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Abstract 

A stable and porous amino-functionalized zirconium-based metal organic framework (Zr-MOF-NH2) containing 
missing linker defects was prepared and fully characterized by FTIR, scanning electron microscopy, powder X-ray dif-
fraction, and BET surface area measurement. The Zr-MOF-NH2 was then applied as an adsorbent in pipette-tip solid 
phase extraction (PT-SPE) of carbamazepine. Important parameters affecting extraction efficiency such as pH, sample 
volume, type and volume of eluent, amount of adsorbent, and number of aspirating/dispensing cycles for sample 
solution and eluent solvent were investigated and optimized. The best extraction efficiency was obtained when pH 
of 100 µL of sample solution was adjusted to 7.5 and 5 mg of the sorbent was used. Eluent solvent was 10 µL metha-
nol. Linear dynamic range was found to be between 0.1 and 50 µg L−1 and limit of detection for 10 measurement of 
blank solution was 0.05 µg L−1. This extraction method was coupled to HPLC and was successfully employed for the 
determination of carbamazepine in urine and water samples. The strategy combined the advantages of fast and easy 
operation of PT-SPE with robustness and large adsorption capacity of Zr-MOF-NH2.
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Introduction
Carbamazepine (CBZ, 5H-dibenzo [b,f ] azepine-5-car-
boxamide) often used as anticonvulsant drug for treat-
ment of epilepsy [1, 2]. Whenever a patient consumes 
CBZ, about 2–3% of this drug will excrete unchanged 
through his urine and enters into environmental aquatic 
ecosystems [3]. Studies confirmed that CBZ can be pre-
sent in wastewater (up to 6.3 µg L−1) [4–7], surface water 
(up to 1.1  µg  L−1) [8, 9], and drinking water (around 
30 ng L−1) [10, 11]. Biodegradation of CBZ is very diffi-
cult in environmental media owing to its low solubility 
and stability in water. Therefore, several methods includ-
ing advanced oxidation processes (AOPs), adsorption 

on various sorbent media have been employed for the 
removal and extraction of it [1, 2, 12–14].

In recent years, some sample preparation techniques 
such as liquid–liquid extraction (LLE) [15], dispersive 
liquid–liquid microextraction (DLLME) [16] and solid-
phase extraction (SPE) [17] have been used for isolation 
and extraction of CBZ in complicated matrices. SPE is a 
prevalent procedure for pre-treatment of various phar-
maceutical analytes due to its reproducibility, high recov-
ery and simple operation. Miniaturized SPE has been 
developed to overcome on the problems raised by con-
ventional SPE processes such as matrix effect, low detec-
tion limit, losses of analytes, and environmental problems 
due to consumption of large amounts of organic solvents.

Pipette-tip solid-phase extraction (PT-SPE) is a con-
venience, and microscale of SPE method which reduces 
amount of sorbent and reagents and saves the analysis 
time [18–20]. This technique required several repeated 
aspirating/dispensing cycles to complete the extraction 
procedure.
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Metal–organic frameworks (MOFs), a new type of 
3D crystalline porous materials assembled by metal 
ions (or clusters) and multi-topic organic ligands, 
have received significant attention in a wide array of 
potential applications such as photocatalysis [21, 22], 
gas storage [23, 24], separation [25, 26], drug deliv-
ery [27, 28], deactivation of chemical warfare agents 
[29, 30], conductivity [31, 32], removal of toxic mate-
rials [33, 34], and sensing [35, 36], due to their large 
porosity, very high surface area, tunable pore dimen-
sions and topologies as well as their physicochemical 
properties [37]. Their well-ordered porous structures 
can create a unique microenvironment to enhance 
adsorption and penetration of guest species inside the 
frameworks. Zirconium-based metal–organic frame-
works (Zr-MOFs) are one of the most promising MOF 
materials for practical applications, owing to their 
thermal, mechanical, and chemical stabilities besides 
their high surface area and low density. Zr-MOF-NH2 
is an amino-functionalized Zr-MOF with the ideal-
ized chemical formula Zr6O4(OH)4(L)6 (L = 2-amino-
terephthalate) and uniform three-dimensional pores 
structure composed of 2-aminoterepthalate linkers 
and hexanuclear [Zr6(μ3–O)4(μ3–OH)4]12+ nodes, each 
connected to 12 carboxylates of the linkers to yield 
super octahedral and super tetrahedral cages/cavities 
(Fig. 1a) [38]. Recently, Hupp and Farha have reported 
a simple and producible procedure for the preparation 
of the Zr-MOF-NH2, which contains missing-linker 
defects [39]. The defects can result in the following 
advantages; (a) more hydroxyl groups and more open 
zirconium metal sites which could increase analyte 
binding affinity and selectivity, and (b) large pores and 
apertures which might lead to enhance substrate trans-
port rates and in some cases selectivity (Fig. 1b). These 
advantages combined with amino functionality on 
organic linker (as coordinating and hydrogen-bonding 
sites via amino group in addition to possibility of the 
non-covalent interactions between the organic aro-
matic linker and guest species) could further improve 
separation performance and selectivity of the MOF 
[40–44].

