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Introduction: Parkinson’s disease hinders the ability of a person to perform daily

activities. However, the varying impact of specific symptoms and their interactions on a

person’s motor repertoire is not understood. The current study investigates the possibility

to predict global motor disabilities based on the patient symptomatology andmedication.

Methods: A cohort of 115 patients diagnosed with Parkinson’s disease (mean age

= 67.0 ± 8.7 years old) participated in the study. Participants performed different

tasks, including the Timed-Up & Go, eating soup and the Purdue Pegboard test.

Performance on these tasks was judged using timing, number of errors committed,

and count achieved. K-means method was used to cluster the overall performance and

create different motor performance groups. Symptomatology was objectively assessed

for each participant from a combination of wearable inertial sensors (bradykinesia,

tremor, dyskinesia) and clinical assessment (rigidity, postural instability). A multinomial

regression model was derived to predict the performance cluster membership based on

the patients’ symptomatology, socio-demographics information and medication.

Results: Clustering exposed four distinct performance groups: normal behavior, slightly

affected in fine motor tasks, affected only in TUG, and affected in all areas. The statistical

model revealed that low to moderate level of dyskinesia increased the likelihood of being

in the normal group. A rise in postural instability and rest tremor increase the chance

to be affected in TUG. Finally, LEDD did not help distinguishing between groups, but

the presence of Amantadine as part of the medication regimen appears to decrease the

likelihood of being part of the groups affected in TUG.

Conclusion: The approach allowed to demonstrate the potential of using

clinical symptoms to predict the impact of Parkinson’s disease on a person’s

mobility performance.
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease
characterized by both motor and non-motor symptoms,
including tremor, postural instability, muscle rigidity, and
bradykinesia or akinesia (Sveinbjornsdottir, 2016). These
symptoms affect the ability of patients to perform activities of
daily living (ADL) to a varying extent. There is currently no cure

FIGURE 1 | Study inclusion flowchart.

for PD, and symptoms are chiefly managed with medication.
While the treatment goal is to maximize the person’s ability to
perform everyday tasks, the impact of each symptom on ADL,
and most importantly, of the combination of symptoms, is not
well-understood. Past studies have tried to identify different
phenotypes in PD to help with this issue, and to guide diagnosis,
prognosis, and treatment (Eisinger et al., 2019). These studies
identified a tremor dominant subtype and a postural instability
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gait disorder group (Foltynie et al., 2002). Some studies also
recognize an indeterminate subtype to PD, while others propose
further sub-groups such as axial dominant, appendicular
dominant, and rigidity dominant (Eisinger et al., 2017). In other
words, classical approaches for PD phenotyping is mainly based
on an a priori hypothesis of the importance of the dominant
motor symptom on the patient’s ability to perform ADL. Yet,
patients with PD are often affected by more than one symptom.
Combination of symptoms may exacerbate mobility issues or
limit the efficacy of compensatory strategies. Furthermore, recent
studies have outlined the impact of non-motor symptoms on the
patients’ ability to perform various ADL (Berganzo et al., 2016).
The heterogeneity of the clinical profiles associated with PD
therefore result in an unclear relationship between the traditional
PD subgroups and the patients’ proficiency in ADL. Thus, it
appears desirable to revise this classification to allow a better
correspondence with the treatment goal. One way to do so is
to redirect the sub-typing approach toward an understanding
of the functional impact of a patient’s symptomatology on
its global motor repertoire. Functional impact of a disease is
traditionally assessed using questionnaires (Shulman et al.,
2016). However, self-reported questionnaire are inclined to over
or under-estimation of the patient’s ability to perform activities
and may suffer from flooring effect, as recently demonstrated
by Regnault et al. (2019) for early Parkinson’s disease. In an
attempt to shed light on this type of issue, our lab has been
working on developing methodologies to assess and objectively
quantify symptoms and motor skills performance to better
understand the relationship between PD symptoms and motor
skills performance. We herein set to explore the capacity to
assess the impact of the different symptoms on the motor skills
repertoire in a global fashion. Specifically, this study aimed at: (1)
exploring motor skill performance profiles in patients with PD;
(2) identifying the factors (in our case symptoms) influencing
the affiliation with a specific motor performance profile; and (3)
verifying the possibility to create a model allowing to predict the
motor performance profile based on the symptomatology.

