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Abstract

Introduction: Understanding the relationship between brain and complex

latent behavioral constructs like cognitive control will require an inordinate

amount of data. Internet-based methods can rapidly and efficiently refine

behavioral measures in very large samples that are needed for genetics and

behavioral research. Cognitive control is a multifactorial latent construct that is

considered to be an endophenotype in numerous neuropsychiatric disorders,

including attention deficit/hyperactivity disorder (ADHD). While previous stud-

ies have demonstrated high correlations between Web- and lab-based scores,

skepticism remains for its broad implementation. Methods: Here, we promote

a different approach by characterizing a completely Web-recruited and tested

community family sample on measures of cognitive control. We examine the

prevalence of attention deficit symptoms in an online community sample of

adolescents, demonstrate familial correlations in cognitive control measures,

and use construct validation techniques to validate our high-throughput assess-

ment approach. Results: A total of 1214 participants performed Web-based

tests of cognitive control with over 200 parent–child pairs analyzed as part of

the primary study aims. The data show a wide range of “subclinical” symptom-

atology in a web community sample of adolescents that supports a dimensional

view of attention and also provide preliminary narrow-sense heritability

estimates for commonly used working memory and response inhibition tests.

Conclusions: Finally, we show strong face and construct validity for these

measures of cognitive control that generally exceeds the evidence required of

new lab-based measures. We discuss these results and how broad implementa-

tion of this platform may allow us to uncover important brain–behavior rela-

tionships quickly and efficiently.

Introduction

In order to understand the neurobiology of complex

behavioral processes like cognitive control (Miller and

Cohen 2001), the ability to exert control over one’s

thoughts and actions, we need to validate high-through-

put methods, including unsupervised testing of large

numbers of participants in parallel via the Internet.

There are numerous benefits to high-throughput behav-

ioral assessment, from achieving sample sizes needed for

testing genetic associations, to reducing the logistical

hurdles in testing complex familial designs, and

refinement of latent behavioral constructs through effi-

cient iterative measurement development. Here, we use

this approach to tackle several challenging problems in

behavioral research, including efficient examination of a

large sample and testing of both parents and offspring,

to determine the symptom profile of adolescents in a

Web-community sample, and provide initial insights into

the heritability of frequently used cognitive tests. Further,

we demonstrate the validity of this entirely Web-based

design by using traditional construct validity analytic

approaches to help overcome lingering skepticism about

web assessment.
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There are significant gaps in our understanding of not

only the neurobiology of cognitive control but even the

very definition and expression of the construct. Improved

understanding of the component processes attributed to

cognitive control through iterative construct and mea-

surement refinement can lead to more tractable studies of

the neural and genetic bases of behavior, which in turn

may even have clinical implications by helping to eluci-

date the underlying causes of neuropsychiatric disease. A

number of reviews report that working memory and

response inhibition are components of cognitive control

(Pennington 1997; Sabb et al. 2008). These constructs are

also correlated with highly heritable neuropsychiatric dis-

eases including schizophrenia and attention deficit hyper-

activity disorder (ADHD), demonstrating that

examination of basic psychological processes in healthy

community individuals can impact knowledge about

major mental illness. Yet, outside of extensive work by

Plomin and colleagues on genetic linkage for “g” (e.g.,

Plomin and Spinath 2002), there are few genetic associa-

tion studies of cognitive constructs (but see Need et al.

2009). Further, the scant reproducible evidence from

psychiatric genetics for categorical disorders (produced in

part by noise in the construct definition) should provide

an even stronger role for psychological research. The chal-

lenge, however, in collecting enough cognitive test data

using validated measures to conduct well-powered genetic

linkage or association studies remains a barrier.

Using a high-throughput unsupervised platform like

the World Wide Web can help to overcome this prob-

lem. Although a number of studies have demonstrated

strong validity with respect to Web-based testing, broad

adoption has continued to elude the field. The web offers

virtually limitless sample size, the ability to collect com-

plex family structures in an extremely cost effective man-

ner, and the speed to test and refine constructs and

measurements in days or weeks instead of months or

years. A number of studies have conducted traditional

comparisons of scores for Web- and lab-based cognitive

assessment, showing correlations at the ceiling of lab

test–retest numbers (e.g., Silverstein et al. 2007; Haworth

et al. 2009; Germine et al. 2012). We propose that con-

struct validation procedures are more appropriate for

demonstration of the utility and validity of Web-based

assessment. Such methods have been used successfully

before (Krantz and Dalal 2000; McGraw et al. 2000;

Silverstein et al. 2007). Our goal was to build on these

previous studies and again specifically highlight the

importance of construct development and validation in

studying cognitive control via the Web.

Here, we present our Web-based platform to measure

cognitive constructs and show strong construct validity

using classical test-development tools. We report

prevalence of attention symptoms using an adapted scale

in our Web-based community cohort, relationships

between symptoms and cognitive variables, and suggest

heritability of psychological measures. These data begin to

build a large normative sample of Web-based responses.

