back surface of the volume conductor was determined as conventionally performed on an
ECG [11].

This model comprised a simplified three-dimensional (3D) version of the human body
upper trunk, which was divided into a bidomain model. The first domain consisted of the
torso, rib cage, lungs and blood chambers inside the heart. The second domain modeled
the heart divided into subdomains: sinoatrial node (SAN), atria (ATR), atrioventricular
node (AVN) , His bundle (HIS), His bundle branches (BNL), Purkinje fibers (PKJ) and
ventricles (VTR), since each subdomain had different electrical properties [17]. On the
surface of the torso were located the measurement points on the left arm (LA), right arm
(RA), left leg (LL) and right leg (RL) which was used as a reference point (VGND = 0 V), to
obtain the bipolar leads D1 (VLA −VRA), D2 (VLL −VRA) and D3 (VLL −VLA) as indicated
by the Einthoven triangle in Mason–Likar’s method [11,12]. In addition, test points were
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added as shown in Figure 1. Figure 2 shows the 3D model used in the computational model
with its respective subdomains.

Torso

Lung

Heart

RA LA

RL LL

SAN

ATR

AVN

HIS

BNL

PKJ

VTR

a) b)

0 1 2
3 4 5

6

012
345

6

01
2
3
456

Figure 2. 3D model for the volume conductor and heart electrical activity evaluation, the numbers of
the electrodes correspond to the positions in which the ECG was evaluated. In (a) the subdomains
corresponding to torso, lungs and blood chambers are observed. In (b) the subdomains that compose
the model of the heart are shown.

The volume conductor was analyzed through two physical interaction models; (1) the
electric interaction model given by the Laplace equation to model the interaction between
the torso, rib cage, lungs and blood chambers (Equation (1)); and (2) the modified FitzHugh–
Nagumo model that evaluates the propagation of electrical impulses on biological tissues
to evaluate the electrical interaction between different structures of the heart [18–20].

∇ · (−σ0∇V) = 0 (1)

where σ0 is the electrical conductivity of each subdomain outside the heart (torso, rib cage,
lungs and blood chambers).

The modified FitzHugh–Nagumo model is a simplified model of the Hodgkin Huxley
equations which describe how electric potentials in biological tissues are initiated and
transmitted and has widely used as a reference for the study of electromagnetic phenomena
that occur in nervous and heart cells [19,20]. For this model, three dependent variables
were defined: Ve is the extracellular potential, Vi is the intracellular potential, and u is
the recovery variable that governs the cellular refraction. Equations (2)–(4) present the
modified FitzHugh–Nagumo model.

∂Ve

∂t
− ∂Vi

∂t
+∇ · (−σe∇Ve) = iion (2)

∂Vi
∂t
− ∂Ve

∂t
+∇ · (−σi∇Vi) = −iion (3)

∂u
∂t

= ke
[
(Vm − B)

A
− du− b

]
(4)

where σe and σi are the extracellular and intracellular electrical conductivity, respectively.
(Vm = Vi −Ve) is the potential difference between intracellular and extracellular spaces
and iion is the ionic electric current and is defined by Equation (5) inside the SAN and
Equation (6) in the other subdomains.

iion = kc1(Vm − B)
[

a− (Vm−B)
A

][
1− (Vm−B)

A

]
+ kc2u (5)
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iion = kc1(Vm − B)
[

a− (Vm−B)
A

][
1− (Vm−B)

A

]
+ kc2u(Vm − B) (6)

where a, b, c1, c2, d, e, k, A and B are parameters for adjust the electrical properties of the
specific cells of each subdomain. It was considered that the torso was electrically isolated,
which implies that the electric current remains inside the volume conductor. Additionally,
the interaction between the heart and the surrounding tissue was modeled by the condition
of V = Ve where Ve is the extracellular voltage in the walls of the cardiac muscle. The values
of the parameters and the initial boundary conditions for each subdomain are presented in
Table 1, and the electrical properties of the subdomains are presented in Table 2, these data
were extracted from the literature [19,21,22].

Table 1. Values of the adjustment parameters, electrical properties and initial values of the boundary
conditions of the model subdomains.

