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A translational study on looming-
evoked defensive response and the 
underlying subcortical pathway in 
autism
Yu Hu1,2, Zhuoming Chen3, Lu Huang1,2, Yue Xi1,2, Bingxiao Li3, Hong Wang3, Jiajian Yan3, 
Tatia M. C. Lee4,5,6, Qian Tao7, Kwok-Fai So1,2,6,8,9 & Chaoran Ren1,2,9

Rapidly approaching objects indicating threats can induce defensive response through activating a 
subcortical pathway comprising superior colliculus (SC), lateral posterior nucleus (LP), and basolateral 
amygdala (BLA). Abnormal defensive response has been reported in autism, and impaired synaptic 
connections could be the underlying mechanism. Whether the SC-LP-BLA pathway processes looming 
stimuli abnormally in autism is not clear. Here, we found that looming-evoked defensive response 
is impaired in a subgroup of the valproic acid (VPA) mouse model of autism. By combining the 
conventional neurotracer and transneuronal rabies virus tracing techniques, we demonstrated that 
synaptic connections in the SC-LP-BLA pathway were abnormal in VPA mice whose looming-evoked 
defensive responses were absent. Importantly, we further translated the finding to children with autism 
and observed that they did not present looming-evoked defensive response. Furthermore, the findings 
of the DTI with the probabilistic tractography showed that the structural connections of SC-pulvinar-
amygdala in autism children were weak. The pulvinar is parallel to the LP in a mouse. Because looming-
evoked defensive response is innate in humans and emerges much earlier than do social and language 
functions, the absence of defensive response could be an earlier sign of autism in children.

Rapidly approaching objects, known as visual looming, constitute an intrinsic and unconditional warning cue to 
elicit automatic defensive response in dealing with emergency situations. It is of crucial importance to the sur-
vival of an organism and it can be observed in virtually all animal species, including humans1–6. Although there is 
general agreement that the amygdala is critical for detecting threats and triggering defensive response, there is a 
debate regarding whether the threat information is transmitted through a visual cortical or subcortical pathway7. 
Converging evidence from animal and human imaging studies provide some fuel in favor of the subcortical path-
way. Prior studies in rodents documented the role of midbrain structures for rapid processing of threatening stim-
uli, supporting an important role of subcortical pathway to amygdala8,9. Using looming stimulations that mimic 
an approaching aerial predator to initiate a rapid escape response5,10, a superior colliculus (SC)-lateral posterior 
nucleus (LP)-basolateral amygdala (BLA) pathway has been revealed for detecting visual threats in mice9. That is 
in agreement with neuroimaging studies in healthy human subjects report co-activation of subcortical structures 
of the amygdala, the SC, and the pulvinar nucleus of the thalamus during non-conscious visual perception of 
fearful stimuli11–14. Investigations on patients with cortical blindness after V1 lesion provide additional support 
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for the subcortical involvement during non-conscious perception of fearful stimuli15,16. Importantly, recent ana-
tomical studies using in vivo tractography provided evidence for the existence of the SC-pulvinar-amygdala path-
way in non-human primates, healthy humans, and a blindsight patient with destruction of the visual cortex17–19.

The dysfunction of the amygdala and SC has been observed in animal models of autism. This dysfunction 
is thought to be related to deficits in fear processing and attention20–23. Clinically, individuals with autism also 
exhibit a “lack of fear in response to real dangers” and difficulty with reading fearful emotions24,25. Furthermore, 
neuroimaging studies suggested the abnormal activation of the subcortical nucleus, including the amygdala, SC, 
and pulvinar (equivalent to LP in rodents), when autism patients were viewing fearful stimuli26–29. Whether the 
structure and function of the subcortical pathway regulating looming-evoked defensive response are abnormal in 
animal model of autism and also in autism patients has not been verified.