Intrigued by the above-mentioned findings, we 
encouraged to prepare and use the bio inspired sponge, 
amino-functionalized Zr-MOF, for micro-scale solid 
phase extraction and determination of the carbamaz-
epine. Several parameters affecting extraction efficiency 
including pH, type and volume of eluent, volume of 
sample solution, and amount of sorbent, number of 
draw/eject of sample solution and eluent solvent type 
were tested and optimized. Finally, the method was 
used for the determination of carbamazepine in urine 
and water samples.

Experimental
Chemicals and materials
All reagents (analytical grade) were purchased from Shar-
loa (Spain) and used as received, except HPLC solvents 
which were of chromatographic grade. All aqueous solu-
tions were prepared using ultra-pure Milli-Q® purifica-
tion system. 20 µL pipette-tips (Dragon Lab, China) were 
used as micro columns. Carbamazepine was obtained 
from Sigma-Aldrich (St. Louis, MO, USA).

Synthesis of Zr‑MOF‑NH2 sorbent
Zr-MOF-NH2 was synthesized according to the Hupp/
Farha method [42] with minor modifications. In a 25 mL 
vial, dimethyl formamide (5  mL) and concentrated HCl 
(2.85 mL, 850 mmol) were added to 0.125 g, (0.54 mmol) 
of ZrCl4 before being sonicated for 10  min. A mixture 
of 2-aminoterephthalic acid (0.134  g, 0.75  mmol) and 
dimethyl formamide (10  mL) were then added to the 
clear solution and the mixture was sonicated for 20 more 
minutes. Afterwards, the capped vial was placed in a pre-
heated oven at 80 °C for 15 h. After cooling to room tem-
perature, the solid Zr-MOF-NH2 was filtered and washed 
with dimethyl formamide, and then with ethanol several 
times. In order to evaporate any solvents, this product 
was left for several hours under the hood and then was 
dried under reduced pressure (80 °C, 3 h). The solid Zr-
MOF-NH2 was then activated at 120  °C for 12  h under 
high vacuum prior to measuring N2 isotherms.

Characterization of Zr‑MOF‑NH2
Fourier-transform infrared spectroscopy (FT-IR) spectra 
were recorded using a Perkin-Elmer FTIR (USA). Pow-
der X-ray diffraction (PXRD) patterns were recorded on a 
Philips X’pert diffractometer (Germany) with monochro-
mated Cu Kα radiation (λ = 1.5418 Å) within the range of 
1.5° < 2θ < 38°. Samples for scanning electron microscopy 
(SEM) were sputtered with a layer of Os (5-nm thickness) 
prior to taking images on a Hitachi S-4800 SEM (Japan) 
with a 15.0  kV accelerating voltage. BET surface area 
measurements were made at 77 K with liquid nitrogen on 
a Micrometrics TriStar 3020 (N2) surface area analyzer 
(Britain). Zr-MOF-NH2was degassed for 12  h at 120  °C 
before the measurement under a stream of nitrogen.

Chromatographic analysis
Determination of CBZ was performed on an HPLC man-
ufactured by Cecil company (England), equipped with 
a C18 ACE column (250 × 4.6  mm, 5  μm particle sizes) 
and a UV detector at wavelength of 210 nm. A mixture 
of water: acetonitrile (75:25) were used as mobile phase 
(isocratic elusion). Column was thermostated at room 
temperature. Injection volume and flow rate were 10 µL 
and 1 mL min−1, respectively.
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CBZ Extraction procedure
5 mg of Zr-MOF-NH2 was transferred to a 20 µL pipette-
tip as micro column and attached to 100  µL variables 
sampler (Isolable, Germany). 100 µL sample solution was 