We discuss the putative inertial bias in the broad adop-

tion of web testing and suggest how our evidence can

help overcome this, toward a path of high-throughput

assessment necessary to understand the neurobiology of

complex psychological processes.

Methods

Participants

A total of 1214 volunteers from the community under-

went informed consent procedures online (approved by

UCLA IRB). Parents under 55 years with a child between

the ages of 9–17 were eligible. Many adult individuals,

however, performed the measures for fun without recruit-

ing children. Recruitment was done through measures to

those typically used at UCLA to recruit individuals from

the community (i.e., not UCLA subject-pool). Advertise-

ments were posted on campus, primarily at the medical

school and available public bulletin boards in the

surrounding community, as well as posting on the Inter-

net, especially using Craigslist and Facebook. One benefit

of doing this design, is we are able to post Web-based ads

nationally, so we recruited from a wider audience than

just southern California.

Over 200 parent–child pairs did register linked family

accounts and completed testing (see Fig. 1 for consort

diagram). Families received a $50 gift card as compensa-

tion for participation after verification of email address,

physical address, and age/gender of child who participated

by our study coordinator as one way to help monitor

study compliance. Demographic details are provided in

Table 1. We maintained relaxed inclusion criteria in order

to characterize a broad sample of community individuals

who are willing to participate in Web-based testing. While

not a true epidemiological sampling approach, our

approach should minimize much systematic bias and

allow us to estimate the true population of individuals

participating via the web. In this respect, we also discour-

aged lying by minimizing reasons to do so (i.e., being

more inclusive removes one reason to provide false

answers). Exclusion criterion was self-report of an ADHD

diagnosis.

Procedure

Parents created an account at http://BrainTest.org and

then recruited their children. Both parent and child
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underwent informed consent/assent procedures on our

website. They could read our “frequently asked questions”

list or contact the study PI or support staff at anytime

with questions. Following Simmons et al. (2011) recent

paper on the potential for false positives in psychological

research, we highlight every measure that was conducted

and analyzed here. Children completed only the Friend-

ship questionnaire (Baron-Cohen and Wheelwright 2003)

and performed both a spatial working memory (SWM)

task and the stop signal task (described below). Parents

completed only those two same cognitive tests and a

medical survey for themselves and their children as well

as attention symptom scale and the Achenbach Childhood

Behavioral Checklist (CBCL). The CBCL and Friendship

questionnaire have not yet been analyzed.

Measures

Medical questionnaire

The medical survey contained 22 items that broadly

covered central nervous system conditions. The medical

survey was completed by the parent for their own history as

well as their child’s. Allowable responses to the survey were

for any of the four categories: “Child Presently,” “Child in

History,” “Parent Presently,” and “Parent in History.”

Attention symptom scale

A scale was made for use by parents in the community to

measure deficits in attention. It was adapted from the

widely used 18 question adult self-report scale (ASRS),

developed with the World Health Organization (Kessler

et al. 2005). The ASRS, which is available on the Web, was

developed as quick symptom screening tool in the commu-

nity but does not confer a diagnosis of ADHD. Research

does suggest, however, that those who score highly on this

scale, do typically receive a diagnosis of ADHD using tradi-

tional diagnostic measures (Kessler et al. 2005). Responses

were on a four-item Likert scale from “none/never” to

“always.” Parents completed this scale about the attention

behaviors of their children. The total sum and subscale

sums for attention and motor questions were analyzed.

Spatial working memory

The SWM paradigm was developed using Flash (Adobe

Systems, San Jose, CA) and designed to be identical in

Table 1. Demographic statistics shows age, gender, symptom sum,

and responses to key medical history questions for the final sample

analyzed here. Medical history shows the number of adult participants

who self-reported past or present symptoms for themselves or their

children.

Description Child Parent

Mean age in years (SD) 13 (2.8) 37.3 (8.1)

Female 45% 67%

Attention symptom sum (SD) 9.24 (9.6)

Medical history (# past/present)

Epilepsy/unexplained loss of consciousness 0/0 0/0

Head injuries requiring hospital admission 2/2 1/2

Migraine 7/2 5/0

Asthma/bronchitis 12/10 1/1

Anxiety/depression 8/4 21/6

Other mental illness 4/0 4/0

Eating disorder 0/0 0/0

Unexplained weight loss 0/0 3/1

SD, standard deviation.

Consented 
n = 1214

Parent/Child 
Linked 
n = 502

Adults 
Participating 

for fun
n = 712

Met Inclusion 
Criteria
n = 450

Excluded for 
Age

n = 52

Parents 
Completed 

symptom Qs 
for children

n = 219

Parents 
Completed 
Spatial WM 

test
n = 247

Children 
Completed 
Spatial WM 

test
n = 208

Parents 
Completed 
Stop Signal 

test
n = 229

Children 
Completed 
Spatial WM 

test
n = 203

Figure 1. Consort diagram: a flow chart

depicting the fate of all those who

consented for this study. 1214 individuals

consented. 502 parent–child pairs linked

their accounts designating them a family.