This study aims to investigate the subcortical visual pathway, SC-LP-BLA in autism mouse model and 
SC-pulvinar-amygdala in children with ASD, on modulating looming induced defensive response by combining 
data from hypothesis-driven animal experiments with tractography data from an association study on a group of 
children with ASD. The present study investigated only male mice and children with ASD because the epidemiol-
ogy studies reported a high male-to-female ratio among children diagnosed with autism30,31. In the animal study, 
we first evaluated the looming-evoked defensive response in an autism-like mouse model (VPA mice) by meas-
uring their flee and freeze behaviors. The neuronal mechanism underlying the dysfunction of looming-evoked 
defensive response in VPA mice was investigated by the conventional neurotracer and transneuronal rabies virus 
tracing and c-Fos brain mapping. The human study established a modified looming paradigm to assess defensive 
behavior in ASD children, who were then assigned to a responding and non-responding subgroup according 
to their behavior evaluations. The SC-pulvinar-amygdala pathway was compared between the responding and 
non-responding groups using measures of probabilistic tractography. Translating our findings from animals 
to human clinical situations, we are finally able to provide evidence that the amygdala subcortical pathway is 
impaired in individuals with ASD, and it could be the underlying mechanism for their deficits in looming induced 
fear processing and defensive response.

Methods
Animals and participants.  For the animal study, all experiments were approved by the Jinan University 
Institutional Animal Care and Use Committee and all methods were performed in accordance with their guide-
lines and regulations. Young male (3–4 weeks old) C57BL/6 mice were used in this study. Animals were housed 
in a 12-hour:12-hour light-dark cycle (lights on at 0700) with food and water provided ad libitum. Animals were 
randomly allocated to experimental and control groups. The experimenters were blind to the experimental group, 
and the order of testing was counterbalanced during behavioral experiments.

For the human study, thirty-three male children with diagnoses of autism participated in the behavioral eval-
uation of looming stimulation. Clinical diagnoses were confirmed using the Childhood Autism Rating Scale 
(CARS)32 and expert clinical judgment according to the DSM-IV criteria. Children with ASD-related medical 
conditions (e.g., fragile X syndrome) and other neurological conditions (e.g., epilepsy) were excluded. The devel-
opmental quotient (DQ) scores of all participants were assessed using the Gesell Developmental Diagnosis Scale 
(GDDS)33. A subsample of 23 ASD children also participated in the MRI study. Informed consent of study partic-
ipation was obtained from the parents or guardians of the participants. Informed consent of online open-access 
publication of identifying information/images in Supplementary Movies 3 and 4 was also obtained from the 
occupational therapist and parents or guardians of the participants. This study was reviewed and approved by the 
Jinan University and all methods were performed in accordance with their guidelines and regulations.

Surgery and intracranial injection.  The mice were anesthetized (Avertin, 13 μl/g, intraperitoneally) and 
placed in a stereotaxic instrument (RWD, Shenzhen, China). Erythromycin eye ointment was applied to prevent 
corneal drying, and a heat pad (RWD, Shenzhen, China) was used to maintain the body temperature at 37 °C. 
A small craniotomy hole was made using a dental drill (OmniDrill35, WPI), and a micropipette connected to a 
Quintessential Stereotaxic Injector (Stoelting, Wood Dale, IL) and its controller (Micro4; WPI, Sarasota, USA) 
were used for injection.

For disynaptic tracing of the SC → LP → BLA pathway, a 0.4-μl helper virus (rAAV-hSyn-GFP-2a-TVA-
2a-RVG-WPRE-pA) (2 × 108 particles/ml) was injected into the LP (6 C57BL/6 mice) (AP: −2.4 mm; ML: 
±1.5 mm; DV: −2.2 mm). The pipette was held in place for 10 minutes and then withdrawn slowly. Twenty-one 
days later, 0.2 μl of SAD-ΔG-DsRed (EnvA) (2 × 108 particles/ml) was injected into the BLA (AP: −1.40 mm; ML: 
±3.25 mm; DV: −4.80 mm).

For the retrograde labeling of LP-projecting SC neurons and BLA-projecting LP neurons, CTB Alexa 
Fluor conjugates (CTB-488, Invitrogen Inc., Grand Island, NY) were injected into the LP (0.1 μl/injection, 
AP: −2.4 mm; ML: ±1.5 mm; DV: −2.2 mm) and BLA (0.1 μl/injection, AP: −1.40 mm; ML: ±3.25 mm; DV: 
−4.80 mm), followed by 0.03 μl of oil (sesame oil; Sigma-Aldrich Corp.) to limit the diffusion of the CTB tracer.