METHODS

Participants
Data were extracted from a cohort of 121 patients diagnosed
with PD. These participants were recruited in collaboration with
the Quebec Parkinson Network and the Movement Disorders
Clinic of the University of Calgary. Inclusion criteria consisted
of a valid PD diagnosis given by a neurologist based on the UK
Parkinson’s Disease Society Brain Bank clinical diagnosis criteria
(Hughes et al., 1992). Patients requiring assistance to walk, having
an orthopedic condition that could hinder the performance of the
tasks, as well as patients with a psychosis, were all excluded from
the study. Previous publications using the data bank focused
on the concomitant presence of cardinal symptoms of PD with
dyskinesia (Goubault et al., 2018), as well as the influence of
dyskinesia on motor performance (Goubault et al., 2019). For
the present study, six additional participants were excluded as
detailed in Figure 1. As a result, a sample of 115 patients,
described in Table 1, was considered for the present study.

TABLE 1 | Study participants description.

Healthy elderly

(n = 69)

Parkinson’s disease

patients (n = 115)

p

GENERAL

Gender (% male) 56.5% 58.3% P = 0.8779

Age (yr) 68.1 ± 7.7 67.0 ± 8.7 P = 0.4246

Height (m) 1.67 ± 0.09 1.69 ± 0.10 P = 0.4804

Weight (Kg) 71.3 ± 14.5 69.9 ± 13.1 P = 0.6188

BMI 25.3 ± 3.9 24.5 ± 4.0 P = 0.1928

MMSE (/30) 28.6 ± 1.5 27.3 ± 2.5 P < 0.001

DISEASE INFO

H&Y – 1: 22.6% 3: 15.7%

2: 53.9% 4: 7.8%

–

UPDRS gait – 1.1 ± 0.9 –

UPDRS freezing of gait – 0.3 ± 0.8 –

UPDRS postural stability – 1.1 ± 1.0 –

UPDRS posture – 0.8 ± 1.0 –

UPDRS global

spontaneity of

movement

– 1.1 ± 1.0 –

UPDRS Postural tremor – 0.5 ± 0.9 –

UPDRS rest tremor – 0.2 ± 0.6 –

UPDRS rigidity – Arms: 0.7 ± 0.7 –

Legs: 1.1 ± 0.7 –

Years since diagnosis – 10.5 ± 5.8 –

MEDICATION

LEDD – 1029.1 ± 509.2** –

Levodopa (%) – 100* –

Agonist (%) – 32.7* –

Amantadine (%) – 39.8* –

COMT or MAOB (%) – 49.6* –

BMI, Body Mass Index; MMSE, Mini-Mental State Exam; H&Y, Hoehn and Yahr
scale; UPDRS, Unified Parkinson’s Disease Rating Scale; LEDD, Levodopa Equivalent
Daily Dose.
*Missing medication profile for 2 participants; **Missing info for 6 participants.

A second group of participants composed of 69 age and
gender-matched community-dwelling elderly (43.5% female, age
= 68.1 ± 7.7 years old, BMI = 25.3 ± 3.9) was also recruited
through the Center de Recherche de l’Institut universitaire de
gériatrie de Montréal (CRIUGM) to provide control data. The
study protocol was approved by both the CRIUGM and the
Conjoint Health Research ethics boards, and all participants
provided written informed consent.