Of those, 450 individuals met inclusion

criteria or 225 families.
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structure and design to one used in multiple center stud-

ies at UCLA (Cannon et al. 2002). Upon launch, a new

window was opened and maximized on the participant’s

screen. After a brief practice to orient the participants

and instruct on the proper response keys, participants

performed four blocks of 16 trials. Data were collected in

real-time on the client machine and sent back to the ser-

ver at the end of each trial block using a 128-bit

encrypted connection to avoid recording reaction times

(RT) over the network. In this task, participants saw 1, 3,

5, or 7 dots presented on the screen in an abstract array

for 2000 msec. After a delay of 3000 msec, a “probe” dot

appeared for 3000 msec. and participants pressed one of

two keys designated on the keyboard as to whether the

probe dot was in the previously presented array or not.

Working memory load (number of dots) was randomized

across trials. Both RT and accuracy at each level of load

were used as dependent variables. Prior to analysis, we

did some initial data quality assurance, by excluding indi-

viduals who did not complete at least two blocks of trials

and individuals who responded less than chance across

multiple blocks. We also removed trials where partici-

pants responded in under 300 msec.

Stop signal task

The stop signal task has also been used extensively at

UCLA (e.g., Cohen et al. 2010). We again designed a ver-

sion in Flash with high face validity to one of the several

versions used at UCLA. Participants saw either a left- or

right-pointing arrow on the screen for 1000 msec and

had to respond similarly using the arrow keys (inverted-t)

on the keyboard. On 25% of the trials an auditory “beep”

was presented and participants had to withhold their key

press. The timing of the beep is adaptive and based on

two alternating ladders (10 msec steps) in an attempt to

find an optimized stopping time, while not allowing the

participant to learn from a single ladder (Logan and

Bundesen 2003). During instructions and practice, partici-

pants also performed a “speaker check” to ensure they

could hear the auditory beep. The stop signal reaction

time (SSRT) is typically the primary dependent variable,

but also is highly sensitive to strategy effects (i.e., waiting,

Logan and Bundesen 2003). In calculating SSRT, we

found response patterns that suggested some participants

may have been “waiting” despite our instructions, so we

examined the RT on “go” trials, as well as the overall go

accuracy and percent inhibition as more basic measures

of inhibition and attention. Prior to analysis, we did some

initial data quality assurance, by excluding individuals

who did not complete at least two blocks of trials and

individuals who responded less than chance across multi-

ple blocks.

Analytic approach

To establish construct validity of our Web-based adapta-

tions of these widely used lab paradigms beyond face

validity, we used a convergent validity approach frequently

used in other forms of psychological testing (Messick

1989; McDonald 1999). We sought to determine: (a) if the

pattern of association between the different tasks matches

the pattern predicted by the relationship between the con-

structs they are assumed to tap into; (b) if the pattern of

association between the different cognitive task and atten-

tion symptoms matches the pattern of association pre-

dicted by the relationship between the underlying

constructs; and (c) use the dyadic nature of the data to

determine if the relationship between the child’s score on

the different cognitive test and the parents score on the

same test matches the degree to which neurocognitive

endophenotypes are assumed to be heritable.

Results

Web sample characterization

Our initial goal was to characterize a large completely

Web-recruited community sample without a diagnosis of

ADHD on cognitive and symptom characteristics related

to cognitive control. These data help provide normative

data for Web-based cognitive test studies and begin to

characterize those families who participate in Web-based

studies. Table 2 highlights the cognitive test performance

and the association with attention symptoms as well as

the correlation in scores between parents and their off-

spring. Figure 2 shows the distribution of symptom sums

for the children and adolescents in our sample.

Construct validation

We examined the relationship between working memory

and response inhibition measures to demonstrate an

inverse relationship between the constructs in both

children and parents (Table 3). The overall pattern of

results is consistent across parents and their children: The

expected correlation between the constructs of about

0.35 holds true for the relationship between response

inhibition and working memory RT across all four load

conditions. The data show internal validity with increased

RT for higher working memory load and decreased accu-

racy (Fig. 3). Both tasks also showed strong reliability.

The working memory task produced alphas that ranged

from 0.81–0.85 across load-levels for Accuracy and 0.86–
0.88 for RT using the first 10 trials. The stop signal task

was even higher, (a = 0.98) for RT and (a = 0.96) for

Accuracy based on first 100 trials.
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Cognitive control symptoms and behavior

We also examined summary statistics and correlations

between symptoms and cognitive measures (Table 2),

showing that the best measures are based on the criterion

that they are associated to the predicted amount with

attention symptoms and the RT across all four load con-

ditions and percent inhibition, based on previous findings

in the literature of relatively modest but significant corre-

lations between inattention symptoms and working mem-

ory (e.g., Rogers et al. 2011), and consistent with

neurocognitive profiles for ADHD (Walshaw et al. 2010).

The correlations between the child and the parent mea-

sures on working memory and response inhibition vari-

ables are high (e.g., r = 0.73; Percent inhibition),

suggesting our tasks may have significant heritability (e.g.,

similar to the heritability for Intelligence = 0.75, Nessier

et al. 1996), and thus would be appropriate for use in

genetic association studies or useful as endophenotypes in

psychiatric research (Gottesman and Gould 2003). Exam-

ining correlations and narrow-sense heritability (double

the slope of the regression) between parent and offspring

can reveal the ceiling of potential heritability, but does

not properly control for epistasis or environment effects

(Lynch and Walsh 1998).

