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The decrease of metabolism in the brain has been observed as 
the important lesions of Alzheimer’s disease (AD) from the 
early stages of diagnosis. The cumulative evidence has 
reported that the failure of mitochondria, an organelle 
involved in diverse biological processes as well as energy 
production, maybe the cause or effect of the pathogenesis of 
AD. Both amyloid and tau pathologies have an impact upon 
mitochondria through physical interaction or indirect signaling 
pathways, resulting in the disruption of mitochondrial function 
and dynamics which can trigger AD. In addition, mitochondria 
are involved in different biological processes depending on the 
specific functions of each cell type in the brain. Thus, it is 
necessary to understand mitochondrial dysfunction as part of 
the pathological phenotypes of AD according to each cell 
type. In this review, we summarize that 1) the effects of AD 
pathology inducing mitochondrial dysfunction and 2) the 
contribution of mitochondrial dysfunction in each cell type to 
AD pathogenesis. [BMB Reports 2019; 52(12): 679-688]

INTRODUCTION

Alzheimer’s disease (AD) accompanied by extracellular 
amyloid plaques and intracellular neurofibrillary tangles 
exhibits memory impairment and cognitive deficit in patients 
with AD (1). However, the underlying mechanisms of the 
pathogenesis of AD remain unclear, and therapeutic approaches 
directly targeting amyloid beta (A) and tau have failed (2, 3). 
The development of 18F-Fluorodeoxyglucose positron emission 
tomography (FDG-PET) which visualizes the usage of glucose 
in the tissue, reveals the association between reduced 
metabolism in the brain and AD pathogenesis (4). In the 
progress of AD, since metabolic defect of the brain has 
appeared as the early symptoms of AD even before onset of 

AD pathological symptoms with brain atrophy and memory 
loss, the reduction of FDG-PET has long been used for the 
imaging biomarker of AD (5). Hypometabolism in the brain of 
AD is attributed to abnormal morphology and impaired 
functions of mitochondria (6, 7). For this reason it is noted that 
mitochondria are responsible for energy supply and 
maintenance of different functions of cells and mitochondrial 
failure has been reported in patients with AD (8). It has been 
suggested that mitochondrial dysfunction and impaired 
dynamics appear to be critical roles in the pathogenesis of AD 
(9, 10). The mitochondrial cascade hypothesis has been 
postulated to explain the onset of bioenergetics dysfunction 
involved in the pathogenesis of AD (11, 12). The hypothesis 
assumes that gene inheritance and environmental factors 
regulate mitochondrial functions, which in turn determines the 
vulnerability to AD (13). Also, Both amyloid and tau pathology 
can induce mitochondrial alterations in vitro and vivo, 
indicating that bioenergetics dysfunction is closely associated 
with AD pathology (14, 15). In this review, we discuss the 
mitochondrial failure affected by AD pathology, and its 
implication in different cell types for the pathogenesis of AD. 

MITOCHONDRIAL DYSFUNCTION INDUCED BY 
ALZHEIMER’S DISEASE PATHOGENESIS 

Mitochondrial bioenergetics defects 
The metabolism and glucose uptake of the brain tissue is 
down-regulated in patients with AD (16, 17). The investigation 
of bioenergetics profiles of fibroblasts from late-onset AD 
(LOAD) and health control demonstrates that the cells from 
LOAD, have the metabolic shift from the mitochondrial 
oxidative phosphorylation system (OXPHOS) to glycolysis, 
indicating reduced mitochondrial metabolic potential in 
LOAD (18). Mitochondria fractioned from triple transgenic AD 
model mice (3xTg-AD) brains show a decrease in 
mitochondrial membrane potential, ATP/ADP ratio and an 
impairment of the respiratory activities (19). The brain tissue of 
APP/PS1 AD model mice contains fewer ATP contents 
compared to the wild-type mice brain sample from 5 months 
old (20). When A is specifically accumulated in mitochondria 
by using mitochondria-targeted A construct, various 
mitochondrial functions were impaired, including the 
mitochondrial membrane potential and ATP generation (21) 

BMB Rep. 2019; 52(12): 679-688
www.bmbreports.org

Invited Mini Review



The role of mitochondria in AD pathogenesis
Dong Kyu Kim and Inhee Mook-Jung

680 BMB Reports http://bmbreports.org

Fig. 1. Mitochondrial alterations in 
AD. The effect of AD pathology on 
mitochondrial function for energy 
production, transport and dynamics. 

