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Animal models provide convenient and clinically relevant tools in the research on neurode-
generative diseases. Studies on developmental disorders extensively rely on the use of
laboratory rodents. The present mini-review proposes an alternative translational model
based on the use of fetal bovine brain tissue. The bovine (Bos taurus) possesses a large
and highly gyrencephalic brain and the long gestation period (41 weeks) is comparable to
human pregnancy (38–40 weeks). Primary cultures obtained from fetal bovine brain con-
stitute a validated in vitro model that allows examinations of neurons and/or glial cells
under controlled and reproducible conditions. Physiological processes can be also stud-
ied on cultured bovine neural cells incubated with specific substrates or by electrically
coupled electrolyte-oxide-semiconductor capacitors that permit direct recording from neu-
ronal cells. Bovine neural cells and specific in vitro cell culture could be an alternative in
comparative neuroscience and in neurodegenerative research, useful for studying develop-
ment of normal and altered circuitry in a long gestation mammalian species. Use of bovine
tissues would promote a substantial reduction in the use of laboratory animals.

Keywords: brain, neurodegenerative research, translational model, fetal alcohol syndrome, in vitro model

ANIMAL MODELS IN RESEARCH ON HUMAN
NEURODEGENERATIVE DISORDERS: A BRIEF OVERVIEW
Neurodegenerative diseases are a heterogeneous group of dis-
orders characterized by impairment of neuronal structure and
function, and are generally accompanied by neuronal loss.

There is a growing interest in the development of novel ani-
mal models (1) and transgenic systems (2), to understand the
cellular and molecular basis of human neurodegenerative dis-
orders. Translational medicine is constantly evolving and sig-
nificant progress has been recently made through the improve-
ment of well-established models and the development of original
paradigms (3).

In Table 1, we report a selection of reviews focusing on model
organisms used in experimental research on human neurode-
generative disorders. Rodents (mice and rats) remain the most
widely used species for modeling human neurodegenerative syn-
dromes (4–6). Additional species (cats, dogs, and primates) are
used in Parkinson’s (7) and Huntington’s disease studies (8). Pigs,
sheep, and primates are employed besides rodents to study the fetal
alcohol syndrome (9).

While rodents are strategic models because of their ease of
management, fast reproduction, and low maintenance cost; larger
mammals may also be useful because their more complex anatomy
and physiology make them more directly comparable to humans
in some respects (10). New translational models are also relevant
to understand the response to treatment of specific neurodegen-
erative processes, and essential to better comprehend the natural
history of a given disease (1). The goal of this mini-review is to

summarize a few issues on the use of the bovine as an alternative
experimental model in neurodegenerative research, including the
fetal alcohol spectrum disorders (FASDs).

BOVINE: A LARGE MAMMAL WITH A LARGE BRAIN
The bovine species Bos taurus is a widespread domestic mammal,
raised worldwide for meat and milk production. The bovine pos-
sesses a relatively large (approximately 600 g), highly gyrencephalic
brain, in comparison to the smooth-surfaced brain of laboratory
rodents (11). Furthermore, the CNS of bovine is easily available
in large quantities at the slaughterhouse wherever this species is
present.

The long gestation period of the bovine (41 weeks) is compa-
rable to human pregnancy (38–40 weeks). During the last decade,
our laboratory used this species to study the role of sexual steroids
in the regulation of brain differentiation and the expression of
cytochrome P450 aromatase, the key enzyme of estrogen biosyn-
thesis (12), in relation to specific estrogen receptor subtypes (ERs).
We quantified the expression profiles and neural localization of
aromatase P450 and estrogen receptors α and β during consecutive
developmental stages in fetal bovine hypothalamus and cerebral
cortex (13, 14). Quantitative data analysis on expression patterns
of both ERs in different bovine fetal brain regions indicates a strong
reciprocal correlation during pregnancy and an increase in the last
stage of gestation (14). Our data highlighted that the early sec-
ond quarter of the gestation (fourth month) is the critical period
for hypothalamic differentiation in bovine ontogenesis. This is
an important difference with respect to short gestation species
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Table 1 | Animal models of human neurodegenerative disorders.