Experimental Protocol
The experimental protocol has been described in detail
previously (Goubault et al., 2018, 2019). In brief, participants
were tested on their regular medication and equipped with
an inertial suit containing 17 sensors (IGS-180, Synertial Ltd,
UK), allowing the capture of the entire body kinematics. Each
sensor is composed of a 3-axis accelerometer, measuring linear
acceleration, a 3-axis gyroscope, assessing angular velocity, and
a 3-axis magnetometer. Upon arrival to the lab, participants
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took their medication and were asked to fill-up a socio-
demographic questionnaire as well as cognitive and quality of
life questionnaires. The study’s objective data acquisition process
was then divided into two blocks of ADL, nested between blocks
of symptoms evaluation. The chosen ADL included a variety of
activities corresponding to a wide range in velocity and amplitude
of motion (upper and/or lower limbs), in order to represent the
complete motor repertoire. Tasks were selected from a variety
of ADL and instrumented ADL scales (Klein and Bell, 1982;
Fahn et al., 1987; Lozano et al., 1995; Boraud et al., 2001; Health
Canada Interdepartmental Committee on Aging Seniors Issues,
2001; Krystkowiak and Defebvre, 2002; Guttman et al., 2003;
Health Canada/Parkinson Society Canada, 2003; Goetz et al.,
2008; Colosimo et al., 2010; Carignan et al., 2011). Chosen tasks
included eating soup, cutting and eating a piece of apple, taking
pills, drinking a glass of water, counting money, reading a book
out loud, reaching to grab an object on the ground, rising from a
chair, walking, turning, sitting down (Timed-Up and Go, TUG),
and the Purdue Pegboard task. Participants were cued to initiate
the task when a light, positioned in front of them, turned on. For
this specific study, a subset of tasks was considered in order to
limit the degrees of freedom in the analysis. The selected tasks
included the TUG, eating soup (ES), and the Purdue Pegboard
test (PB). While ES involves short range, slow speed movements,
PB requires short range and fast motion, while the TUG relates
to long range, medium speed global motion. For ES, participants
sat down on a bench with both hands flat on the table. Once
cued by the light, participants were instructed to take the spoon
positioned on the table using their dominant hand, take four
spoons of water at their preferred pace to reproduce true living
conditions, return the spoon to the table, and position their
hands back on the table. The time required to performed the task
corresponds to the time elapsed between the light stimuli and the
time the hands are placed back on the table. For PB, a board with
two parallel rows composed of 25 holes each was placed in front
of the participant. Upon signal, participants were instructed to
insert as many pins in the holes as possible in 30 s, using both
hands alternately. The TUG was initiated with the participant
sitting on a bench. Upon signal (i.e., light), the participant was
asked to rise from the bench without any help if possible (i.e.,
no hands), walk for 3m at their preferred pace, and return to
their initial sitting position. Performance was assessed using the
time required to perform the task (ES, TUG), the count achieved
(PB), and the number of errors committed (ES: dropping water,
dropping the spoon; TUG: needing assistance, using hands to
rise/sit; PB: dropping pins).

The symptoms assessment blocks consisted of a mixture
of clinical evaluation and objective assessment of the
symptomatology: postural instability was assessed using the
pull-back test (Unified Parkinson’s Disease Rating Scale item
3.12), rigidity was evaluated manually for each limb (item
#3.3), bradykinesia was appraised objectively using a rapid
alternating task, while tremor, drug-induced dyskinesia (DID)
and freezing of gait (FoG) were all assessed objectively during
appropriate tasks using inertial data (Goubault et al., 2018).
Briefly, tremor was assessed using the signal captured by
the gyroscopes positioned on the hands. These signals were

band-pass filtered between 3 and 7.5Hz to isolate the tremor
frequency range. A power density spectrum was then used to
identify the signal dominant frequency, as well as its dispersion.
Tremor was detected when dispersion was below 2Hz, in which
case the corresponding tremor value was fixed to the dispersion
bandwidth. DID was assessed during the tasks, using signals
from the sensors not directly involved in the specific task. Signals
from the gyroscopes were again band-pass filtered, this time
between 0.5 and 4Hz. The energy of the resulting signal was
then computed, per segment. The average energy among the
different segments considered corresponds to the DID value
attributed for the task. Freezing of gait was assessed during
the walking portion of the TUG. The process uses the ratio
of the power of the signal within the walking bandwidth to
the power located within the freezing bandwidth to identify
freezing events.

Performance Clusters Identification
A clustering approach was used to explore the presence of motor
skills performance profiles within a group of patients medicated
for PD. This method allows the groups to emerge directly from
the data without bias (Rui and Wunsch, 2005). In this specific
case, performance clusters were based on five metrics extracted
from three selected tasks: TUG time, TUG errors, Eating soup
time, Eating soup errors, and Pegboard number of pins. To
ensure all metrics have a similar influence during the clustering
process, timing features as well as the Pegboard pins count were
first normalized based on the control group performance data.
Extreme values, defined as values outside the ±4 Z-score, were
also set to the closest valid limit.