(Fig. 1). The genetic isoforms of apolipoprotein E (ApoE), the 
leading risk factor for the onset of LOAD, are also known to 
affect cellular metabolism (22). When each ApoE isoform is 
overexpressed in the mouse neuroblastoma cell line, the levels 
of hexokinase, one of the glycolytic enzymes, and the 
glycolytic activity are reduced in ApoE4-overexpressing cells 
as compared to other isoforms. In addition, it is shown that the 
oxygen consumption rate and the ATP amounts produced 
through the OXPHOS system are also shown to decrease 
when ApoE4 is overexpressed (23). 

Many previous studies have investigated that there are 
distinct pathways how A affects mitochondrial respiratory 
complexes. Both overexpression of amyloid precursor protein 
(APP) in cells and transgenic AD model mice represent 
reduced activities of adenosine 5’-triphosphate synthase (ATP 
synthase, mitochondrial complex V), but not other complexes, 
leading to reducing oxygen consumption and ATP production 
(24, 25). Using proteomic and functional analysis, differentially 
expressed proteins in P301L tau transgenic mice brain are 
identified as compared to wild-type mice brain, which are 
involved in a metabolism and mitochondrial respiration 
process (26). A decrease in complex I activity and ATP 
synthesis is observed in P301L mice brain. In addition, human 
FTDP-17 patients with P301L tau mutation show reduced 
complex V levels in the cortex region of the brain. Here it is 
noted that the SH-SY5Y cell line overexpressing human P301L 
mutant tau exhibits decreased complex I activity, as 
accompanied by decreased ATP levels (27). When 3xTg-AD 
mouse model with both amyloid and tau pathology is 
compared with AD mouse model with distinct single 
pathology, the synergistic effects of both pathologies are the 
impact on the OXPHOS. In consistent with previous reports, 
mitochondrial complex I is down-regulated dependent of tau 

pathology whereas complex IV is affected by amyloid 
pathology at protein and activity levels (28). Together, each 
amyloid and tau pathology impact individually on the 
functions of mitochondrial components, and both pathologies 
synergistically induce mitochondrial failure in AD (Fig. 1).

Interaction of A with mitochondrial components
It has been reported that A is accumulated within the 
mitochondria of AD brain tissue (29, 30). A can be 
translocated into mitochondrial matrix via the import machinery 
of mitochondria and APP is embedded in mitochondrial 
membrane, resulting in causing mitochondrial toxicity (21, 31, 
32). A located to the mitochondrial matrix can physically 
interact with mitochondrial components, thereby inhibiting 
their functions and producing excessive oxidative stress (Fig. 1) 
(33, 34). ATP synthase is localized in the inner membrane of 
mitochondria as the last component of the electron transport 
chain, where it produces ATP by the flux of a proton gradient 
across mitochondrial inner membrane (35). It has been 
reported that A binds to ATP synthase and dysregulates its 
function, thereby inhibiting energy production. ATP synthase 
subunit  (ATP5A) activity which is regulated by the attach-
ment of O-linked N-acetylglucosamine (O-GlcNAcylation) can 
be inhibited by the binding of A to ATP5A. A disrupts the 
interaction between ATP5A and O-GlcNAc transferase, 
resulting in blocking O-GlcNAcylation of ATP5A (36). 

One of possible mechanisms to induce neuronal toxicity by 
A is to form the mitochondrial permeability transition pore 
(mPTP), which activates the apoptotic pathway by the efflux of 
Ca2＋ and apoptotic factors from the mitochondrial matrix (37, 
38). Cyclophilin D, a peptidylprolyl isomerase F, is known to 
regulate the opening of mPTP pore in the mitochondrial matrix 
(39, 40). The physical interaction of cyclophilin D with A 
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occurs in the mitochondrial matrix, resulting in the inhibition 
of cyclophilin D to close mPTP pore. The pathological features 
of AD including mitochondrial toxicity and neuronal 
dysfunction can be reduced by genetic deletion of cyclophilin 
D, indicating that the cyclophilin D- A interaction resulting in 
mPTP opening promotes A-induced pathology of AD (41). 
Also, oligomycin sensitivity conferring protein (OSCP) subunit 
of ATP synthase involved in the formation of mPTP with 
cyclophilin D, also has the physical interaction with A. The 
interaction leads to disrupting the stability and activity of ATP 
synthase, increased oxidative stress, and activated mPTP but 
the activities of other OXPHOS complexes are noted to be 
relatiely unchanged (25). 