Disorder Species Review articles

Alzheimer’s disease Rodents Gotz and Ittner (5)

Parkinson’s disease Rodents, cats, dogs,

and primates

Betarbet et al. (7)

Depression Rodents Yan et al. (6)

Schizophrenia Rodents Mouri et al. (4)

Huntington’s disease Primates Aron Badin and Hantraye (8)

Fetal alcohol

syndrome

Rodents, pig, sheep,

and primates

Cudd (9)

(rat and mouse), where aromatase activity peaks around delivery.
In fact, in long gestation species like the bovine and human, the
critical period for sexual differentiation occurs in earlier gestation
phases (13, 15, 16). It must be noted that the bovine CNS matures
comparatively early during pregnancy, since newborn calves must
be immediately able to stand, move, and relate to the external
world. In contrast, in short gestation species brain differentiation
and development continue throughout the perinatal period and
afterwards (13, 15, 17). This latter feature only apparently resem-
bles human neoteny, as maturation of the CNS in our species
continues for decades but the general organization of the brain is
well-established by mid-gestation. The use of fetal bovine brain
tissues in experimental medicine may become a valid alternative
to laboratory mammals in all those instances in which rodent
physiology widely differs from human physiology (see Table 2).

An important contribution in remodeling and reshaping of
fetal CNS during neural differentiation is performed by the voltage
operated calcium channels (VOCCs) that influence cell migra-
tion, neuronal sprouting, synaptogenesis, and neurotransmitter
release (22–25). The VOCCs are crucial for brain function, and
their incorrect expression and/or dysfunction gives rise to a vari-
ety of neurological disorders, including pathological pain, epilepsy,
migraine, and ataxia (26).

The VOCCs are involved in the maintenance of intracellu-
lar Ca2+ homeostasis. An increase in intracellular Ca2+ triggers
a wide range of intracellular processes, such as activation of
calcium-dependent enzymes, gene transcription, and neurotrans-
mitter release (27, 28). The properties of the VOCCs are largely
conferred by their pore-forming α1-subunits. An impairment of
calcium signals is also observed in experimental models of FASD
(29). The bovine fetal hypothalamus is a potential tool to evaluate
the contribution that VOCCs make to brain development. A recent
article assessed the expression of a P/Q and L-type VOCCs by real
time RT-PCR, and quantified α1A and α1D subunit expression in
the bovine hypothalamus, at various stages of development (30).
Data showed that the profile expression of these subunits peaks
during the last period of the gestation in the male hypothalamus,
in which the expression of α1A and α1D shows higher values than
in females. In females, the expression profiles of both genes were
constant throughout development (30).

The high expression of α1A and α1D during development
suggests that the presence of an increased density of P/Q and
L-type VOCCs, which may be involved in the process of sexual

Table 2 | Use of bovine tissues for the study of altered sexual

differentiation and neurodegenerative research.

Neurodegenerative disorder Review

Twin–twin transfusion syndrome Padula (18)

Batten disease Weber and Pearce (19)

Neuronal ceroid lipofuscinosis Bond et al. (20)

Prion diseases Imran and Mahmood (21)

differentiation during development, an hypothesis also supported
by other studies (22). Sex differences in the levels of L and P/Q
channel expression may be a part of the mechanism leading to
the onset of activities that control differentiation in young CNS
neurons. Moreover, their activity may be crucial for physiological
responses of neuronal populations, starting from the second half
of the pregnancy when the architecture of bovine hypothalamus
is defined and networks start to develop.

BOVINE BRAIN: A TRANSLATIONAL MODEL FOR ALTERED
SEXUAL DIFFERENTIATION OF THE BRAIN AND
NEURODEGENERATIVE RESEARCH
Large animals are more similar to humans in relation to brain size
and lifespan and could be therefore essential to investigate complex
patho-physiological mechanisms relating to neurodegenerative
diseases and infectious neuropathologies (31).

The bovine freemartin syndrome, the most frequent form of
intersexuality found in cattle, may represent a useful model in
which to study the human condition called twin–twin transfu-
sion syndrome. Freemartins develop when vascular connections
are established between the placentas of developing heterosexual
twin fetuses, and the result is masculinization of the female repro-
ductive tract to varying degrees due to the high circulating levels of
testosterone (18). These natural born intersex calves could repre-
sent an ideal model to study sexual patho-physiological evolution
of sexual brain differentiation in mammals. These bovine pseudo-
hermaphrodite females are a common instance in bovine twin
pregnancies (involving one male and one female fetus) and can
also be artificially induced.

In humans, twins originating from a single placenta form vas-
cular anastomoses, which may lead to unequal sharing of blood
supply and ultimately the impaired development or death of one
or both fetuses (32). The infrequent nature of the condition
makes comparison of treatment options difficult and the bovine
freemartin may represent an animal system in which to study
and compare treatments. It is worth noting here that recent find-
ings suggest the possibility that early alcohol exposure may have
steroid-mediated sexually dimorphic effects on serotoninergic
neurons (33).

A recent review (34) examined the use of non-laboratory or
large animal models for neuronal ceroid lipofuscinoses (NCL;
Batten disease), a group of fatal progressive neurodegenerative
diseases predominantly affecting children. Data from the litera-
ture confirm that natural cases of NCL occur in a large variety of
species including the bovine (19, 20). Research in prion pathology,
the transmissible neurodegenerative conditions affecting human
and a wide range of animal species, lead to an increased awareness
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of the need to use large animal models such as the bovine, in
addition to conventional laboratory animals (21).