Clustering was performed using the K-means method. In
brief, this approach uses an iterative process to minimize the sum
of the distances between each point and its cluster’s centroid,
while maximizing the difference between the clusters (Rui and
Wunsch, 2005). This method, however, requires the user to
specify the desired number of clusters. We defined the ideal
number of clusters as a trade-off between the sum of the
Euclidean distance between each point and its cluster’s centroid
and the resulting number of very small clusters, herein defined as
groups composed of fewer than 10 participants. In other words,
the clustering process was performed using a varying number
of clusters, from 1 to 115 (the number of participants), and the
quality of the resulting clusters was evaluated based on both
the distance cost and the resulting number of small clusters, to
identify the optimal number of clusters. The ability of the clusters
to differentiate performance was then evaluated using a Kruskall-
Wallis ANOVA test. The clustering and validation processes
were performed in Matlab Release 2018a (The MathWorks,
Massachusetts, United States).

Performance Profiles Features
Identification & Membership Prediction
The second objective of this study consists in analyzing which
features, amongst the motor and the non-motor symptoms as
well as the participants’ characteristics, explain the affiliation
to a specific motor performance profile or cluster. To do so,
symptomatology was first normalized based on the control group
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FIGURE 2 | Performance clusters identification. (A) Visual representation of the clusters based on a subset of 3 factors. (B) Boxplots of the distribution of the different

performance factors within the clusters. The p-values correspond to the result of the Kruskall-Wallis ANOVA test.

data acquired. Then, the sample was divided into a training
and a validation datasets (80–20%). Using the training dataset,
univariate multinomial regression analysis was performed on
each variable, that is age, gender, BMI, years living with PD,
Mini-Mental State Exam (MMSE), symptomatology (dyskinesia,
bradykinesia, rest tremor, postural tremor, kinetic tremor,
rigidity, postural instability, freezing of gait), and medication
regimen [Levodopa Equivalent Daily Dose (LEDD), Levodopa,
Agonist, Amantadine, COMT or MAOB]. All variables with
a marginal significance (i.e., p-value) smaller or equal to 0.2
were identified as potentially explicative variables (PEV) for
a specific cluster membership. A multivariate multinomial
regression analysis was then performed using these PEV. The
model was designed using 80% of the sample; and verified with
the remaining 20%. The accuracy of the proposedmodel was then
evaluated based on a contingency table. All statistical analyses
were performed using SPSS v23 (IBM Corp., Armonk, NY).

RESULTS

Clusters Identification Results
Four clusters of performance were identified (Figure 2A) and
confirmed by statistical analyses. Only the number of errors
made while eating soup was not shown to be a discriminative
factor (Figure 2B). As detailed in Table 2, Cluster 1 is composed
of participants who performed within normal for all tasks and
parameters. Cluster 2 corresponds to participants slightly affected
in fine motor tasks. Cluster 3 is made of participants mainly
affected during the TUG, while the last cluster is composed of
participants affected in all activities.

Performance Features Identification
Results
Cluster membership was attributed to each participant, following
the process described in section Performance Profiles Features
Identification & Membership Prediction. The resulting portrait
of the patients’ symptomatology profiles, per cluster, is reported
in Table 3.

TABLE 2 | Clusters performance details.

Cluster ID p

1 2 3 4

TUG time (s)

Median [Q1,Q3]
13.0

[12.3, 13.6]

Not

affected

14.6

[13.7, 15.5]

Not

Affected

20.2

[17.5, 22.2]

Affected

22.4

[21.2, 25.0]

Affected

p < 0.001

TUG err

Median [Q1,Q3]
0

[0, 0]

Not

affected

0

[0, 0]

Not

affected

1.0

[0, 1.0]

Affected

1.0

[0.5, 2.0]

Affected

p < 0.001

Pegboard

#pins

Median [Q1,Q3]

15.0

[12.5, 18.0]

Not

affected

11.5

[9.0, 14.0]

Slightly

affected

9.0

[8.0, 11.0]

Slightly

affected

7.0

[5.0, 9.0]

Affected

p < 0.001

Eating Soup

time (s)

Median [Q1,Q3]

18.9

[17.9, 20.4]

Not

affected

23.9

[22.6, 26.8]

Slightly

affected

21.3

[17.5, 22.8]

Not

affected

32.3

[27.6, 34.3]

Affected

p < 0.001

Eating Soup

Errors

Median [Q1,Q3]

0

[0, 1]

0

[0, 1]

0

[0, 1]