then introduced to column and passed over the sorbent 
and dispensed back to a 1 mL test-tube. The same sample 
solution was loaded into the micro column for 5 cycles. 
Adsorbed CBZ was then eluted by 10  µL of methanol 
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Fig. 1  The idealized (a) and defective (b) structure of UiO-66-NH2
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in a 1 mL test-tube for 7 cycles, from which, 20 µL was 
injected to HPLC. Urine sample was collected from a 
healthy female and stored at − 80  °C and used through-
out all experiments. This participant was not using 
supplements containing CBZ. Before start of the experi-
ments, sample was brought to the room temperature, of 
which 250  µL was transferred to a canonical centrifuge 
tube. After addition of 1 mL of 1 M ammonium persul-
phate, it was heated in a water bath for 60 min at 95 °C. 
Then, this solution was brought to room temperature 
and was extracted by means of the suggested procedure. 
Tap water was obtained from laboratory and sample was 
filtered through a 0.45  µm Whatman filter paper and 
spiked with carbamazepine.

Results and discussion
Characterization of adsorbent
Zr-MOF-NH2 was synthesized using 2-amino-tereph-
thalic acid as the linker, zirconium (IV) chloride as the 
metal source and HCl as the modulator via a common 
solvothermal method (see the experimental section 
and Fig. 1). FT-IR spectrum of the Zr-MOF-NH2 shows 
a broad absorption peak (at about 3433  cm−1) related 
to the N–H (the asymmetric and symmetric) and O–H 
stretching modes (Fig.  2). The peak at 1654  cm−1 is 
assigned to DMF, while the intense doublet at 1572 and 
1386 cm−1 are assigned to the asymmetrical and sym-
metrical stretching modes of the carboxylate groups 

(two strongly coupled C–O bonds with bond strengths 
intermediate between C=O and C–O). The strong aro-
matic C–N stretching band is observed at 1258  cm−1. 
The observed peaks between 1400 and 1500  cm−1 are 
ascribed to the C=C in aromatic compound of the 
organic linker. The peak at 769 cm−1 is assigned to C–C 
vibrational mode in the aromatic ring (Fig. 2). The pow-
der X-ray diffraction (PXRD) pattern of the as-prepared 
Zr-MOF-NH2 agreed well with its structure reported in 
literature and the simulated PXRD pattern of UiO-66 
[40–43]. The main peaks at 2θ = 7.3° and 8.5° are cor-
responded to the (111) and the (200) crystal planes, 
respectively (Fig. 3). The PXRD pattern of the Zr-MOF-
NH2 is similar to the one described in literature, con-
firming the crystalline structure of the MOF. All 2θ 
peaks are in good agreement with that of PXRD pat-
terns of the Zr-MOF parent material and the simulated 
one (CCDC No. 889529). The peaks at about 2θ = 7.3°, 
8.5°, 12°, 17°, 18.6°, 19.1°, and 22.2° with d spacing of 
11.9, 10.3, 7.3, 5.1, 4.7, 4.6, and 4.0 Å can be related to 
the (1 1 1), (2 0 0), (2 2 0), (4 0 0), (3 3 1), (4 2 0), and (6 
0 0) reflections. The intensive peaks at 2θ = 7.3° and 8.5° 
are corresponded to the planes of tetragonal zirconia. 

The morphology of the MOF was examined by scan-
ning electron microscopy (SEM) (Fig.  4). Unlike the 
octahedral crystal shape of Zr-MOF-NH2 obtained by 
other methods [44], the SEM images of the nominal 

Fig. 2  FTIR spectrum of synthesized Zr-MOF-NH2



Page 5 of 12Rezaei Kahkha et al. Chemistry Central Journal  (2018) 12:77 

MOF showed aggregates of quasi-spherical particles 
between 100 and 200 nm.

The permanent porosity of Zr-MOF-NH2 was meas-
ured via nitrogen adsorption and desorption (Brunauer–
Emmett–Teller, BET), indicating the highly accessible 
surface area of 1105 m2 g−1, and Langmuir surface area 
of 1319 m2 g−1, with a pore volume of 0.510667 cm3 g−1. 
Desorption average pore diameter was found to be 

1.848  nm, and the average pore hydraulic radius was 
measured 0.3.787 nm (Fig. 5). The Zr-MOF-NH2 exhib-
ited the type I isotherm which is characteristic of 
microporous materials.

Optimization of PT‑SPE procedure
To achieve the best extraction efficiency, we tried to opti-
mize the conditions influencing the extraction processes 

Fig. 3  PXRD patterns of a the simulated Zr-MOF-NH2; b as-synthesized; and c the recycled Zr-MOF-NH2

Fig. 4  SEM images of the Zr-MOF
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as described below. All optimization experiments were 
performed with 10 µg L−1 of CBZ solution.