Following injection, the wound was sutured, and antibiotics (bacitracin and neomycin) were applied to the 
surgical wound. Ketoprofen (5 mg/kg) was injected subcutaneously. Animals were allowed to recover from anes-
thesia under a heat lamp.

Injection site verification.  After transcardial perfusion with 0.9% saline followed by 4% paraformalde-
hyde in 0.1 M of PBS, the brain was removed and post-fixed with 4% paraformaldehyde overnight at 4 °C. Then, 
it was transferred into a 30% sucrose solution until sectioning with a cryostat (CM1900, Leica Microsystems, 
Bannockburn, IL). A series of 40-μm sections were collected for the verification of injection sites. tissue sections 
were examined under epifluorescence using a Leica DM6000B microscope.
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Image analysis.  Brain sections across SC, LP, and BLA were imaged with a Zeiss 700 confocal microscope 
with 5x or 20x objectives, or a 40x oil immersion objective. Contrast and brightness were adjusted, and the 
red-green images were converted to magenta-green.

Nest building test.  The ability to build nests was compared between Saline mice and VPA mice as described 
by Deacon et al.34. Briefly, mice were individually housed in clear cages for 24 hours prior to the test. Nesting 
squares (Nestlets) were subsequently provided in each cage. Nest building was assessed based on a five-point 
scale – 1: Nestlet not noticeably touched; 2: Nestlet partially torn; 3: Nestlet mostly shredded, but no identifiable 
nest; 4: Identifiable, but flat nest; and 5: A near perfect nest.

Three-chambered social test.  The sociability of Saline mice and VPA mice was measured with the 
three-chambered social test as described by Peñagarikano et al.35. Briefly, the test mouse was placed in a closed 
central chamber (#2) and allowed to acclimate for 10 minutes. Next, a novel strange mouse was placed under 
an inverted wire cup in chambers #1 or #3, with a duplicate cup placed in the remaining chamber. The gates 
between the chambers were raised, and the behavior of the mouse was recorded for 10 minutes. The total time 
spent with the novel strange mouse versus the novel object was analyzed with a two-tailed paired -test for each 
treatment group. Failure to achieve a statistically significant preference for spending time with a novel stranger 
was considered indicative of abnormal behavior. A set of novel stranger mice had been previously acclimated to 
being restrained for 10-minute periods within the confines of the inverted cup. The stranger mice were alternated 
from side one to side three to ensure that a preference for a specific side by the test mice did not confound the 
outcome. The apparatus was wiped down with 75% ethanol at the onset of investigations and between changes of 
mice thereafter.

Looming stimulation test.  For the animal study, the looming stimulation test was performed in a 
50 × 50 × 37 cm closed arena. A LED monitor was embedded in the ceiling to present the looming stimulus. The 
looming stimulus, which consisted of an expanding black disc, appeared at a diameter of a visual angle of 2° to 
20° in 0.25 s, and it was presented once in 0.25 s or 15 times in 10.75 s. The experimenter triggered the stimulation 
manually when the mouse was in the center of the arena.

For the human study, a modified looming paradigm was adopted. Briefly, the participants were tested indi-
vidually in a darkened room (approximately 5.80 m × 5.50 m, length × width) located in the rehabilitation center 
of the First Affiliated Hospital of Jinan University, China. The participants were instructed to play with one ther-
apist and were allowed to move freely in the room. The visual stimuli included a rock animation presented on a 
screen (1.65 m × 1.25 m, length × width) approximately 2 m in front of the participants. The rock animation was 
approximately 1.20 m × 0.90 m (length × width) and appeared in the center of the screen. Each image loomed 
toward the children from a visual angle of 2° to 20° in 0.25 s, which mimicked the scenario of a child’s being hit 
with a falling rock. The image was presented three times with a randomized interval of three to five minutes. Stim 
software was used to program and run the experimental procedure. The behavior responses to the looming-rock 
paradigm were simultaneously and independently recorded and evaluated by two observers. One observer is a 
psychology master student, and another is an occupational therapist, and both received observer training after 
total agreement was achieved by both observers. The participants were then assigned to one of the two groups 
according to their performance on behavior evaluation. The responding group involved the participants who dis-
played defensive behaviors, such as running away, trying to escape, removing themselves (flight), freezing, being 
immobilized, or hiding. In contrast, the non-responding group demonstrated impaired defensive behaviors; the 
participants ignored the rock animation and continued playing.