Parameter SAN * ATR * AVN * HIS * BNL * PKJ * VTR *

a −0.60 0.13 0.13 0.13 0.13 0.13 0.13
b −0.30 0.00 0.00 0.00 0.00 0.00 0.00
c1
[
AsV−1m−3] 1000.0 2.6 2.6 2.6 2.6 2.6 2.6

c2
[
AsV−1m−3] 1.0 1.0 1.0 1.0 1.0 1.0 1.0

d 0.0 1.0 1.0 1.0 1.0 1.0 1.0
e 0.0660 0.0132 0.0132 0.0050 0.0022 0.0047 0.0060
k
[
s−1] 1000 1000 1000 1000 1000 1000 1000

σe
[
mSm−1] 0.5 8.0 0.5 10.0 15.0 35.0 8.0

σi
[
mSm−1] 0.5 8.0 0.5 10.0 15.0 35.0 8.0

A[mV] 33.0 140.0 140.0 140.0 140.0 140.0 140.0
B[mV] −22.0 −85.0 −85.0 −85.0 −85.0 −85.0 −85.0

Ve[mV] ** 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vi[mV] ** −65.0 −85.0 −85.0 −85.0 −85.0 −85.0 −85.0
u ** 0.0 0.0 0.0 0.0 0.0 0.0 0.0
* Subdomains of the heart model: Sinoatrial node (SAN); Atria (ATR); Atrioventricular node (AVN); His bundle
(HIS); His bundle branches (BNL); Purkinje fibers (PKJ); Ventricles (VTR). ** Initial values of the boundary
conditions by subdomain.

Table 2. Values of the subdomain electrical properties in the different tissues of the model.

Subdomain Heart Blood Lungs Muscle Fat Bone Torso

σ0
[
mSm−1] 50 * 700 40 * 200 * 40 6 * 200

* These values are averaged to simplify the model, because they are anisotropic.

2.3. Motion Artifacts, Measures of Sensitivity and Comparison

The ECG is a periodic signal that presents a standard waveform defined by a group
of peaks and undulations called segments (P, Q, R, S, T, U) [23]. Each of these segments
has a unique shape characterized by its amplitude, duration and time of appearance, and
should not present significant variation for each person, because they are the activation
signals of the cardiac muscle function in the heart, so that when evaluating the different
ECG standard waveforms of a person should be similar [21].

The reference function S0(t) represents a segment of the reference ECG signal taken in
one of the leads indicated by the Einthoven model (point 0 in Figure 1), Sj(t) is the signal to
be compared that refers to the segments of the ECG signals taken in other points over the
torso from the same lead in a time equivalent to a period [0, T]. It is possible to represent
the relationship between both signals by the function presented in Equation (7) [23,24].

S0(t) = ajSj(djt + tj) + cj; aj > 0, dj > 0 (7)
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where aj, dj, tj, cj are, respectively, the coefficients of amplitude, duration, time of appear-
ance and offset of the signal. If both signals are similar, then aj ' 1, dj ' 1, tj ' 0 and
cj ' 0. If the variation of the baseline is subtracted in the processing step, cj can be omitted
in the Equation (7).

Volunteers were asked to perform walking movement in a controlled laboratory
environment while recording the ECG signal in different points on the torso, to obtain
information about the dynamics of the signals while it was contaminated by motion
artifacts. To evaluate the differences that exist in the artifact in the different measurement
points, the coefficients of each segment was determined, this was done from the Ensemble
Average (EA) ECG.

2.3.1. Ensemble Average ECG and Model Comparison

The EA ECG method was used to evaluate the distortion of the signal introduced
by the change in the position of the electrodes and by the motion artifacts through the
measurement of the difference between the coefficients of the segments. This method
allows us to find the average pattern of a signal that has a periodically repeated waveform
and that appears as its constituent waveform, as is the case of the ECG signal [25].

To find the EA of the ECG signal it was necessary to select a fiducial point on the
standard waveform, which was the reference in time to match the different waves, in
this case the R-peak was selected. On the other hand, the size in time or in samples that
has the standard waveform was determined to perform the partition of the signal, the
synchronization through the fiducial points and the averaging of the signals. This time was
determined as the elapsed time between two consecutive R-peaks.

Using this method, each signal from the volunteers was partitioned and analyzed,
considering that 5 min of signal were analyzed for the three leads in the torso and the
back of the subject in seven different positions as shown in Figures 1 and 2. This allowed
us to obtain a database of 10,800 ECG signal segments for the analysis, from which the
coefficients of each segment that composes the standard waveform were extracted. The
coefficients of the signals obtained from the displaced electrodes were compared with
the coefficients of the reference signals (point 0 in Figure 1), to determine the distortion
introduced by the change in the location of the electrodes.