In order to address the confound of potential shared

variance between parent and child due to shared comput-

ing equipment and testing environment we conducted a

leverage analysis (see Table 5). We determined how much

of the parents and child’s RT would have to be explained

by shared computing equipment and other testing envi-

ronmental factors by assuming that it is possible to

decompose the observed covariance between parent and

child into two components: One due to the familial con-

nection between parent and child, and one that is due to

shared testing environment. In this model it is possible to

determine how large a proportion of the observed covari-

ance would have to be due to the shared environment to

Table 2. Performance characteristics on cognitive measures shows the raw scores for cognitive tests and statistics for comparison between family

members.

Description

Child

score

(mean)

Child

score

(SD)

Parent

score

(mean)

Parent

score

(SD)

Parent/child

score

difference

(P-value)

Child’s symptom

score with child’s

score (correlation)

Child’s score

with parent’s

score

(correlation)

Heritability (estimated

as 2 9 beta

coefficient of the

regression)

Spatial WM

Load 1 Acc 92.8 9.54 94.7 5.95 0.08 0.04 0.06 0.12

Load 1 RT 899.6 315.71 909.2 274.74 0.87 0.27* 0.54** 1.08

Load 3 Acc 86.3 12.49 87.1 10.40 0.27 0.05 0.11 0.22

Load 3 RT 1031.8 354.63 1067.5 316.45 0.61 0.18* 0.66** 1.32

Load 5 Acc 78.9 13.66 79.5 12.69 0.62 0.02 0.36** 0.72

Load 5 RT 1079.9 357.06 1148.9 357.20 0.05 0.20** 0.65** 1.30

Load 7 Acc 78.8 13.55 78.6 12.18 0.79 �0.05 0.33** 0.66

Load 7 RT 1094.0 370.73 1155.9 355.11 0.10 0.20** 0.63** 1.26

Stop signal

Go Trial RT 486.4 94.05 465.7 87.98 0.16 �0.05 0.62** 1.24

Go trial accuracy 96.6 5.00 97.3 3.69 <0.01** �0.19** 0.27** 0.54

Percent inhibition 31.0 26.34 28.2 25.59 0.68 �0.23** 0.73** 1.46

*Significant at P < 0.05 and **significant at P < 0.01.

Load, working memory load; Acc, accuracy; RT, reaction time; SD, standard deviation.

Figure 2. Distribution of symptoms shows the histogram for

symptom sum in our adolescent Web sample. Y-axis shows frequency

and X-axis shows sum total symptoms for each participant. Data

report symptom scores for 219 adolescent participants as filled out by

the participating parent.
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make the rest of the covariance – assumed to be due to

actual association between parent and child not signifi-

cantly different from zero. The estimates for the variabil-

ity in parent and child scores due to this shared

environment component range from a standard deviation

of 33 msec (Go Trial RT) to a standard deviation of

154 msec (WM Load 5 RT). While this is not conclusive,

and the effect of shared computing equipment and testing

environment needs to be tested directly, evidence from

the literature on stimulus timing (e.g., Li et al. 2010) sug-

gests that differences typically observed among computers,

including architecture and peripherals, like keyboards and

mouse devices, are likely not enough to completely

account for our heritability results.

Finally, we examined correlations between parent and

child cognitive performance across three different levels of

attention symptoms. Previous work has suggested nonlin-

ear relationships between symptoms and behavior (Lubke

et al. 2007). Children’s scores on the attention survey

were broken into three equal-sized groups. The first

group had self-reported symptoms that summed to less

than three (“low” group). The second group had self-

reported symptoms that summed to between three and

ten (“medium” group). The final group had self-reported

symptoms that summed to more than ten (“high” group).

We examined the significance of only our three most

promising indicators from previous analyses: Working

Memory Load 3 and Load 5 Reaction Time and Stop

Table 3. Correlations between tasks shows the relationship between performance on the spatial working memory task and the stop signal task

for both parents and children.

Description

Child Parent

Mean RT % Go % Inhibition Mean RT % Go % Inhibition

Load1 Acc 0.19* 0.28** 0.16* �0.19** 0.01 �0.14

Load1 RT �0.04 �0.20** �0.32** 0 �0.13 �0.29**

Load 3 Acc 0.08 0.27* 0.18* 0.05 0.1 0.17*

Load 3 RT �0.11 �0.18* �0.38 �0.09 �0.1 �0.39**

Load 5 Acc 0.04 0.03 0.05 0.05 0.1 0.08

Load 5 RT �0.08 �0.11 �0.33** �0.05 �0.04 �0.32**

Load 7 Acc 0.01 0.12 0.04 0.1 0.06 0.18*

Load 7 RT �0.08 �0.14 �0.36** �0.11 �0.08 �0.39**

*Significant at P < 0.05 and **significant at P < 0.01.