IN VITRO TOOL FOR NEURODEGENERATIVE STUDIES
In vitro models provide important insights into the pathogene-
sis of neurodegenerative disorders and represent an interesting
approach for the screening of potential pharmacological agents
(35, 36). To obtain scientifically valid research, experimental con-
ditions must be strictly controlled: this often involves manipulat-
ing one single variable at a time while keeping the others constant,
and then observing the consequences of that single specific change.
To this effect, primary cultures from fetal bovine hypothalamus
and cerebral cortex may be standardized to obtain a reliable and
reproducible model.

A number of studies have validated in vitro models based on
neural primary cultures obtained from fetal bovine hypothala-
mus, cerebral cortex, and cerebellum, allowing examinations of
neurons and/or glial cells under controlled and reproducible con-
ditions. Cell cultures obtained from frozen–thawed bovine fetal
tissues are comparable to cultures derived from fresh fragments
of cortex and hypothalamus of the same animal, showing similar
growth profiles (37, 38). Bovine cultures from the hypothalamus
and frontal cortex retain also in vitro the ability to express and syn-
thesize the enzyme aromataseP450Arom and the α- and β-estrogen
receptors (17). These data are in agreement with data observed
in others species, such as mice, rats, and avian species (39–41).
Bovine neurons in vitro maintain the ability to generate action
potentials. Electrolyte-oxide-semiconductor capacitors (EOSCs),
a class of microtransducers for extracellular electrical stimulation,
may be employed to activate voltage-dependent sodium channels
at the neuronal soma, resulting in a versatile complement for the
investigation of Ca2+ signaling (42).

Bovine cerebellum-derived endothelial cell lines are useful to
monitor Ca2+ oscillations in the main intracellular compartments
including the cytosol, the endoplasmic reticulum, and the mito-
chondria. Mitochondrial Ca2+ uptake significantly decreased after
48-h exposure to estradiol, whereas cytosolic and endoplasmic
reticulum responses were unaffected. The permeability transi-
tion pore (PTP) may be involved in the mechanism of action
and influences energy metabolism and cell viability. Treating cells
with cyclosporine A (CsA), which binds to the matrix chaperone
cyclophilin-D and regulates PTP opening, reversed the effects of
a 48-h treatment with estradiol, thus suggesting a possible tran-
scriptional modulation of proteins involved in the mitochondrial
permeability transition process (43).

Fetal alcohol spectrum disorder has also been considered a neu-
rodegenerative disease [see Ref. (44)] with an interesting mecha-
nism involving glutamate receptors and excessive activation of
GABA(A) receptors and consequent apoptotic neurodegeneration
in the developing rat forebrain. This process could be replicated
in bovine primary cultures by defining the proper synaptogenetic
phase. Since vulnerability to ethanol exposure coincides with the
period of synaptogenesis, which in humans starts from the sixth
month of gestation (44), bovine fetal tissues could represent a
standardized model and a dynamic system to study molecular
mechanisms and physiological process at the cellular level, and
potentially practical also for drug discovery.

IMPLICATIONS FOR ANIMAL WELFARE
The use of experimental animals in biomedical research follows
precise national regulations that are increasingly based on the three
“Rs” principle (replacement, reduction, and refinement). Investi-
gations on neurodegenerative disorders extensively use laboratory
rodents, and reluctance to consider alternative species may derive
from a cultural bias.

Our review proposes the use of fetal and adult bovine brain
tissue as a potential alternative translational model. Bovine neural
tissues employed for experimental studies have the further advan-
tage to be easily obtained in large quantities from slaughterhouses,
allowing a considerable reduction in the sacrifice of laboratory
animals. Fetal tissues are also widely available, due to the frequent
accidental slaughtering of undiagnosed pregnant cows.

A fundamental goal of the Animal Welfare Act is the minimiza-
tion of animal pain and distress by use of alternative methods.
We considered this ethical point of view as the initial criteria of
the present mini-review, promoting the development and valida-
tion of this new and alternative translational model. In this sense,
the use of brain slices is a recognized tool in neurodegenerative
investigations (45, 46).

CONCLUSION
In this view, the bovine neural cells and specifically the in vitro
cell cultures could be an alternative of interest in developmen-
tal neuroscience and consequently a potential tool for studying
the pathophysiology of altered circuitry linked to fetal alcohol
exposure during pregnancy (47) in a dynamic system and under
standard conditions. Bovine tissues may represent also a novel
resource for the study of neurodegenerative disorders.
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