2.3.2. Dynamic Time Warping and Signal Distortion

The Dynamic Time Warping (DTW) method allows us to calculate the minimum
Euclidean distance between each sample of the signal to be compared Sj(t) and each
point of the reference signal S0(t) [26,27]. The method uses two matrices of identical
size to perform the calculation, the matrix S1(m×n) contains m copies of the reference
signal S0(t)(1×n) in the rows, and the matrix S2(m×n) contains n copies of the signal to
compare Sj(t)(m×1) in the columns. The distance matrix D(m×n) is calculated using the
Single Dimension Euclidean Distance as shown in Equation (8).

D(x, y) = [S1(x, y)− S2(x, y)]2 (8)

where 1 ≤ x ≤ m and 1 ≤ y ≤ n. Starting in the position (1, 1) of D, a cost matrix C
is created to store the accumulated distance of the previous column and row, which are
calculated with the Equation (9).

C(x, y) = D(x, y) + min


C(x, y− 1)
C(x− 1, y− 1)
C(x− 1, y)

(9)

Finally, the path of minimum distances is found from the cost matrix C, starting at the
position (m, n) of the matrix and moving towards the adjacent position of lowest cost until
reaching the beginning, these positions are saved and then will be identified in matrices
S1 and S2 to create the minimum difference aligned signals S1w and S2w respectively. In
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this process, it is possible that some samples of the matrix S1 or S2 are repeated to conform
the vectors S1w and S2w, which is an index of the difference between both signals and the
distortion of the evaluated signal.

Through this method, the distance between the standard waveform of the reference
ECG signal and the ECG signal acquired in the positions displaced on the torso of the
volunteers at rest was determined. In the same way, the difference between the signals
contaminated with motion artifacts was calculated.

2.4. Signal to Noise Ratio and Motion Artifacts

To measure the alteration in ECG signal by the presence of motion artifacts, and the
difference of these artifacts with respect to the location of the electrodes on the torso, the
Signal-to-Noise Ratio (SNR) was used which allowed us to calculate the difference between
a test signal and a reference signal quantitatively, both contaminated with motion artifacts.
Additionally, it allows us to measure the energy contribution of the noise in the evaluated
signal [28,29]. The SNR is calculated from Equation (10).

SNR[dB] = 10 log

(
∑i |xr(i)|2

∑i
∣∣xp(i)− xr(i)

∣∣2
)

(10)

where xr(i) is the reference ECG signal, and xp(i) is the test ECG signal, both contaminated
with motion artifacts.

2.5. Difference Percentage and Similarity Percentage

The difference percentage allows us to know the difference between two experimental
measures E1 and E2, or between an experimental measurement and a prediction derived
theoretically [25]. The percentage difference can be calculated from Equation (11).

%Difference =
|E1 − E2|

1
2 (E1 + E2)

× 100 (11)

The similarity percentage quantitatively shows how similar two characteristics are
and can be calculated using Equation (12).

%Similarity = 100%−%Difference (12)

3. Results

This section presents the results of the sensitivity and adjustment model to compare
between the ECG signals acquired in the reference location proposed by the Einthoven
triangle and the ECG signals acquired in displaced positions in the torso and back of the
volunteers, in addition to their comparison with the computational model and the influence
of motion artifacts on the ECG signal.

3.1. Computational Model of Heart Electrical Activity

The implementation of the mathematical model was carried out using finite elements
in COMSOL Multiphysics, which allowed obtaining the solution of the Laplace equation
derived from the Maxwell equations and the solution of the modified FitzHugh–Nagumo
model. The implemented model consisted of a mesh of 29,129 tetrahedral elements and
5415 vertices, with an average quality of 65 %. The error obtained in the convergence
was 8.8× 10−16.

3.2. Ensemble Average ECG, Sensitivity and Adjustment Model

The Ensemble Average ECG allowed a complete characterization of the waveform of
the segments that defined the ECG signal standard wave, as presented in the Equation (7).
Figure 3 shows the EA ECG of lead D2 taken at the reference points on the torso of
a volunteer.
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Figure 3. EA ECG of lead D2 of a volunteer acquired at rest in the reference position over the torso
(point 0). In (a) a 10 s frame of the signal acquired at rest is shown. In (b) the EA ECG of the signal is
presented with the characterization of the events of the standard waveform.