Load, working memory load; Acc, accuracy; RT, reaction time; SD, standard deviation.

Figure 3. Behavioral performance shows

box plots depicting the performance of the

participants over the different load

conditions is as expected: with increasing

load the accuracy decreases and the

reaction time increases. Left Y-axis shows

Accuracy (acc) and right Y-axis shows

reaction time (RT). X-axis shows the four

different working memory loads (1, 3, 5,

and 7 dots).
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Signal Percent Inhibition. Table 4 presents the correla-

tions by bin and the P-values associated with those corre-

lations. These data suggest that while symptoms and

behavior represent quantitative traits along a continuum,

the relationship changes, which may suggest different

latent classes (Lubke et al. 2009).

Discussion

Understanding the neurobiology of behavioral constructs

like cognitive control will require testing participants

using unsupervised and parallel approaches. We present

novel findings on symptom prevalence in the web com-

munity of adolescents, an interaction between symptoms

and cognitive test performance, and strong suggestion of

significant heritability of measures frequently used to

examine cognitive control. Running hundreds or thou-

sands of participants in lab-based studies is extremely

inefficient and practically impossible to execute in a

timely manner. Although studies have shown scores on

lab-based measures to be highly correlated with those

online, there remains skepticism about this approach. In

our study, we used typical construct validity tests done

for new psychological measures to support our findings.

Given this, we suggest consistent use of the Web for cog-

nitive assessment will help overcome continued inertial

bias for lab-based cognitive testing and be instrumental in

uncovering the genetic bases of behavior.

We sought to characterize a community sample with-

out a diagnosis of ADHD recruited entirely using the

web. As such, this is not a “super control” sample

(attention symptom sum ranges from 0 to 47). This

increases ecological validity and provides additional

power for correlations as the data encompasses a large

range of scores. It does, however, make it difficult to

compare the results directly to prior studies with either

clinical patients or typical lab-based control populations,

but does represent an important characterization of the

symptoms in the community-at-large that can begin to

establish Web-normative scores. Our finding of symptom

scores across a large range, in children and adolescents

without a self-reported diagnosis of ADHD is important

and novel for a Web-based community. Recent epidemio-

logical reports from the Centers for Disease Control sug-

gest the community prevalence of a diagnosis of ADHD

is over 8% (www.cdc.gov). Few studies, however, have

looked broadly at symptoms that exist in the community.

Our attention symptom finding supports reports that

ADHD-related symptoms are dimensional (Lubke et al.

2009), and should be treated as quantitatively distributed

traits in the population. Yet, similar to Lubke et al.

(2009), we do find that cognitive test performance

changes as function of symptom level, which may suggest

different latent classes. These data may improve the ability

to track the underlying genetic contribution of these

symptoms.

Table 4. Correlations in symptom bins shows the correlations between parent and children across three different symptom groups for spatial

working memory and the stop signal.

Parent–child correlations 9 symptom

group

Correlations P-values

Low Symp (<3)

N = 64

Med Symp (3–10)

N = 76

High Symp (>10)

N = 79

bin1 v.

bin2

bin1 v.

bin3

bin2 v.

bin3

WM RT_Load3 0.636 0.833 0.475 0.017 0.226 <0.001

WM RT_Load5 0.578 0.831 0.492 0.004 0.535 0.001

Percent_Inhibition 0.767 0.718 0.473 0.55 0.01 0.049

Load, working memory load; RT, reaction time.

Bold values highlight significant findings.

Table 5. Leverage analysis of potential errors due to parent and child using the same computing equipment.

Estimated standard deviation

of the correlation coefficients

explainable by a 20 msec noise

Lower bound

correlation estimate

(�4 SD)

Heritability based on

the lower bound

correlation estimate

Shared variance due to computing

equipment necessary to make

correlation nonsignificant

Load 1RT 0.0047 0.54** 1.08 SD = 89

Load 3RT 0.0036 0.66** 1.32 SD = 148

Load 5 RT 0.0031 0.65** 1.30 SD = 154

Load 7 RT 0.0032 0.63 1.26 SD = 150

Go Trial RT 0.0145 0.61 1.21 SD = 33

**Significant at P < 0.01.

Load, working memory load; RT, reaction time.
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Our findings of high correlations between parent and