Alcohol dehydrogenase, which catalyzes the reduction of 
the nicotinamide adenine dinucleotide (NAD＋) to NADH 
using alcohol, is suppressed by A in the mitochondrial matrix 
of AD patients and transgenic model mice (42). In these cases, 
A induces to deform the active site of alcohol dehydrogenase, 
resulting in the inhibition of NAD＋ binding. The mouse model 
in which alcohol dehydrogenase is overexpressed in an 
A-rich environment exhibits a memory deficit dependent of 
the hippocampus, indicating that A-induced mitochondrial 
toxicity occurs through the interaction between alcohol 
dehydrogenase and A.

Mitochondrial proteins encoded by nucleus DNA possess 
the signal peptide to pull it into the mitochondrial matrix. After 
the import, the mitochondria-targeting sequence is cleaved by 
the mitochondrial processing peptidase (43). In the mitochondrial 
matrix, peptidasome Cym1/PreP degrades presequence peptides 
of mitochondrial proteins. A accumulated in mitochondria 
can disrupt PreP, thereby inhibiting the cleavage of presequence 
peptides. Consequently, an accumulation of undegraded 
presequence peptides cause feedback inhibition of preprotein 
processing. Damaged mitochondrial protein maturation induces 
mitochondrial toxicity and alteration of the mitochondrial 
proteome in AD patients (44).

Mitochondrial dynamics and homeostasis 
Since mitochondrial morphology and dynamics are closely 
associated with mitochondrial functions and their homeostatic 
maintenance, it is shown that mitochondria respond to 
energetic demands through a process of fusion/fission 
dynamics (45, 46). Using an electron microscopy, an abnormal 
mitochondrial morphology is observed in the brain of AD 
(47-49). The long connected mitochondria termed mito-
chondria-on a string (MOAS) as a result of fission arrest, are 
observed in the hippocampus and entorhinal cortex of AD 
patients and AD model (47, 50, 51). In AD model mice 
(APPswe:PSEN1E9), mitochondrial loss and abnormal 
structure of mitochondria, particularly mitochondrial swelling, 
are observed near amyloid plaques. The neurons affected by 
near amyloid plaques contain highly fragmented mitochondria 
as compared to distinct neurons from amyloid plaques and 
neurons of wild-type mice (52). In addition, fibroblasts 

obtained from AD patients presents a decrease in the 
mitochondrial length (53). 

With morphological changes of mitochondria, the 
machinery required for mitochondrial dynamics, such as 
mitochondrial fusion proteins (OPA1, MFN1, and MFN2), is 
altered in the hippocampus of AD brain, seemingly without 
any change of the total levels of mitochondrial components 
(45). The activity of dynamin-related protein1 (DRP1), one of 
key regulators for mitochondrial fission, is elevated in the 
brain of subjects with AD, which can translocate to 
mitochondrial outer membrane and then leads to mitochondrial 
fission, but mitochondrial fusion proteins, such as MFN1, 
MFN2 and OPA1, are decreased in AD patients (54). The 
pharmacological inhibition of DRP1 can restore mitochondrial 
homeostasis and functions, including membrane potential, 
ATP production and reactive oxygen species production, and 
attenuates memory impairment in AD model mice (55, 56). 
Overexpression of APP and A can affect the mitochondrial 
dynamics and homeostasis. APP-overexpressing cells exhibit 
fragmented mitochondria and altered mitochondrial distribution 
around the nucleus. The levels of DRP1 and OPA1 are 
decreased, but it is noted that the levels of FIS1 (mitochondrial 
fission 1 protein) are increased in APP-overexpressing cells 
(57). Furthermore, DRP1 oligomerization and recruitment on 
mitochondrial membrane are regulated by its posttranslational 
modification including phosphorylation of S-nitrosylation (58, 
59). A causes nitrosative stress to the cell which promotes 
S-nitrosylation modification on DRP1, leading to an increase 
in fission activity and further mitochondrial fragmentation (Fig. 
1) (60, 61). Increased DRP1 activity due to abnormal 
interaction with phosphorylated tau can elucidate excessive 
mitochondrial fragmentation (62). In this case, the genetic 
reduction of DRP1 protect the mitochondrial dysfunction and 
impaired dynamics in P301L tau transgenic mice (63). In 
addition, truncated tau causes mitochondrial fission and a 
reduction of OPA1 levels in neurons, as compared to wild 
full-length tau, indicating that different forms of tau have a 
distinct impact on the mitochondrial dynamics (64). 
Additionally, CR6-interacting factor 1 (Crif1) involved in both 
the translation of OXHPHOS proteins and their insertions into 
the mitochondrial inner membrane is down-regulated by 
A-induced reactive oxygen species (ROS). As a result, a 
decrease of Crif1 results in fragmentation, dysfunction of 
mitochondria and even cell death in the subject with AD (65). 