0.5

[0, 3]

p = 0.1679

Univariate multinomial analysis performed on this set of
data allowed to identify 10 potentially explanatory variables:
age (p = 0.134), MMSE (p = 0.200), dyskinesia (p < 0.001),
bradykinesia (p < 0.001), rest tremor (p = 0.024), kinetic
tremor (p = 0.010), rigidity (p = 0.010), postural instability
(p < 0.001), freezing of gait (p < 0.001), and the presence of
Amantadine in the medication regimen (p= 0.180). Including all
these potentially explanatory variables into a single multinomial
regression allowed to derive a significant model (χ2

= 140.628,
p < 0.001) with a good representativeness (Nagelkerke pseudo
R2

= 0.839). This global model identified postural instability
(p < 0.001), dyskinesia (p = 0.024), bradykinesia (p = 0.022),
rigidity (p = 0.026), freezing of gait (p = 0.040), as well as
Amantadine (p = 0.003) as the main significant variables, while
cognitive impairment (p = 0.064) and rest tremor (p = 0.086)
significantly discriminates between sub-groups 3 and 1 despite
being globally significant.
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TABLE 3 | Patients symptomatology portrait per performance cluster.

Cluster ID

1

(n = 36)

2

(n = 38)

3

(n = 21)

4

(n = 20)

GENERAL

Gender (% male) 52.8% 68.4% 61.9% 45.0%

Age (yr) 64.0 ± 8.7 66.5 ± 8.4 70.0 ± 8.7 70.2 ± 7.5

BMI 23.9 ± 3.3 24.0 ± 3.8 24.9 ± 3.4 26.0 ± 5.5

MMSE (/30) 28.2 ± 1.5 27.9 ± 2.0 26.5 ± 2.6 25.3 ± 3.4

DISEASE INFO

H&Y 1: 41.7% 1: 23.7% 1: 9.5% 1: 0.0%

2: 55.6% 2: 68.4% 2: 33.3% 2: 45.0%

3: 2.8% 3: 7.9% 3: 47.6% 3: 20.0%

4: 0.0% 4: 0.0% 4: 9.5% 4: 35.0%

Years since

diagnosis

8.8 ± 3.7 10.6 ± 5.9 11.8 ± 7.7 12.2 ± 6.4

MEDICATION

LEDD 994.9 ± 450.8 866.0 ± 448.1 1378.8 ± 567.4 1051.5 ± 523.7

Levodopa (%) 100% 100% 100% 100%

Agonist (%) 38.9% 35.1% 35.0% 15.0%

Amantadine (%) 50.0% 35.1% 15.0% 55.0%

COMT or MAOB(%) 47.2% 59.5% 40.0% 45.0%

SYMPTOMS

Dyskinesia

(normalized value)

1.1 ± 1.6

[−1.7, 4.2]

−0.5 ± 1.4

[−2.7, 2.5]

0.6 ± 2.1

[−3.2, 3.2]

−0.8 ± 2.2

[−4.1, 4.1]

Bradykinesia

(normalized value)

−1.1 ± 1.1

[−3.9, 0.7]

−1.9 ± 1.8

[−6.0, 1.1]

−1.7 ± 1.6

[−4.6, 1.1]

−3.6 ± 1.5

[−6.0, −0.9]

Rest tremor

(normalized value)

0.3 ± 4.1

[−6.0, 6.0]

0.7 ± 3.9

[−6.0, 6.0]

1.1 ± 4.3

[−6.0, 6.0]

2.8 ± 3.2

[−2.3, 6.0]

Postural tremor

(normalized value)

[1.6, 6.0] [1.6, 6.0] [1.6, 6.0] [1.6, 6.0]

Kinetic tremor

(normalized value)

0.5 ± 1.8

[−2.8, 6.4]

−0.1 ± 1.8

[−3.0, 4.9]

1.6 ± 2.1

[−2.1, 5.5]

1.3 ± 2.3

[−3.5, 6.0]

Postural instability 0.7 ± 0.7

[0.0, 2.5]

0.7 ± 0.7

[0.0, 1.0]

2.1 ± 1.2

[0.0, 4.0]

1.9 ± 1.0

[1.0, 4.0]

Freezing (%) 0.0 ± 0.0

[0.0, 0.0]