Effect of pH
pH is one of the most important factors in solid phase 
extraction. This factor illustrates how adsorption can be 
occurred and which form of the analyte (ionic or molecu-
lar) was adsorbed by the sorbent. For evaluation of the 
effect of pH on extraction efficiency, pH of samples was 
investigated between 4 and 9 and results are depicted in 
Fig. 6. As can be seen, the best pH value is 7.5 (around 

neutral pH) which indicates that CBZ adsorbs on Zr-
MOF-NH2 by hydrogen bonding between the amino 
functionality and surface Zr–OH groups of MOF and 
carbamazepine. Moreover, Lewis acid–base interaction 
between CBZ and Zr-MOF-NH2 (including the zirco-
nium ions as an open active sites and the free-carboxy-
late) may enhance adsorption. The increased affinity for 
CBZ observed in Zr-MOF-NH2 is a result of an increase 
in missing linker defects in the functionalized framework 
because of more terminal and sorbate-displaceable node 
hydroxo and free-carboxylate ligands. It should be noted 
that neutral pHs, terminal aqua ligands are mainly con-
verted to hydroxo ligands; therefore, each missing linker 
generates a pair of defects (one on each node), with each 
defect site containing of a pair of hydroxo ligands bound 
to a single zirconium ion and a free-carboxylate group. 
The Zr-MOF with large numbers of defects can results in 
increasing capacity of CBZ adsorption.

Amount of adsorbent
In the pipette-tip solid phase extraction, the effect of the 
adsorbent amount is a main factor on extraction effi-
ciency which must be investigated. To get the PT-SPE 
column more effective and at lowest possible consump-
tion of adsorbent, different amounts of Zr-MOF-NH2 in 
the range of 2–12 mg were packed into it. As shown in 
Fig.  7, maximum extraction of CBZ was achieved when 
the amount of adsorbent increased to 5.0 mg and further 
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increase in Zr-MOF-NH2 loading decrease the extraction 
and also prolongs the time required for sample passage. 
The small decrease in extraction efficiency is probably 
due to the fact that the quantitative desorption of CBZ 
from the Zr-MOF-NH2 became more difficult when the 
same amount of eluent solvent is used with the same 

washing cycles. Therefore, 5.0 mg was employed as pack-
ing material in the fallowing studies.

Effect of volume of sample solution
In this regard, different volumes of sample solu-
tion (between 30 and 130  µL) were examined for the 
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extraction of carbamazepine. As given in Fig.  8, the 
highest extraction efficiency was obtained when a vol-
ume of 100  µL of the sample solution was used. By 
increasing the volume of the sample solution, more 
analytes can be adsorbed on MOF sorbent; how-
ever, after a certain point, equilibrium takes place and 
extraction efficiency becomes constant.

Effect of volume of eluent
In order to achieve a good enrichment factor and the 
highest extraction efficiency, various volume of metha-
nol, as the eluent, between 5 and 20 µL were examined. 
CBZ peak area was increased with increasing the vol-
ume of eluent up to and 10 µL of methanol and then was 
decreased because after the optimum point, the analyte 
may diluted and extraction efficiency decreased (Fig. 9).

Effect of draw/eject of sample solution and eluent
The procedure of aspiration of a solution into pipette tip 
and dispensed back into the same sample tube is called 
aspirating/dispensing (or draw/eject) cycles, which a 
critical factor for PT-SPE extraction. Therefore, the influ-
ence of this parameter on the extraction efficiency was 
examined between 3 and 20 cycles. After 5 cycles, the 
extraction of CBZ from sample solution was found to be 
complete. Meanwhile, the best elusion of CBZ from the 

sorbent was occured at 7 cycles of draw/eject of eluent. 
In higher number of cycles, the efficiency was decreased, 
which is probably due to the back extraction of the ana-
lyte from adsorbent into the sample solution, causing a 
decrease in the recovery.

Reusability of the sorbent
To investigate the stability and reusability of the Zr-MOF-
NH2 packed micro column, after desorption of CBZ from 
the adsorbent, the column was washed five cycles with 
methanol and then five cycles with deionized water. After 
that, several extraction and elution operation cycles were 
carried out under the optimized conditions. The result 
of experiments indicated that the adsorbent could be 
reused at least for eight times with a decrease of only 5% 
in extraction recovery. As the powder PXRD patterns of 
the Zr-MOF-NH2 before and after adsorption shown in 
the Fig. 3, the crystallinity of the MOF was reserved dur-
ing the experimental conditions, confirming the stability 
of the MOF under the experimental conditions.