Extensive neurites of neuron require a wide coverage of 
energy and material supply to maintain neuronal functions. In 
fact, to deliver the mitochondria to nerve terminals, the neuron 
uses a microtubule axonal transport system, which can be 
regulated diverse post-translational modifications, including 
phosphorylation and acetylation. The levels of acetylated 
-tubulin are decreased in AD patient’s brains and in the 
hippocampal neurons which are treated with A. The inhibition 
of histone deacetylase 6 which deacetylases -tubulin rescues 
the inhibited mitochondrial axonal transport by A (Fig. 1) 
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(66). The patterns of mitochondrial distribution in hippo-
campal neurons are seen to be different in AD. Although 
mitochondria localize at both neuronal process and soma in 
control group, most mitochondria are confined to the soma 
area in AD (49). Since tau serves as microtubule-associated 
protein to stabilize microtubule, tau pathology is therefore 
associated with an abnormal mitochondrial transport in AD. 
The overexpression of phosphorylated tau disrupts 
mitochondrial movement by regulating microtubule spacing 
(67). In other words, the mitochondrial distribution is altered in 
neurons with pathological tau aggregates of rTg4510 tau 
transgenic mice and AD patients. To this end, a reduction of 
soluble tau expression can restore the mitochondrial 
distribution, despite an existence of fibrillary tau inclusions 
(68). In addition to destabilizing microtubule network, tau also 
interact with kinesin motor protein, leading to preferential 
inhibition of anterograde transport along microtubules (Fig. 1) 
(69). These evidences suggest that amyloid and tau pathology 
affect mitochondrial dynamics to induce fragmentation and 
influence microtubule-based transport. 

THE EFFECT OF MITOCHONDRIAL DYSFUNCTION 
ON EACH CELL TYPE IN ALZHEIMER’S DISEASE 

Different cell types in the brain have distinct characteristics of 
metabolism, and exhibit specific roles related to their 
metabolic characteristics. Increasing evidences indicate that 
the mitochondria in different cell types vary in their function 
and morphology. Recently, the mitochondrial proteome of 
three major cerebellar cell types is identified, and it suggests 
that each cell type has differentially regulated mitochondrial 
proteins based on each biological role as utilized in the brain 
(70). In general, the metabolic coupling between neuron and 
astrocyte using mitochondria in different ways, manages and 
supports the functionality of the brain. In this case, the toxic 
fatty acids produced from hyperactive neurons are transferred 
into neighboring astrocytes, which can be stored in lipid 
droplets or detoxified by the -oxidation process in mitochondria 
rather than processed in the neurons (71). Microglia undergo 
the metabolic reprogramming mediated by mitochondrial 
dynamics in response to external stimuli, which determine the 
inflammatory characteristics of microglia (72, 73). A better 
understanding of mitochondrial dysfunction as a pathological 
feature of AD requires a cell-type specific approach. We 
review mitochondrial dysfunction of each cell type, and note 
their contribution to AD pathogenesis.

Neuron 
Neuron has different compartments with differentially functional 
units including axon and dendrite. The synaptic functions to 
release neurotransmitters and to respond signals at post- 
synaptic region require a high number of mitochondria, 
because of the high energy demand at the synapses (74). For 
this reason, the neuron has a high metabolic rate and the 