Optomotor test.  Optomotor test were conducted in Saline mice (n = 7 animals) and VPA mice (n = 6 ani-
mals). Briefly, Mice were placed on a platform in the form of a grid (12 cm diameter, 19.0 cm above the bottom of 
the drum) surrounded by a motorized drum (29.0 cm diameter) that could be revolved clock-wise or anticlock-
wise at two revolutions per minute. After 5 min of adaptation in the light (400 lux), vertical black and white stripes 
of a defined spatial frequency were presented to the animal. These stripes were rotated alternately clockwise and 
anticlockwise, for 2 min in each direction with an interval of 30 s between the two rotations. Various spatial fre-
quencies subtending 0.03, 0.13, 0.26, 0.52 and 1.25 cycles/degree were tested individually on different days in a 
random sequence. Animals were videotaped with an infrared digital video camera for subsequent scoring of head 
tracking movements.

MRI data acquisition.  MRI scans were acquired on a GE Discovery MR750 3 T system at the First Affiliated 
Hospital of Jinan University, China. An eight-channel phased-array head coil was used for the imaging experi-
ments. The children were sedated for imaging using oral chloral hydrate (0.8~0.9 ml/kg). A pediatrician trained 
in MRI procedures was in attendance throughout the examination. The DTI scan consisted of a single-shot 
diffusion-weighted EPI sequence with the following parameters: TR/TE = 5000/70 ms, matrix = 256 * 256, 
FOV = 256 mm, slice thickness = 3 mm without gap, number of slices = 46 axial slices, diffusion directions = 25, 
b-values = 0 and 1000 s/mm2. A 3D-BRAVO sequence was collected for anatomical localization with the fol-
lowing parameters: TR/TE = 8.2/3.2 ms, inversion time (TI) = 450 ms, flip angle = 12°, matrix = 256 * 256, 
FOV = 240 mm, slice thickness = 1.0 mm without gap.

Data analysis.  For the animal study, data analysis was done by experimenters blind to experimental condi-
tions. One-way analysis of variance (ANOVA) was used to quantify the duration from start to end, the peak speed 
during and after looming stimulation, and the number of c-Fos + cells and rabies virus/ CTB–labeled neurons. 
Data are shown as mean ± standard error of the mean (SEM). Statistical significance was set at p < 0.05.
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Four Saline mice and 4 VPA mice, received BLA injection of rabies virus and LP injection of helper virus, were 
used to analyze the number of rabies labeled LP neurons and number of BLA-projecting LP neurons. In each 
mouse, the number of rabies labeled LP neurons and number of BLA-projecting LP neurons were counted in 4 
serial brain sections (40 μm/section) across the LP and BLA, respectively. Finally, the average number of rabies 
labeled LP neurons and BLA-projecting LP neurons was calculated in the 4 mice.

For the human DTI study, image analyses and tensor calculations were carried out by using FSL (http://www.
fmrib.ox. ac.uk/fsl/index.html) and tract-based spatial statistics (TBSS)36,37. First, an experimenter inspected all 
volumes for severe motion and other artifacts. Diffusion-weighted images were then corrected for every current 
distortion and head motion. A brain mask was generated to separate the brain from non-brain areas. The binary 
brain mask, averaged diffusion-weighted data, b-values, and vector information were then input into FDT, which 
fits a diffusion tensor model at each voxel. The result of this process was an FA map for each participant. Following 
this, the probabilistic tractography was performed following the method described previously38. Fiber tracking 
was initiated from all voxels within the seed of ROI in the diffusion space to generate 5000 streamline samples, 
with a step length of 0.5 mm, a curvature threshold of 0.2, and a maximum number of 2000 steps39. All ROI 
masks of bilateral amygdala, SC, and pulvinar were drawn manually in accordance with anatomical landmarks 
by an experienced imaging doctor and inspected for accuracy by the investigator. The ROIs were then linearly 
transformed into the native space of each participant. Fiber tracking was performed between the amygdala and 
SC via the pulvinar (used as waypoint) in both hemispheres of each individual participant. Fiber tracking was 
performed in both directions, from the amygdala (seed ROI) to SC (target ROI) and from SC (seed ROI) to the 
amygdala (target ROI). For each participant, the two tractographies were averaged to produce final tract pathways 
in each hemisphere. The tracts thresholded at 5% were binarized, transformed to the MNI space, and summed 
across the participants to produce group probability maps. These group probabilistic maps were set at a threshold 
that allowed the paths present in only at least 40% of the subjects to be displayed. The John Hopkins University 
(JHU) white matter tractography atlas was used for tract labeling40. Then, the mean FA from voxels within these 
group probability maps were calculated for each participant and exported to SPSS. We used two-sample t tests to 
determine significant differences in FA between the different participant groups.