0.2 ± 1.2

[0.0, 2.0]

5.0 ± 15.7

[0.0, 71.6]

3.8 ± 9.0

[0.0, 36.6]

Rigidity 0.8 ± 0.6

[0, 2.5]

0.9 ± 0.6

[0, 2.0]

0.8 ± 0.8

[0, 2.5]

1.3 ± 0.6

[0.2, 2.5]

Detailed analysis of the model revealed that:

• an increase in postural instability increases the chance to be
part of cluster 3 or 4, relative to cluster 1 or 2 (p3rel1 = 0.001,
OR3rel1 = 9.323 [2.430, 35.773]; p3rel2 = 0.001, OR3rel2 = 6.785
[2.107, 21.851]; p4rel1 = 0.009, OR4rel1 = 6.268 [1.574, 24.957];
p4rel2 = 0.012, OR4rel2 = 4.561 [1.399, 14.868]);

• an increase of one standard deviation in dyskinesia level
increases the chance to be in cluster 1 compared to cluster 2
or 3 (p1rel2 = 0.014, OR1rel2: 2.12 [1.17, 3.86]; p1rel3 = 0.023,
OR1rel3 = 2.92 [1.16, 7.30]);

• an increase of one standard deviation in bradykinesia level
increases the likelihood of being in cluster 4 relative to cluster
3 (p= 0.025, OR= 6.06 [1.26, 29.41]);

• an increase in rigidity increases the chance to be in cluster 4
relative to cluster 1 (p= 0.025; OR= 34.17 [1.54, 757.05]) and
cluster 2 (p= 0.036, OR= 24.97 [1.23, 506.53]);

• the presence of Amantadine in the medication regimen
appears to decrease the risk of being in cluster 3, when
compared to cluster 1 or 2 (p3rel1 = 0.025, OR3rel1 = 3.22E-4

TABLE 4 | Contingency table.

Predicted cluster

1 2 3 4 % Correct

Observed cluster 1 27 7 1 1 75.0%

2 9 26 0 2 70.3%

3 1 2 16 1 80.0%

4 1 2 0 17 85.0%

Overall percentage 33.6% 32.7% 15.0% 18.6% 76.1%

[2.92E-7, 0.356]; p3rel2 = 0.044, OR3rel2 = 0.001 [7.30E-
7, 0.825]).

This model allowed to classify the participants within their
respective cluster of performance with an accuracy of 76%, as
illustrated in the contingency table (Table 4).

DISCUSSION

This study first aimed at investigating the presence of motor
skills performance profiles in patients medicated for PD. Using
a clustering approach, four different profiles emerged from the
data. Analyzing the variation in metrics within each cluster
revealed that cluster 1 is composed of participants who are not
affected in the motor tasks assessed under medication. Cluster
2 participants are affected only slightly in fine motor tasks.
Cluster 3 participants are mainly affected in mobility tasks, while
cluster 4 involves participants affected in all areas. These clusters
were shown to be statistically different for four performance
metrics out of five, demonstrating the potential of the method.
This approach offers an innovative view for PD classification,
focussed on the global impact of the disease on the patient’s motor
repertoire as opposed to a more classical dominant symptom
classification (Foltynie et al., 2002; Eisinger et al., 2017, 2019;
Erro et al., 2019). To our knowledge, this study is the first
to address the phenotype problematic from this point of view.
Direct comparison between the two classification approaches
would be worth investigating. Nevertheless, it is clear from
the description of the symptomatology profile per cluster that
symptoms coexist within the clusters. This observation supports
a global approach of symptomatology characterization for motor
performance prediction.

Although the clusters identified are statistically significant
and appear to hold a clinical meaning, it shall be noted that
the clustering method could be further refined. Indeed, the K-
mean method requires the user to determine in advance the
number of desired clusters. In order to remain as objective
as possible, we first investigated different potential avenues for
clusters quantity identification, such as the use of the silhouette
validity index and the Calinski-Harabasz index (Arbelaitz et al.,
2013). However, Hennig (2015) exposed an interesting way of
looking at true clusters based on the direct aim pursued by the
clustering process. Indeed, the idea for true or ideal clusters may
vary depending on the situation. In the current study, we know
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that the optimal number of clusters represents different mobility
profiles, however somehow subtle these differences may be. As
such, the dissimilarity between clusters criterion may not be
obvious, and thus, the classic validity indexes may not be optimal.
As such, we identified the ideal number of clusters as a trade-off
between the within clusters similarity and the number of small
clusters created. The pragmatic approach was appropriate for the
current study, but may need to be revisited in other cases.