supply of glucose determines its functionality in the brain. The 
synaptic mitochondria especially have discrete metabolic 
characteristics that they are susceptible to the inhibition of 
complex I and Ca2＋ overload compared to non-synaptic 
mitochondria (75, 76). Since it is noted that the tau pathology 
has adverse effect upon mitochondrial complex I and A 
activates synaptic terminals by the influx of Ca2＋ into cytosol, 
it seems likely that the synaptic mitochondria are impaired in 
AD (27, 28, 77). The existence of A in synaptic mitochondria 
has been reported by the immunogold electron microscope 
(78). Moreover, the synaptic mitochondria contain higher 
amounts of A as compared to non-synaptic mitochondria in 
Tg mAPP AD model mice, resulting in the impairment of 
synaptic mitochondrial respiration and accumulation of 
oxidative stress at synapses (Fig. 2) (78). The AD patient brain 
has local differences in the number of synaptic mitochondria 
as well as functional abnormality. For example, it is seen that 
the presynaptic region in AD has fewer mitochondria with 
abnormal morphology and structure, as compared to control 
subject, but there is no difference in those of a comparison 
post-synaptic region (79). 

The synaptic communication between neurons is regulated 
by Ca2＋ signaling through the binding of neurotransmitters 
and their receptors at post-synaptic region. In fact, the synaptic 
mitochondria damaged by oxidative stress or AD pathology 
lose the capability to buffer excessive cytosolic Ca2＋ 
concentration. The expression of mitochondrial Ca2＋ exchange 
transporter NCLX, Na2＋/Ca2＋ exchanger, is decreased in the 
brain of AD patients and 3xTg-AD model mice. Furthermore, 
the genetic deletion of NCLX leading to impaired mitochondrial 
Ca2＋ efflux can cause memory loss, and aggravate both 
amyloid and tau pathology. Restoration of mitochondrial 
exchange transporter in neurons rescues mitochondrial 
dysfunction, cognitive impairment and AD pathology (Fig. 2) 
(80). Ca2＋ dysregulation of presynaptic mitochondria in mossy 
fiber synapses is exhibited in Tg2576 AD model mice. 
Moreover, it is shown that an exposure of A to granule cells 
of the dentate gyrus causes Ca2＋ clearance failure. The results 
support that mitochondrial dysfunction by overproduced or 
existence of A, particularly mitochondrial Ca2＋ regulation, is 
implicated in the synaptic dysfunction of mossy fiber-CA3 
synapses (81). Similarly, impaired long-term potentiation and 
short-term plasticity at the mossy fiber synapses in Presenilin 
knockout mice are resulted from the altered mitochondrial 
Ca2＋ homeostasis in granule cells (82). The insulin-like growth 
factor-1 (IGF-1) signaling increased in AD patients and AD 
model mice is regulated by mitochondrial Ca2＋ homeostasis, 
which activates to release neurotransmitters and basal synaptic 
transmission (83-85). The pharmacological blockade of IGF-1 
signaling can attenuate hippocampal hyperactivity in APP/PS1 
model mice, indicating that mitochondrial dysfunction in AD 
conditions fails to control A-dependent neuronal activation 
which is caused by excessive IGF-1 signaling (Fig. 2) (83). 
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Fig. 2. Cell type-specific mitochondrial dysfunction in AD pathogenesis. Many mitochondria are located in nerve terminals, contributing to 
supply energy for the production of neurotransmitters and the transport and release of synaptic vesicles. The damage of synaptic 
mitochondria causes abnormal synaptic activity in AD. Astrocyte regulates neuronal activity by buffering excess neurotransmitters at 
synapses through its mitochondria and metabolism. When astrocytic mitochondria are disrupted, neuronal hyperactivity may be triggered in 
AD. Also, since the -oxidation process in astrocytic mitochondria exclusively consumes toxic fatty acids or lipid particles, astrocytic 
mitochondria play crucial roles in the removal of lipid particles associated with APOE in AD. The inflammatory status of microglia is 
determined by mitochondria and metabolic signaling in response to external stimuli. AD pathology cause metabolic reprogramming in 
microglia with the inflammatory response to become the activated or tolerance status. 