Results
VPA mice exhibited deficits in looming-evoked defensive response.  An autism-like mouse model 
was created by exposing mice to VPA on the 10.5th day of gestation, whereas mice in the control group were 
treated with saline (Fig. 1a). Compared with the offspring of saline-treated mice (Saline mice), the offspring of 
VPA-treated mice exhibited increased autism-like behaviors, including a significantly lower score on the nest 
building test and significantly less contact time with the novel object on the three-chamber test (Fig. 1b).

Looming-evoked defensive responses were tested with a behavioral assay of a rapidly expanding dark disk 
stimulus (looming stimulus of −2 degrees of the visual angle expanded to 20 degrees in 250 ms) presented over-
head 15 times over 10.75 s (Fig. 1c)5,9,10. Under this paradigm, 98.3 ± 0.7% of saline-mice responded by fleeing 
from the center of the arena and freezing (Fig. 1d and Supplementary Movie 1). By contrast, looming stimulation 
did not evoke a flee or freeze response in 43.9 ± 3.7% of VPA mice, which continued to explore the arena during 
and after the looming stimulation (Fig. 1d,e and Supplementary Movie 2). In the optomotor test, there was no 
significant difference between Saline mice and VPA mice (Fig. 1f), indicating that visual ability of VPA mice was 
unaffected. These results indicate that looming-evoked defensive response is impaired in a subgroup of VPA mice.

Looming activation of SC-LP-BLA pathway was impaired in VPA mice.  The activation of the 
subcortical circuit from SC → lateral posterior nucleus of the thalamus → basolateral amygdala (SC-LP-BLA) 
underlies the induction of looming-evoked defensive response9,10. To determine whether the looming-evoked 
activation of the SC-LP-BLA pathway was affected in VPA mice, which had no response to looming stimulation, a 
looming-related c-Fos mapping strategy was adopted to assess the changes of neuronal activity in the SC-LP-BLA 
pathway. Twelve Saline mice and thirteen VPA mice were given three days of adaptation in the arena. On the 
fourth day, a single looming stimulus (15 presentations over 10.75 s) was presented to six Saline mice (Saline-L) 
and seven VPA mice (VPA-L) (Fig. 2a). The remaining Saline mice (n = 6, Saline-NL) and VPA mice (n = 6, 
VPA-NL) were treated in a similar manner without the presentation of the looming stimulus. Looming stim-
ulation significantly increased the number of c-Fos positive neurons in the SC-LP-BLA pathway in both Saline 
mice and VPA mice (Saline-NL vs Saline-L: SC, p < 0.0001; LP, p < 0.001; BLA, p < 0.001. VPA-NL vs VPA-L: 
SC, p < 0.05; LP, p < 0.001; BLA, p < 0.0001. Fig. 2b,c). However, the number of c-Fos positive neurons in the 
SC-LP-BLA pathway was significantly decreased in VPA-L animals compared to saline-L animals (Saline-L vs 
VPA-L: SC, p < 0.001; LP, p < 0.001; BLA, p < 0.05. Fig. 2b,c). In Contrast, there was no significant changes in the 
number of c-Fos positive neurons in dorsal periaqueductal grey (dPAG), which is considered to play an important 
role in the regulation of defensive behavior (Fig. 2b,c). These results suggest that c-Fos induction was reduced in 
VPA mice, which exhibited impaired looming-evoked defensive response.