Figure 3a shows the ECG signal acquired from the volunteer, while Figure 3b presents
the Ensemble Average of the signal, the solid blue line represents the average waveform
of the ECG signal after superimposing the different characteristic waves of the signal
represented by the gray lines in the background of the plot, it is found after matching the
fiducial point at the QRS peak of all ECG waveforms in the frame. The dashed blue lines
represent the standard deviation of the overlap of the signals. From the Ensemble Average
ECG, it was possible to determine the amplitude, duration, and time of occurrence of the
P, QRS and T waves of the signal. The volunteer presented a heart rate of 87 bpm at the
moment of register and the maximum amplitude of the signal was 1.75 mV.

From the EA ECG, the characterization of each segment that compose the ECG signal
was performed, in magnitude (aj), duration (dj) and time of occurrence (tj). Since the
standard waveform has a different amplitude and duration for each volunteer, the EA
ECG was normalized for the maximum amplitude and maximum duration presented in
the waves of each volunteer, in such a way that they could be comparable [25]. Similarly,
this characterization can be performed through Ensemble Average ECG for the signals
obtained from the computational model in the reference position (point 0).

The average similarity percentage between the signals obtained from the computa-
tional model and the signals obtained from the volunteers was 87.88± 9.71%, according to
the Equations (11) and (12). The similarity percentage for each derivation in front and back
of the torso is presented in Table 3, where it is observed that there was a similar accuracy
for all the derivations.

Table 3. Percentage of similarity between the signals obtained from the computational model and
the signals acquired from healthy volunteers (reference position, point 0).

Similarity [%] D1front D1back D2front D2back D3front D3back

Value 89.3± 9.2 87.9± 12.1 87.0± 8.3 88.1± 7.8 88.2± 8.8 86.9± 11.8

Table 4 shows the values of the signal coefficients for reference signal’s leads D1, D2 and
D3 in the torso and back of the volume conductor analyzed in the computational model.
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Table 4. Values of the coefficients of the ECG signal’s segments obtained from the computational
model in leads D1, D2 and D3 in torso and back of the volume conductor in reference position
(point 0).

Value D1front D1back D2front D2back D3front D3back

aP * 70.3 82.9 97.0 97.2 112.6 109.6
aQRS * 214.6 156.1 873.2 852.4 746.7 784.0

aT * 233.6 165.1 188.7 186.9 178.6 170.6
dP * 86.2 89.1 83.3 92.0 89.1 103.4

dQRS * 71.8 77.6 83.3 83.3 80.5 92.0
dT * 192.5 204.0 212.6 209.8 206.9 198.3
tP * 51.7 51.7 54.6 51.7 40.2 31.6

tQRS * 77.6 63.2 34.5 43.1 43.1 46.0
* Coefficients of the ECG signal’s segments from the computational model: P wave amplitude (aP[µV/mV]);
QRS complex amplitude (aQRS[µV/mV]); T wave amplitude (aT [µV/mV]); P wave duration (dP[ms/s]); QRS
complex duration (dQRS[ms/s]); T wave duration (dT [ms/s]); time between P wave and QRS complex (tP[ms/s]);
time between QRS complex and T wave (tQRS[ms/s]).

Table 5 shows the average value and standard deviation of each of the coefficients of
the signal’s segments in reference position according to the Equation (7) for leads D1, D2
and D3 taken in the torso and back of the volunteers.

Table 5. Average values of the coefficients of the ECG signal’s segments taken in leads D1, D2 and D3 in torso and back of
the volunteers in the reference position (point 0).

Value D1front D1back D2front D2back D3front D3back

aP * 92.7± 4.5 92.3± 3.8 68.5± 3.2 67.0± 2.6 71.2± 3.1 67.4± 2.8
aQRS * 544.0± 8.1 558.5± 10.1 738.9± 14.2 750.6± 14.6 735.0± 14.8 743.7± 14.7
aT * 207.3± 12.0 170.2± 9.6 93.1± 4.4 93.7± 5.6 108.3± 6.9 99.0± 5.7
dP * 95.3± 1.6 107.7± 1.5 105.5± 1.7 105.1± 1.8 103.9± 1.5 101.8± 2.0
dQRS * 105.9± 2.6 105.0± 1.7 101.2± 1.8 103.1± 1.9 101.2± 1.6 108.9± 1.8
dT * 214.6± 2.5 227.5± 5.1 248.2± 3.9 243.1± 3.7 238.7± 3.9 242.1± 7.4
tP * 93.1± 1.2 99.3± 1.9 98.3± 1.9 97.5± 2.6 96.9± 1.9 103.7± 2.8
tQRS * 89.6± 2.6 97.0± 3.0 79.1± 2.4 80.3± 1.9 73.5± 1.6 88.4± 2.3