Astrocyte
Astrocyte has crucial roles in the support of a neuron which 
includes the supply of metabolite, maintenance of synaptic 
plasticity and a control of neuronal activity in the brain (86). 
To preserve neural environment through buffering excessive 
glutamate as a neurotransmitter, it is known that astrocyte 
disposes of excessive released glutamate converting to 
glutamine by glutamine synthetase and the tricarboxylic acid 
(TCA) cycle of mitochondria (87). For this reason, it is seen 
that astrocytic mitochondria stay near glutamate transporter-1 
(GLT-1, EAAT2) to regulate extracellular glutamate levels, 
which are followed by neuronal activation. When neuronal 
activity or glutamate uptake of astrocyte is inhibited, the 
proportion of mobile astrocytic mitochondria is increased 
instead of halting near GLT-1 to buffer glutamate (88, 89). In 
addition to mitochondria, glycolytic enzymes are co-localized 
with GLT-1. Although either the acute inhibition of glycolysis 
or the OXPHOS respiration in hippocampal slices cannot 
decrease glutamate uptake, simultaneous inhibition of both 
metabolisms reduce glutamate uptake, indicating that astrocytic 
metabolic state is a crucial factor for proper astrocytic 
functions (Fig. 2) (90). Using glia-specific mitochondrial 

gliotoxin being possible to impair selectively the OXPHOS 
system of glial cells, metabolic stress induced by mitochondrial 
dysfunction in glial cell inhibits the synaptic transmission (91). 
Thus, the differential metabolism of astrocyte satisfies the 
energetic demands of astrocytic functions, suggesting that the 
astrocytic metabolism has spatial and functional relation to the 
regulation of neuronal activity. 

Astrocyte represents highly glycolytic metabolism compared 
to neurons (92, 93). For this reason, the pharmacological 
inhibition of glycolytic enzymes in astrocyte causes an 
accumulation of A near or within astrocytes in the brain (94). 
It suggests that the glycolytic metabolism of astrocyte 
contributes to progress of AD pathogenesis. It is reported that 
20% of energy supplied to the brain comes from fatty acid 
oxidation, which is known to occur mainly in astrocyte (95). 
Hyperactive neurons release toxic fatty acids through 
lipoprotein-like particles with ApoE. At that point, the 
astrocytic mitochondria are used exclusively for -oxidation 
consuming lipid droplets or free fatty acids as an energy 
source than for TCA cycle (71). These evidences suggest that 
toxic fatty acids released from hyperactive neurons by A can 
induce cytotoxicity, especially if they are not consumed due to 
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damaged mitochondria of astrocyte. Moreover, if the secretion 
efficiency of toxic fatty acids depends on the ApoE 
polymorphism, it can be explained brain toxicity and high 
incidence of LOAD according to ApoE4 allele, which is a 
major risk factor for LOAD (Fig. 2). 

Recently, research on the distinction of astrocytes between 
healthy individuals and AD has been investigated using an 
iPSC-derived model. Human iPSC-derived astrocyte model 
from early-onset familial AD (FAD) with PSEN1 M146L 
mutations or late-onset sporadic AD (SAD) with ApoE4＋/＋ 
exhibits morphological differences, as compared to those from 
healthy individuals. Moreover, most induced astrocytes from 
AD patients appear fibroblast-like cell morphology and display 
astrocytic atrophy, suggesting the alterations of astrocyte 
contribute to the pathogenesis of AD (96). Studies on the 
dysfunction of astrocytic mitochondria in AD have not 
investigated much more than those of other cell types in the 
brain. Astrocytes with PSEN1 E9 mutations derived from AD 
patients made using an iPSC-derived model represent metabolic 
reprogramming from glycolysis to OXPHOS respiration, 
thereby increasing ROS production and reducing lactate secretion 
which supports neuronal functions (97). The astrocyte trans-
criptome comparing healthy control and AD subjects, which is 
isolated from the posterior cingulate region by laser capture 
microdissection following the staining with anti-Aldehyde 
dehydrogenase 1 family, member L1 (ALDH1L1) antibody specific 
to astrocyte cell type, describes that differentially expressed 
genes in astrocyte of AD include mitochondria-related genes 
and immune responsive genes, indicating that astrocytic 
mitochondria are affected by the pathogenesis of AD (98). 

In the AD brain, astrocytes have been reported to be 
exposed to oxidative stress, resulting in DNA damage and 
functional disability (99, 100). The increase of oxidative stress 
in astrocytes can be detected in old hAPP model mice, 
suggesting that astrocytic dysfunction by increased oxidative 
stress can contribute to the progress of AD pathogenesis (101). 
Additionally, an exposure of A to astrocyte can induce 
mitochondrial fragmentation and depolarization, therefore 
leading to increased ROS production and metabolic impairment 
(102, 103). In addition, A decreases the mitochondrial 
membrane potential of astrocytes but not the neurons, 
indicating the vulnerability of astrocytic mitochondria in AD 
(104). Another way of toxicity in astrocyte is an accumulation 
of poly-ADP-ribose polymers produced by poly-ADP-ribose 
polymerase that are activated by A-induced oxidative stress. 
The increased poly-ADP-ribose polymers that limit the 
availability of nicotinamide adenine dinucleotide as substrate, 
are also known to reduce mitochondrial membrane potential 
and result in neuronal death (103). 