offspring scores on our cognitive control measures suggest

high heritability of these constructs, an important step in

investigating genetic associations. Typically, examining

heritability is difficult for new computerized measures, as

recruiting and testing families in a large enough sample

to measure heritability is not feasible. Further, with itera-

tive development of new measures, it becomes more chal-

lenging for phenotypes to be adequately validated with

respect to genetic studies. Studying a single parent and

offspring allows us to compute narrow-sense heritability

or what some have called biometric heritability (Lynch

and Walsh 1998). These numbers provide a ceiling for

additive genetic influences without taking into account

shared environment or pure environment factors or epis-

tasis. Our calculations of narrow-sense heritability suggest

high heritability but also unsurprisingly that these unmea-

sured sources of variance do play a role in working mem-

ory and response inhibition. They also suggest that some

phenotypic indicators may not be useful in genetic associ-

ation experiments going forward, as they display very low

narrow-sense heritability (e.g., Working Memory load

accuracy at low loads). These findings suggest our

approach is feasible and extremely efficient for examining

these questions, but larger pedigree-type data would be

ideal for answering these questions. While further

research needs to be done to fully address the technical

considerations of conducting heritability research remo-

tely using varying equipment, ideally through direct

recording of these variables and ensuring family members

use different computers, there is evidence in the literature

(e.g., Li et al. 2010) suggesting that some of the con-

founds in computer architectures and peripheral equip-

ment are likely not enough to completely account for our

heritability findings. As such, these results may be useful

in the future in estimating the size of the effect of hard-

ware/software noise as more detailed data about these

sources of noise are studied.

This study also supports our hypothesis about the

validity of web assessment of cognitive control. These

tests show excellent face validity based on well-established

paradigms and demonstrate evidence of construct validity.

We also provide additional evidence in showing that the

association between both RT and inhibition with the

attention symptoms is consistent with the literature

(Walshaw et al. 2010). This approach is the same used in

other domains of psychological testing (Block et al. 1974;

Reynolds and Koback 1995), and while we show some-

what more moderate effect sizes than these psychometri-

cally built instruments, our procedures are identical to

other computerized test development. Although typically

not seen with new computerized cognitive test develop-

ment, Gur and colleagues did use a similar approach to

demonstrate validity of a larger cognitive test battery

(Gur et al. 2010). This is in contrast to previous studies,

which have pursued equivalence testing metrics to theo-

retically ensure tests are identical across testing platforms.

Our approach focuses on construct validation using tasks

with extremely high face validity. Very few new lab-based

variations of cognitive paradigms undergo equivalence

testing. Web-based tests that are demonstrated to measure

latent constructs of interest should be adequate in assess-

ing cognitive control behavior.

With the ubiquity of the web in our daily lives, it follows

that cognitive testing should use web technology, especially

as the knee-jerk theoretical biases have been consistently

shown to be surmountable. While the sample biases typi-

cally associated with Internet-research have been shown to

be less problematic in direct examination (Gosling et al.

2004; Haworth et al. 2007), there are typically more demo-

graphically varied samples found online, where any study

can recruit from millions of potential participants. This is

not to suggest that the Web does not have sample biases,

but as these studies have shown, the biases are not different

from those typically seen in lab-based psychological studies

where recruitment is almost never truly random. The bene-

fit with using the Web, is that you can sample from a much

larger pool than will be available in a typical lab study (i.e.,

every demographic category can be found in greater num-

ber on the Web than within participation distance of any

single institution).

The primary concern about web testing, however, has

been response bias. There is a large body of evidence show-

ing high correlations (>0.7–0.8) between web and lab

assessment in the same individuals (Buchanan and Smith

1999; Krantz and Dalal 2000; Gosling et al. 2004; Bedwell

and Donnelly 2005; Haworth et al. 2007; Silverstein et al.

2007; Younes et al. 2007; Germine et al. 2012). Buchanan

(2003) argues that solely because an assessment was

adapted from lab- to Web-based format one cannot assume

the newer version has the same psychometric properties.

While true, to conclude that this means that web versions

are not useful is premature, rather a web test should be

considered a new measure, with its own psychometric

properties and norms. The construct validation approach

used here and by others previously (Krantz and Dalal 2000;

McGraw et al. 2000; Silverstein et al. 2007) builds upon the

growing evidence base for the valid adoption of Web-based

assessment of cognitive control.

Web testing provides novel experimental design oppor-

tunities for examining the underlying genetic substrates of

behavior. While methodologies for examining the genetic

associations have improved dramatically in the last several

years, efforts aimed at clarifying phenotypic expression

have lagged, especially in neuropsychiatry (Sabb et al.

2009). The common misconceptions about the pitfalls of
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web testing have shown to be no worse than pitfalls seen in

laboratory testing, but efficiency and cost-effectiveness are

unparalleled with web testing. We demonstrated the power

of this approach by efficiently recruiting a large family sam-

ple, which revealed the prevalence of subclinical attention

symptoms in the web community. We also demonstrated

an interaction between cognitive test performance and

symptom level that may have implications for more

broadly understanding ADHD. Finally, our data suggests a

“ceiling” for the heritability of these Web-based cognitive

control measures. This may aid cognitive control pheno-

type selection for genetic analyses going forward, as several

indicators had particularly low ceilings and could be

avoided. More broad adoption of the web for testing is

needed to demonstrate test–retest reliability in web scores

and establishment of Web-based norms. If successful, this

approach could greatly increase our ability to understand

the underlying neurobiology of behavioral constructs that

are core components of neuropsychiatric diseases.