Connections of SC-LP-BLA pathway were impaired in VPA mice.  Abnormal synaptic connections 
in the brain have been found in autism41,42. We postulated that the reduced c-Fos induction of the SC-LP-BLA 
pathway in VPA mice might be accompanied by disrupted synaptic connectivity. To test this hypothesis, we first 
compared the disynaptic connections between SC and BLA in Saline mice and VPA mice by using a modified 
rabies transsynaptic tracing method (Fig. 3a). LP neurons were infected by AAV expressing the rabies glycopro-
tein and histone-tagged green fluorescent protein (helper) (Fig. 3a,b). SAD-ΔG-DsRed (EnvA) was injected into 
BLA to infect helper+ BLA-projecting LP neurons via their presynaptic terminals (Fig. 3a,b). The double-infected 
rabies-DsRed+/Glyco-GFP+ LP relay neurons produce infectious ΔG-rabies-DsRed, which propagates trans-
neuronally to infect the SC neurons that have formed synapses with them (Fig. 3c). Compared with Saline 

http://www.fmrib.ox
http://www.fmrib.ox


www.nature.com/scientificreports/

5SCIENTIfIC RepOrTS | 7: 14755  | DOI:10.1038/s41598-017-15349-x

mice, the number of rabies viruses labeled SC neurons and LP neurons was significantly decreased in VPA mice 
(p < 0.001, Fig. 3c,d). These results suggest that the disynaptic connections from SC to BLA were abnormally 
decreased in VPA mice.

Next, retrograde tracing was conducted to determine whether the connections of LP-BLA or SC-LP or 
were impaired in VPA mice. First, to label BLA-projecting LP neurons in a retrograde way, 100 nl of the chol-
era toxin B subunit conjugated to Alexa Fluor 488 (CTB-488) was injected into BLA (Fig. 4a). The number of 
CTB-488-labeled BLA-projecting LP neurons was significantly decreased in VPA mice compared to Saline 
mice (p < 0.0001, Fig. 4a,c). Next, to label LP-projecting SC neurons in a retrograde way, 100 nl of CTB-488 
was injected into LP (Fig. 4b). The number of CTB-488-labeled LP-projecting SC neurons was also significantly 
decreased in VPA mice compared to Saline mice (p < 0.0001, Fig. 4b,d). These results suggest that the synaptic 
connections from LP to BLA and from SC to LP are disrupted in VPA mice.

Children with autism exhibited deficits in looming-evoked defensive response.  Looming-evoked 
defensive response was tested in thirty-three male children with autism by using an adapted looming paradigm 
with a rapidly expanding rock stimulus (looming stimulus of −2 degrees of the visual angle expanded to 20 

Figure 1.  Looming-evoked defensive response was impaired in a subgroup of VPA mice. (a) Experimental 
design of behavior tests in VPA mice. (b) VPA mice exhibit increased autism-like behaviors in three-chamber 
test and next building test. Unpaired t test; *p < 0.05, **p < 0.001, ***p < 0.001; ns = no significant difference. 
(c) Schematic of looming animation and testing arena. (d) Representative traces of animal movement for 10.75 s 
and after 30 s of looming stimulation in Saline mice and VPA mice; time in corner is duration from start to end. 
(e) Duration from start to end points, peak speed during and after looming stimulation in Saline mice and VPA 
mice. Unpaired t test; **p < 0.001, ***p < 0.0001. (f) The optomotor response of animals treated with saline or 
VPA tested under photopic condition. The responses in both animal groups were similar.
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degrees in 250 ms) presented to the child three times with a randomized interval of three to five minutes. Ten of 
the children with autism (30.30%) displayed defensive behaviors, such as running away, trying to escape, remov-
ing themselves (flight), freezing, being immobilized, or hiding (Fig. 5a and Supplementary Movie 3). In contrast, 
twenty-three of these autism children demonstrated impaired defensive behaviors in terms of ignoring the rock 

Figure 2.  Looming induced c-Fos activation of the superior colliculus-lateral posterior nucleus-basolateral 
amygdala (SC-LP-BLA) pathway was impaired in non-responding VPA mice. (a) Design of looming-evoked 
c-Fos experiment. (b) Illustration of c-Fos+ cells in SC, LP, BLA, and dPAG in saline-NL, saline-L, VPA-NL, 
and VPA-L groups. Scale bar, 50 μm. (c) Quantification of c-Fos+ cells in SC, LP, BLA, and dPAG in each group 
of animals. One-way ANOVA; ns = no significant difference, *p < 0.05, **p < 0.001, ***p < 0.0001.
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animation and continued playing (Fig. 5a and Supplementary Movie 4). The children with autism in the respond-
ing and non-responding groups were matched by their ages, DQ, and scores on the CARS (Table 1). These results 
suggest that looming-evoked defensive response was also impaired in a subgroup of children with autism.