Adsorption capacity
The adsorption capacity of the Zr-MOF-NH2 was deter-
mined by the batch experiments. For this purpose, a 
standard solution containing 2000  mg  L−1 of CBZ was 
applied. The amount of adsorbed CBZ was calculated by 
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determination of difference between initial and final con-
centration of CBZ after adsorption. The maximum sorp-
tion capacity was defined as the total amount of adsorbed 
CBZ per gram of the Zr-MOF-NH2. The obtained capac-
ity was found to be 32  mg  g−1. High adsorption capac-
ity indicated that large porosity and large surface area of 
adsorbent.

Method validation
The analytical performance of the PT-SPE method was 
evaluated as the results shown in Table 1. Limit of detec-
tion (LOD) was obtained based on a signal-to-noise 
ratio of 3. The linear dynamic range (LDR) was studied 
by increasing concentration of the standard solution 
from 0.05 to 200 µg L−1. The repeatability of the method, 
expressed as relative standard deviation (RSD). Intra-day 
precision of proposed method was calculated for seven 
replicates of the standard at 50 µg L−1 concentration of 
CBZ. Repeatability was obtained 2.5% for 50  µg  L−1 of 

carbamazepine. The calibration curve was obtained by 
plotting the peak areas of CBZ against its concentration 
and was linear in the range of 0.1–50 µg L−1 that demon-
strated good linearity of proposed method. The correla-
tion coefficient of calibration curve was 0.999.

Determination of carbamazepine in real samples
The proposed PT-SPE technique was successfully used 
for the determination of CBZ in urine and water sam-
ple. As shown in Table  2, recoveries of all spiked levels 
are adequate; therefore, we can use this method for the 
analysis of CBZ in complex matrices as urine. The chro-
matogram of carbamazepine in blank and spiked urine 
samples are presented in Fig. 10.

Comparison of proposed method with other methods
A comparison of the proposed method with those using 
different preconcentration techniques for CBZ determi-
nation is given in Table  3, which demonstrates the fea-
sibility and reliability of the applied method. Shorter 
analysis time, lower consumption of the sorbent and sam-
ple solution, simplicity of method and lower eluent vol-
ume compared to the other SPE methods, were achieved. 
Also, Zr-MOF-NH2 as sorbent in comparison with other 
sorbent that mentioned in Table 3 showed high adsorp-
tion capacity, more stability and reusability.

Conclusion
A porous amino-functionalized metal organic framework 
containing missing-linker defects was firstly prepared 
and then applied for pipette-tip solid phase extraction of 
a drug, carbamazepine. The total time of analysis, includ-
ing extraction was less than 12  min. The Zr-MOF-NH2 
sorbent was used for at least eight extractions without 
any significant change in its capacity or repeatability. 
Only 5 mg of the sorbent was enough for filling the PT. 
The presence of more open active zirconium sites, more 
numbers of hydroxyl groups, the large porosity, very high 
surface area, the amino functionality, and the suitable 
pore size of the Zr-MOF-NH2 could improve the extrac-
tion of CBZ. Moreover, the fast, inexpensive, effective, 

Table 1  Analytical figures of  merit for  Zr-MOF-NH2 
for extraction of CBZ

Parameter Analytical feature

Linear Dynamic range (μg L−1) 0.1–50

R2 (determination coefficient) 0.9988

Repeatability (RSD%) (50 μg L−1) 2.5

Limit of detection (µg L−1) 0.04

Total extraction time (min) ≤ 12

Table 2  Evaluation of carbamazepine in real samples

Sample Concentration 
found (µg L−1)

Spiked 
at concentration 
(µg L−1)

Recovery 
(%)

RSD (%)

Urine 0 5 99.4 3.6

20 98.8 4.2

50 98.2 6.2

Tap 
water

0 50 99.2 4.7



Page 10 of 12Rezaei Kahkha et al. Chemistry Central Journal  (2018) 12:77 

Fig. 10  Chromatograms obtained for the analysis of carbamazepine; a direct injection of urine sample, b direct injection of urine sample spiked 
with 50 µg L−1 of CBZ, and c injection of spiked urine sample with 50 µg L−1 of CBZ after PT-SPE extraction
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reliable, applicable and organic solvent-free method can 
open up new practical applications for MOFs in SPE 
based analytical techniques.
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