Microglia
Microglia, brain-resident immune cell, respond to surrounding 
stimuli and alert the immune response. Furthermore, 
mitochondria are required for the inflammatory responses of 

microglia and determining their metabolic status (105). A short 
exposure of A to microglia induces acute inflammatory 
response, including production of cytokines and phagocytosis 
of A. Microglia acutely treated with A undergo metabolic 
reprogramming from OXPHOS to glycolysis via mTOR-HIF-1 
pathway. In the AD brain, a long-term exposure of A and 
senile plaques leads microglia to convert to a tolerance status, 
in which they have defective metabolic system and their 
inflammatory responses are reduced, indicating that health 
metabolic system is important to maintain inflammatory 
responses to external stimuli (Fig. 2) (106). 

Using a method to generate iPSC-derived human microglia-like 
cells (iMGLs), the contribution of genetic backgrounds of AD, 
ApoE4, PSEN1E9, and APPswe, to functions and metabolism 
of iMGLs is elucidated. Both FAD mutations, PSEN1E9, and 
APPswe, have no effect on metabolic reprogramming. 
However, ApoE4 iMGLs exhibit lower oxygen consumption 
rate and can result in a decrease in all mitochondrial 
parameters related to cellular respiration. In addition, ApoE4 
iMGLs, but not PSEN1E9 or APPswe iMGLs show reduced 
phagocytic capability (107). Additionally, hypomorphic 
variants of TREM2, a rare risk factor for LOAD associated with 
microglial responses, regulate microglial metabolism via 
mTOR signaling. Microglia in TREM2-deficient 5XFAD model 
mice have been shown to exhibit an accumulation of 
autophagosomes and impaired mTOR signaling due to 
down-regulated energy metabolism. These results suggest that 
TREM2 and mTOR-mediated metabolic activation mediates 
the function of microglia, such as the removal of amyloid 
plaques (Fig. 2) (108). 

The mitochondria homeostasis is important to determine 
microglial inflammatory status, and its disruption can trigger 
neuronal death in neurodegenerative diseases. Recently, it has 
been suggested that microglial mitochondria are dysfunctional 
in neurodegenerative diseases, which are highly fragmented 
and released from microglia, thereby consequently inducing 
neuronal death. Dysfunctional mitochondria are detected in 
microglia-conditioned media when microglia are activated by 
A. The treatment of P110 which is a selective inhibitor of 
mitochondrial fission and fragmentation, ameliorates glial 
activation and inflammatory responses in the brain of AD 
model mice (Fig. 2) (109). Reduced signaling of mitophagy 
that eliminate dysfunctional mitochondria has been identified 
as one of the pathological features of AD. An accumulation of 
defective mitochondria in microglia increases the release of 
cytokines and inhibits the removal of amyloid plaques, 
promoting the inflammatory responses in the brain. The 
restoration of mitophagy can mitigate inflammation and 
reduce the activation of NLRP3-inflammasome. Qualitative 
control of mitochondrial in microglia can alleviate AD 
pathogenesis by inducing an appropriate inflammatory 
response in the brain (110). 
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CONCLUSION

Mitochondrial dysfunction has been observed in the early 
stages of AD before the onset of clinical symptoms and 
interferes with the metabolism of the brain. Both A and tau 
lesions induce the damage in various aspects of mitochondria, 
including the capacity of energy production, the control of 
homeostasis, and the transport of mitochondria along micro-
tubules. Since various cell types that constitute the brain 
contribute to AD pathogenesis in different ways, an under-
standing of mitochondrial dysfunction in AD needs to be 
interpreted based on cell type-specific functions. Mitochondria 
affected by Α and tau pathologies cause a vicious cycle that 
induces the pathological features of AD pathogenesis at each 
cellular level. For this reason, a proper understanding of cell 
type-specific mitochondrial dysfunction contributing to AD 
pathogenesis leads to elucidating the underlying mechanisms 
of AD pathogenesis and the discovery of therapeutic targets for 
AD. 
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