FA values of SC-pulvinar and pulvinar-amygdala were reduced in non-responding children with 
autism.  A subgroup of children with autism (n = 23) was also invited to participate in the DTI study (Table 1). 
In humans, the SC-pulvinar-amygdala subcortical pathway has been found to play an important role in mediat-
ing fear-related behaviors12–15. Notably, pulvinar is commonly regarded as a LP-related structure in rodents43. To 
examine the connectivity of the SC-pulvinar-amygdala pathway in children with autism, the probabilistic trac-
tographies of SC-pulvinar and pulvinar-amygdala, indexed by fractional anisotropy (FA) values, were compared 
between responding (n = 8) and non-responding (n = 15) children with autism. The independent t tests revealed 
higher FA values in the responding group compared with the non-responding group for the right SC-pulvinar 
(t1,21 = 1.923, p = 0.068) and right pulvinar-amygdala (t1,21 = 2.637, p = 0.015) (Fig. 5b,c). The results suggest that 
there is an under-connectivity of the SC-pulvinar-amygdala pathway in non-responding children with autism.

Figure 3.  Disynaptic connections from SC to BLA were decreased in non-responding VPA mice. (a) Design of 
helper virus and SAD-ΔG-DsRed (EnvA). (b) Experimental design of virus tracing. (c) Illustration of LP relay 
neurons (white) and SC presynaptic neurons in Saline mice and VPA mice. Scale bars, 20 μm. (d) Quantification 
of rabies virus labeled LP neurons and SC neurons in Saline mice and VPA mice. Unpaired t test; **p < 0.001, 
***p < 0.0001.
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Discussion
Among the most critical of the visual functions is the detection of threats in the environment. Rapidly approach-
ing objects, known as looming objects, have been shown to trigger defensive responses across animal species. 
Lacking the ability to respond to looming stimuli would result in excessive risk-taking and dangerous behavioral 
consequences. Abnormal defensive behaviors in response to threatening stimuli have been found in mice model 
of autism21 as well as in children with autism24,25. In this study, we found abnormal looming-evoked defensive 
response in both an autism-like mice model and patients with autism. We established an autism-like mice model 
via a single injection of VPA to pregnant mice on gestational day 10.5. Previous studies found that VPA treatment 
induced an abnormal differentiation of the neural tube in mice and an increase in autism-like behaviors in their 
offspring44,45. Consistently, we observed deficits of social behaviors in VPA mice through several behavioral tests. 
The results of the looming test indicated that 43.9 ± 3.7% of the VPA mice failed to freeze or engage in flight in 
response to looming stimuli. In parallel, the non-response rate for looming stimulation is 76.7 ± 4.3% in children 
with autism.

Recent studies conducted in mice have justified that looming-evoked defensive response is triggered by the 
activation of a subcortical pathway consisting of SC, LP, and BLA9,10. Following this line of thought, we speculated 
that the looming-evoked activation of the SC-LP-BLA pathway might be impaired in non-responding VPA mice. 
This was born out of our c-Fos mapping experiments, which showed that looming-evoked c-Fos expression in 
SC, LP, and BLA was significantly decreased in non-responding VPA mice compared to responding VPA mice 
and Saline mice. Disrupted neural connections were observed in autism-like animal models46–48. The deficits 
of the looming-evoked activation of the SC-LP-BLA pathway observed in non-responding VPA mice might be 
due to disrupted neural connections in the SC-LP-BLA pathway. Consistent with this speculation, results from 
rabies virus disynaptic tracing suggested an under-connectivity between SC and BLA in non-responding VPA 