* Coefficients of the ECG signal’s segments: P wave amplitude (aP[µV/mV]); QRS complex amplitude (aQRS[µV/mV]); T wave amplitude
(aT [µV/mV]); P wave duration (dP[ms/s]); QRS complex duration (dQRS[ms/s]); T wave duration (dT [ms/s]); time between P wave and
QRS complex (tP[ms/s]); time between QRS complex and T wave (tQRS[ms/s]).

3.3. Dynamic Time Warping and Signal Distortion

One of the main objectives of this article was to find the distortion introduced by the
location of the electrodes in points different from those recommended by the Einthoven
method, for this the DTW method was used, which allowed us to determine the difference
between the signal acquired in the reference position (point 0) and the positions displaced
based on the provided information by the EA ECG (Figure 1).

Figure 4 presents the superposition of the signals of the lead D1 measured in different
positions, where the distortion introduced by the change in the location of the electrodes
is observed. The signals obtained from the computational model are shown in Figure 4a,
while the signals acquired from a volunteer are presented in Figure 4b.
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Figure 4. Superposition of the standard waveform of the ECG signal lead D1 measured in different
positions of the torso (see Figure 1 for reference). In (a) the superposition of the signals obtained
from the computational model is presented. In (b) the superposition of the signals acquired from a
volunteer at rest is shown. Colors indicate the electrodes’ position in the signal acquisition process.

Table 6 shows the result of the DTW method applied to the ECG signals of the volun-
teers in the specified position with respect to the reference position, the result is shown
with average and standard deviation.

Table 6. Average values and standard deviation of the distance in µV found by the DTW method between the ECG signals
acquired from the volunteers in the specified position with respect to the reference position for leads D1, D2 and D3 in torso
and back.

Dist. [µV] Position 1 Position 2 Position 3 Position 4 Position 5 Position 6

D1front 8.1± 0.9 88.7± 27.1 223.7± 38.5 271.7± 20.2 301.7± 24.4 263.5± 21.1
D1back 9.8± 1.8 59.0± 26.6 152.5± 14.9 184.8± 17.9 239.3± 20.4 196.1± 23.6
D2front 1.0± 0.6 48.6± 5.2 145.8± 20.8 162.6± 34.1 233.1± 38.7 292.0± 36.1
D2back 0.9± 0.3 67.8± 4.8 140.0± 10.1 186.1± 39.2 270.7± 23.7 313.8± 39.6
D3front 1.8± 0.3 94.1± 50.3 223.2± 71.9 389.9± 65.6 446.2± 90.0 488.9± 92.6
D3back 0.8± 0.5 64.3± 54.1 189.2± 74.4 243.6± 63.2 381.6± 95.4 453.0± 99.7

Table 7 shows the result of applying the DTW method on the ECG signals obtained
from the computational model at the specified position with respect to the reference position.

Table 7. Values of the distance in µV found by the DTW method between the ECG signals obtained
from the computational model in the specified position with respect to the reference position for
leads D1, D2 and D3 in torso and back of the volume conductor.

Dist. [µV] Position 1 Position 2 Position 3 Position 4 Position 5 Position 6

D1front 40.30 116.41 111.05 141.46 202.18 141.45
D1back 79.07 135.30 114.52 130.26 197.82 170.27
D2front 55.97 123.44 275.74 338.18 326.10 372.51
D2back 32.15 61.68 101.80 333.50 361.46 417.04
D3front 189.31 259.32 368.67 424.79 427.49 583.20
D3back 72.94 150.58 307.16 421.65 463.91 544.57

Figure 5 shows the result of applying the DTW method on the ECG signals acquired
from the volunteers and the signals obtained from the computational model, in the positions
specified in Figure 1 with respect to the reference position (point 0).
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Figure 5. Values of the distance in µV found by the Dynamic Time Warping method between the ECG
signals acquired from the volunteers and obtained from the computational model in the specified
position with respect to the reference position: In (a–c) the result of the measurement of the leads D1,
D2 and D3 on the torso respectively is presented. In (d–f) the result of the measurement of the leads
D1, D2 and D3 on the back respectively is presented.