Acknowledgments

This work was supported by an initial pilot grant from

the UCLA ADHD Center for Intervention Development

Applied Research: Treatment Research Enhancing Cogni-

tive Control (CIDAR:TRECC P50MH077248, PI McCrac-

ken) and subsequent funding (EUREKA R01MH091669

and NARSAD Young Investigator Award) to F. W. S. We

would like to thank Steve Reise for providing insightful

comments on a previous version of this manuscript and

two anonymous reviewers who greatly strengthened this

work. We are also grateful for the contribution of Katelyn

Lehman, who helped with background for an early ver-

sion, and Jennifer Erickson, who was absolutely invaluable

in coordinating all aspects of the lab.

Conflict of Interest

None declared.

References

Baron-Cohen, S., and S. Wheelwright. 2003. The friendship

questionnaire: an investigation of adults with Asperger

syndrome or high-functioning autism, and normal sex

differences. J. Autism Dev. Disord. 33:509–517. doi: 10.

1023/A:1025879411971

Bedwell, J. S., and R. S. Donnelly. 2005. Schizotypal

personality disorder or prodromal symptoms of

schizophrenia? Schizophr. Res. 80:263–269.

Block, J., J. H. Block, and D. M. Harrington. 1974. Some

misgivings about the matching familiar figures test as a

measure of reflection-impulsivity. Dev. Psychol. 10:611–632.

doi: 10.1037/h0037047

Buchanan, T. 2003. Internet-based questionnaire assessment:

appropriate use in clinical contexts. Cogn. Behav. Ther.

32:100–109. doi: 10.1080/16506070310000957

Buchanan, T., and J. L. Smith. 1999. Research on the internet:

validation of a world-wide web mediated personality scale.

Behav. Res. Methods Instrum. Comput. 31:565–571. doi: 10.

3758/BF03200736

Cannon, T. D., T. G. M. van Erp, and D. C. Glahn. 2002.

Elucidating continuities and discontinuities between

schizotypy and schizophrenia in the nervous system.

Schizophr. Res. 54:151–156. doi: 10.1016/S0920-9964(01)

00362-0

Cohen, J. R., R. F. Asarnow, F. W. Sabb, R. M. Biler,

S. Y. Bookheimer, B. J. Knowlton, et al. 2010. Decoding

developmental differences and individual variability in

response inhibition through predictive analyses across

individuals. Frontiers in Human Neuroscience 4:1–12. doi:

10.3389/fnhum.2010.00047

Germine, L., K. Nakayama, B. C. Duchaine, C. F. Chabris,

G. Chatterjee, and J. B. Wilmer. 2012. Is the Web as good

as the lab? Comparable performance from Web and lab in

cognitive/perceptual experiments. Psychon. Bull. Rev.

19:847–857.

Gosling, S. D., S. Vazire, S. Srivastava, and O. P. John. 2004.

Should we trust Web-based studies? Am. Psychol. 59:93–

104. doi: 10.1037/0003-006X.59.2.94

Gottesman, I., and T. Gould. 2003. The endophenotype

concept in psychiatry: etymology and strategic intentions.

Am. J. Psychiatry 160:636–645.

Gur, R. C., J. Richard, P. Hughett, M. E. Calkins, L. Macy,

W. B. Bilker, et al. 2010. A cognitive neuroscience-based

computerized battery for efficient measurement of

individual differences: standardization and initial construct

validation. J. Neurosci. Methods 187:254–262. doi: 10.1016/j.

neumeth.2009.11.017

Haworth, C. M. A., N. Harlaar, Y. Kovas, O. S. P. Davis,

B. R. Oliver, M. E. Hayiou-Thomas, et al. 2007. Internet

cognitive testing of large samples needed in genetic research.

Twin Res. Hum. Genet. 10:554–563. doi: 10.1375/twin.10.4.554

Haworth, C. M. A., Y. Kovas, N. Harlaar, M. E.

Hayiou-Thomas, S. A. Petrill, P. S. Dale, et al. 2009.

Generalist genes and learning disabilities: a multivariate

genetic analysis of low performance in reading,

mathematics, language and general cognitive ability in a

sample of 8000 12-year-old twins. J. Child Psychol.

Psychiatry 50:1318–1325. doi: 10.1111/j.1469-7610.2009.

02114.x

Kessler, R., L. Adler, M. Ames, O. Demler, S. Farone,

E. Hiripi, et al. 2005. The World Health Organization adult

ADHD self-report scale (ASRS): a short screening scale for

use in the general population. Psychol. Med. 35, 245–256.

doi: 10.1017/S0033291704002892

Krantz, J. H., and R. Dalal. 2000. Validity of Web-based

psychological research. Pp. 35–60 in M. H. Birnbaum, ed.

560 ª 2013 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

Cognitive Assessment using Braintest.org F. W. Sabb et al.



Psychological experiments on the internet. Academic Press.

San Diego, CA. doi: 10.1016/B978-012099980-4/50003-4

Li, X., Z. Liang, M. Kleiner, and Z. L. Lu. 2010. RTbox: a

device for highly accurate response time measurements.

Behav. Res. Methods 42:212–225. doi: 10.3758/BRM.42.1.212

Logan, G. D., and C. Bundesen. 2003. Clever homunculus: is

there an endogenous act of control in the explicit task-cuing

procedure? J. Exp. Psychol. Hum. Percept. Perform. 29:

575–599. doi: 10.1037/0096-1523.29.2.575

Lubke, G. H., B. Muthen, I. K. Moilanen, J. McGough, S. K.