Figure 4.  Synaptic connections from SC to LP and from LP to BLA were impaired in non-responding VPA 
mice. (a) Illustration of CTB-labeled BLA-projecting LP neurons in Saline mice and VPA mice in a retrograde 
manner. Scale bars, 20 μm. (b) Illustration of CTB-labeled LP-projecting SC neurons in Saline mice and VPA 
mice in a retrograde way. Scale bars, 20 μm. (c,d) Quantification of CTB + BLA-projecting LP neurons and LP-
projecting SC neurons in Saline mice and VPA mice. Unpaired t test; ***p < 0.0001.
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mice. The results of the CTB retrograde labeling further demonstrated that, relative to the controls, the number 
of LP-projecting SC neurons and BLA-projecting LP neurons was significantly lower in the non-responding VPA 
mice. It has been well established that the transduction of CTB relies on intact neural connections49. Thus, neural 
connections from SC to LP and from LP to BLA are impaired in non-responding VPA mice.

An SC-pulvinar-amygdala subcortical pathway also exists in humans, in which pulvinar is commonly regarded 
as a LP-related structure in rodents. Neural connectivity in this pathway may be abnormal in children with autism 
who have exhibited impaired looming-evoked defensive response. In agreement with this, our DTI data revealed 
a lower FA in SC to pulvinar and in pulvinar to amygdala in the right hemisphere in non-responding children 
with autism compared with responding children. Several DTI studies have reported reduced FA in the amygdala 
and thalamus in patients with autism50,51. FA is the most commonly used measure of white matter integrity. A 
lower FA indicates the breakdown of white matter integrity, which could cause neural noise and disruptions of 

Figure 5.  Looming-evoked defensive response was impaired in a subgroup of children with autism 
accompanied by abnormal synaptic connections in SC-pulvinar-amygdala pathway. (a) Looming-evoked 
defensive responses were impaired in 69.70% of children with autism. (b) Higher FA values were revealed for 
right SC-pulvinar and right pulvinar-amygdala in the responding group (n = 8) compared with non-responding 
group (n = 15). Unpaired t test; *p < 0.05. (c) Within-group probabilistic tractography maps for right SC-
pulvinar and right pulvinar-amygdala.

Behavior study DTI study

Responding 
(n = 10)

Non-responding 
(n = 23) p

Responding 
(n = 8)

Non-responding 
(n = 15) p

Age(months) 43.80 46.09 0.723 43.38 44.47 0.879

DQ score 51.12 50.41 0.885 59.90 54.49 0.314

CARS score 32.50 32.35 0.863 30.50 31.53 0.346

Table 1.  Demographic data for the children with autism in the behavior study and DTI study.



www.nature.com/scientificreports/

1 0SCIENTIfIC RepOrTS | 7: 14755  | DOI:10.1038/s41598-017-15349-x

the conduction of action potentials, finally resulting in less efficient neural transmissions52,53. The abnormality 
of the connectivity in the right SC-pulvinar-amygdala may affect the function of this subcortical pathway. By 
contrast, the between-group difference of FA values is not significant in the left SC-pulvinar-amygdala pathway. 
The structural asymmetries concur with the right-hemisphere phasic alertness network comprising the right 
amygdala, thalamus, dorsolateral and ventrolateral frontal cortices, and anterior cingulate cortex54. Importantly, 
it is consistent with results of an fMRI study on auditory looming55. The study presented rising intensity sounds 
(auditory looming) to healthy subjects and measure their brain activity using fMRI. The results found activations 
of the right amygdala, but not the left amygdala55.

To our knowledge, this study is the first to confirm an impairment of looming-evoked defensive response in 
both an autism-like animal model and autism patients. Our data suggest that autism is associated with abnormal 
subcortical connectivity, which may lead to the impairment of defensive response. The looming paradigm seems 
sensitive to marking a subgroup of autism children, suggesting that the looming paradigm may be useful for 
application in clinical practice for autism screening. Genetic studies found susceptibility genes in ASD, which are 
known to be important for neural circuit formation—in particular, axonal and dendritic growth, synaptogenesis, 
and synaptic homeostasis56–58. Further studies will be required to determine the genetic mechanism underlying 
impaired looming-evoked defensive response in autism.
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