In Figure 5, a group of box and whisker plots is presented which represent the distance
between the signals acquired in the volunteers, compared between the position indicated
on the horizontal axis and the reference position. Additionally, the solid line represents
the distance between the signals obtained from the computational model, comparing
the indicated position on the horizontal axis with the reference position. In both cases a
progressive increase in distance was observed as it moved away from the reference position.

3.4. Signal to Noise Ratio and Motion Artifacts

An analysis of the SNR of the signals contaminated with motion artifacts was per-
formed, acquired in the different locations shown in Figure 1 with respect to the signal
acquired in the reference position contaminated in the same way with motion artifacts,
with the purpose of measure if the influence of the artifacts was reduced by modifying the
location of the electrodes.

Table 8 shows the result of SNR measurement on the different positions and for leads
D1, D2 and D3 of the signals acquired from the volunteers while performing controlled
movement in a laboratory environment.

Table 8. SNR value of signals contaminated with motion artifacts acquired in different positions on torso of the volunteers
while controlled movement was done.

SNR [dB] Position 1 Position 2 Position 3 Position 4 Position 5 Position 6

D1 −1.62± 3.12 0.84± 4.71 3.96± 3.95 4.80± 5.18 −0.33± 5.82 2.19± 4.31
D2 −2.14± 3.22 2.72± 2.54 3.58± 4.83 7.25± 7.58 3.72± 3.62 −1.08± 3.89
D3 1.03± 3.71 1.08± 1.87 2.68± 2.03 6.03± 5.04 3.89± 3.17 0.59± 6.80

On the other hand, the comparison of the signals acquired in movement through the
DTW method was made, to determine the percentage of variation that the signal with
artifact presents when changing the location of the electrodes. Table 9 presents the result of
applying the DTW method on the signals acquired in different positions of the torso while
the volunteers performed controlled movement in a laboratory environment.
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Table 9. Variation of the ECG signal contaminated with motion artifacts in the different measurement positions on torso of
the volunteers, using the DTW method.

Var. [%] Position 1 Position 2 Position 3 Position 4 Position 5 Position 6

D1 14.3± 4.1 18.2± 10.8 18.4± 10.7 21.1± 7.3 19.1± 8.6 19.6± 10.5
D2 12.9± 11.9 13.2± 7.5 13.8± 6.5 14.3± 7.1 15.3± 10.8 19.8± 13.2
D3 23.8± 14.3 37.9± 25.3 26.1± 7.1 25.3± 11.1 16.9± 12.1 21.7± 6.6

Figure 6 shows the results of the SNR measurement and the DTW method applied
to the ECG signals of the volunteers acquired in different locations of the torso while
performing controlled movement in a laboratory environment.
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Figure 6. Box and whisker plots of the motion artifacts behavior in different positions of the volun-
teers’ torso, the continuous line represents the median. In (a–c) the SNR value of the ECG signal
contaminated with motion artifacts in different positions of torso for leads D1, D2 and D3 respectively
is shown. In (d–f) the variation obtained by the DTW method of movement artifacts is presented.

4. Discussion

This paper focuses on showing the comparison between the signals acquired in
different points of torso and back, and how the variation of these points significantly affects
the shape of the ECG that is acquired, providing a computational model that determines
the distortion introduced in the ECG signal due to the mislocation of the electrodes at
the measurement points recommended by the Einthoven method. For this, the ECG
signals were recorded to a group of volunteers and a computational model was used, with
the purpose of mapping the sensitivity of the lead field in the volume conductor and to
observe the distortion on the signals as a first step to perform the adjustment of the ECG
signal acquired in a non-conventional position to the reference signal determined by the
Einthoven method.