The second part of the study aimed at exploring potential
factors influencing the affiliation of a participant to a specific
cluster of performance in the “ON” medicated state. It was
shown that postural instability, dyskinesia, bradykinesia, rigidity,
freezing of gait, and Amantadine all play a significant role
in the classification process. Consistent with the literature,
postural instability and freezing of gait discriminated patients
with disabled mobility (Muslimovic et al., 2008; Goubault et al.,
2019). Unsurprisingly, an increase in bradykinesia raised the risk
to be affected in fine motor tasks, but the model suggests that
this is true only for the subset of the sample also affected in
mobility tasks. Indeed, bradykinesia by itself did not come out
as a significant factor to discriminate participants with normal
performance and participants slightly affected in fine motor tasks
(i.e., clusters 1 and 2). However, an increase in residual (i.e.,
on medication) bradykinesia increased the likelihood of being
affected in all domains as opposed to being affected only in
mobility tasks, suggesting that this factor is more relevant to
appendicular rather than axial motor control. Only dyskinesia
came out as a significant factor in the differentiation between
patients with normal performance and patients slightly affected
in fine motor tasks. Indeed, the present way of analyzing this data
confirms what has been described in previous studies (Goubault
et al., 2019) using the same patients that dyskinesia increases, to a
certain extent, the likelihood of being in the normal performance
group when compared to the group slightly affected in fine motor
tasks or the group affected in mobility. We acknowledge the
fact that few patients displayed severe dyskinesia in the current
sample, but low to moderate levels of dyskinesia certainly did
not interfere with the patients’ performance. Results have also
demonstrated that when all other symptoms are equivalent, the
addition of Amantadine in the medication regimen decreases
the risk of being part of the cluster affected in mobility task,
when compared to the normal performance group. These results
are concordant with the effect of Amantadine on gait in PD
patients under deep-brain stimulation [16]. Yet, the impact of
Amantadine on gait is still unclear [17], as well as the fraction of
benefit that may derive from the reduction in levodopa daily dose
afforded by this drug. Cognitive impairment did not come out as
a global significant factor, but it did have a significant impact in
differencing people with disabled mobility.

It is worth mentioning that the reported results could have
been different if patients were tested in their OFF state. Indeed,
all patients were tested at peak dose, assuming medication was
optimal. The reported impact of the different symptoms on the
performance cluster affiliation therefore refers to the effect of
the residual symptoms. Further studies should consider running
similar analyses ON and OFF states to assess not only the direct
impact of the symptoms, but also to bring one step further the

analysis of the medication’s impact instead of only considering
the number of years since diagnosis in the analyses. Another
limit to the current study regards the subset of tasks used for the
analysis. Future work will focus on applying a similar protocol on
the entire set of tasks collected.

The statistical model developed using the global patient
symptomatology allowed to predict the impact of the disease
on the patients’ motor repertoire with an accuracy of 76%. The
model was specifically good at recognizing patients with mobility
and global issues (i.e., clusters 3 and 4). Such results demonstrate
the strength of the global approach, although future work should
investigate other classification approaches to improve the overall
accuracy. For example, machine learning approaches with a K-
fold cross-validation loop could improve the accuracy of the
classification process. The general approach also needs to be
tested on a much larger group of patients and by using traditional
clinical testing to render it more usable. We could then be able
to determine, based on that evaluation, what will be the impact
of the symptomatology of the patient’s ADL, and as such predict
their ability to perform everyday tasks.

CONCLUSION

PD affects the motor repertoire of patients to different
extents. This study demonstrated that four major performance
profiles appear to exist: patients with normal performance,
patients affected slightly in fine motor tasks, patients affected
in mobility tasks and patients affected in all domains of
mobility. This study demonstrated that it is possible to predict
the mobility performance of any patient, based on personal
clinical features. Although future research is needed to refine
the clustering method, as well as performance prediction
suiting clinical evaluations, these results appear promising, and
may lead to more personalized treatment by identifying and
targeting symptoms that specifically impede a particular patient’s
motor performance.
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