The database size was selected according to the Kruskal–Wallis criterion [30], which
determines that to have a statistical significance of 95 % in the sample and considering a
statistical power of the test of 90 % for the evaluation of characteristics in ECG signal, it
is necessary to carry out a study with a population of at least 14 subjects. As shown in
Section 2, the sample for this study was 20 subjects, which gives this study a statistical
significance greater than 95 %. Despite this, the sample was restricted to only healthy male
subjects in an age range considered as young adults, which may restrict the dynamics of
the obtained results. This makes it necessay to carry out a study with a significantly larger
sample and in which dynamic criteria such as the gender and age of the volunteers can
be considered.
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The percentage of similarity presented between the coefficients obtained from the
measured signals of the volunteers and from the computational model in the reference
position was 87.88± 9.71%, as is showed in Table 3, the difference between both can be due
to the simplifications made in the computational model, both in the anatomical structure
and in the electrical parameters [18]. In spite of this, the model works satisfactorily for
the purpose laid out, since it allows us to have an overview of the electrical activity of the
heart [24]. In addition, it allows us to analyze the distribution of the current density in the
volume conductor and determine the surface potentials as measured in a conventional ECG
and determine the difference between the signals acquired in non-conventional locations,
delivering approximate results as shown in Figure 4.

The percentage difference between the signals of the same lead in torso and back was
4.95 %. Accordingly, it is possible to measure a lead of the ECG signal both in the torso and
in the back of the subject by placing the electrodes on the reference points recommended
by Figure 1 [24].

As presented in Figure 5, as the distance between the position in which the ECG is
measured and the reference position recommended by the Einthoven triangle increases,
the difference between each pair of signals increases [11]. There are differences of up to
400 µV in signals that can have an average amplitude of 1.5 mV, which represents an error
of 37.50 %. This result shows that only position 1 and in some cases position 2 can be
reliable for taking an ECG signal without distortion. The above can be observed in Figure 4,
where an overlap of the signals is made to make the comparison and show the distortion
introduced by the change in location of the electrodes. This model allows the fitting of the
signal measured in locations other than that the Einthoven triangle by giving information
about the level of distortion introduced in the parameters used in the modeling of each
independent segment of the ECG signal.

On the other hand, one of the main reasons for modifying the location of the electrodes
in ECG measurement is the possible reduction of noise and artifacts. In spite of this, in the
results shown in Figure 6 there is no significant improvement of the signal when changing
the position of measurement over torso of the volunteers. In the case of the SNR a tendency
to increase in the central positions, indicating a reduction of the artifacts, it is also observed
that the dispersion increases, which indicates that the motion artifacts do not behave
similarly in patients.

In the evaluation of the DTW method, it is observed that there is a variation close to
20 % and that it does not change with the position. In addition, a reduction in the variation
of this difference is shown in positions 3 and 4, showing that the artifact in these positions
tends to resemble the artifact in the reference position. This can show that moving the
electrodes towards the center of the chest would not imply an improvement in the behavior
of the artifacts that remains unpredictable [31].

Some wearable devices designed for the measurement of ECG signals modify the
measurement points on the torso and present this change as an alternative to improve
signal acquisition [15,32]. However, as evidenced in this article, modifying the sensing
position of the ECG signal modifies the information it presents in its waveform, making the
information acquired by these wearable devices not valid for medical diagnosis without
a validated correction. It is possible to use this information to acquire derived vital signs
such as heart rate or R-R variability [33], but to monitor the ECG signal it is necessary that
the position of the sensors is not modified beyond position 2 as it is presented in Figure 1.

The computational model of the heart electrical activity behavior presents an approxi-
mate result to the real behavior of the cardiovascular system despite its simplifications, it
is possible to have a better approximation adjusting the model to improve its anatomical
approach and considering deformable body models, and considering also, the artifacts
produced by the movement.

According to the results obtained in the ECG signal distortion with respect to the
change of the measurement position on the volume conductor, it can be assumed that
the variation produced in the signal by the effect of the motion artifacts influences the
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change that occurs in the volume conductor with movement, since the torso is not a rigid
body and as movement occurs, the distance between the different points of that volume
changes, causing a change in the electrical properties of the volume conductor and a
significant variation in the potentials measured at the surface. As a future work, it is
possible to implement a computational model that allows us to consider deformable body
models, including respiratory frequency and tidal volume effects on ECG distortion and
better anatomical approximation. Additionally, it is necessary to consider a larger number
of volunteers and increasing variability in the gender, size and age of the volunteers to
improve the model response, this research could provide a comprehensive understanding
of physiological behavior of the motion artifacts and allowing us to have diagnostic able
wearable ECG devices.
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