Loo, J. M. Swanson, et al. 2007. Subtypes versus severity

differences in attention-deficit hyperactivity disorder in the

Northern Finnish Birth Cohort. J. Am. Acad. Child Adolesc.

Psychiatry 46:1584–1593.

Lubke, G. H., J. J. Hudziak, E. M. Derks, T. C. E. M. van

Bijsterveldt, and D. I. Boomsma. 2009. Maternal ratings of

attention problems in ADHD: evidence for the existence of

a continuum. J. Am. Acad. Child Adolesc. Psychiatry

48:1085–1093. doi: 10.1097/CHI.0b013e3181ba3dbb

Lynch, M., and B. Walsh. 1998. Genetics and analysis of

quantitative traits. Sinauer Associates, Inc., Sunderland, MA.

McDonald, R. P. 1999. Test theory, a unified treatment.

Lawrence Erlbaum Associates, Manhwa, NJ.

McGraw, K. O., M. D. Tew, and J. E. Williams. 2000. The

integrity of Web-delivered experiments: can you trust the

data? Psychol. Sci. 11:502–506.

Messick, S. 1989. Validity. Pp. 13–103 in R. Linn, ed.

Educational measurement. Macmillan, New York, NY.

Miller, E. K., and J. D. Cohen. 2001. An integrative theory of

prefrontal cortex function. Annu. Rev. Neurosci. 24:

167–202. doi: 10.1146/annurev.neuro.24.1.167

Need, A. C., D. K. Attix, J. M. McEvoy, E. T. Cirulli,

K. L. Linney, P. Hunt, et al. 2009. A genome-wide study of

common SNPs and CNVs in cognitive performance in the

CANTAB. Hum. Mol. Genet., 18:4650–4661. doi: 10.1093/

hmg/ddp413

Nessier, U., G. Boodoo, T. J. Jr Bouchard, A. W. Boykin,

N. Brody, S. Ceci, et al. 1996. Intelligence: knowns and

unknowns. Am. Psychol. 51:77–101.

Pennington, B. F. 1997. Dimensions of executive functions in

normal and abnormal development. Pp. 265–281 in N. A.

Krasnegor, G. Lyon, P. S. Goldman-Rakic, N. A.

Krasnegor, G. Lyon and P. S. Goldman-Rakic, eds.

Development of the prefrontal cortex: evolution,

neurobiology, and behavior. Paul H Brookes Publishing,

Baltimore, MD.

Plomin, R., and F. M. Spinath. 2002. Genetics and general

cognitive ability (g). Trends Cogn. Sci. 6:169–176. doi: 10.

1016/S1364-6613(00)01853-2

Reynolds, R. M., and K. A. Koback. 1995. Reliability and

validity of the Hamilton Depression Inventory: a

paper-and-pencil version of the Hamilton Depression Rating

Scale Interview. Psychol. Assess. 7:472–483. doi: 10.1037/

1040-3590.7.4.472

Rogers, M., H. Hwang, M. Toplak, M. Weiss, and

R. Tannock. 2011. Inattention, working memory, and

academic achievement in adolescents referred for attention

deficit/hyperactivity disorder (ADHD). Child

Neuropsychol. 17:444–458. doi: 10.1080/09297049.2010.

544648

Sabb, F. W., C. E. Bearden, D. C. Glahn, D. S. Parker, N.

N. Freimer, and R. M. Bilder. 2008. A collaborative

knowledge base for cognitive phenomics. Mol. Psychiatry

13:350–360. doi: 10.1038/sj.mp. 4002124

Sabb, F. W., A. C. Burggren, R. G. Higier, J. Fox, D. S. He, R.

Parker, et al. 2009. Challenges in phenotype definition in

the whole-genome era: multivariate models of memory and

intelligence. Neuroscience 164:88–107. doi: 10.1016/j.

neuroscience.2009.05.013

Silverstein, S. M., S. Berten, P. Olson, R. Paul, L. M. Williams,

N. Cooper, et al. 2007. Development and validation of a

world-wide-Web-based neurocognitive assessment battery:

WebNeuro. Behav. Res. Methods 39:940–949. doi: 10.3758/

BF03192989

Simmons, J. P., L. D. Nelson, and U. Simonsohn. 2011.

False-positive psychology: undisclosed flexibility in data

collection and analysis allows presenting anything as

significant. Psychol. Sci. 22:1359–1366. doi: 10.1177/

0956797611417632

Walshaw, P. D., L. B. Alloy, and F. W. Sabb. 2010. Executive

function in pediatric bipolar disorder and attention-deficit

hyperactivity disorder: in search of distinct phenotypic

profiles. Neuropsychol. Rev. 20:103–120.

Younes, M., J. Hill, J. Quinless, M. Kilduff, B. Peng,

S. D. Cook, et al. 2007. Internet-based cognitive testing in

multiple sclerosis. Mult. Scler. 13:1011–1019. doi: 10.11777/

1352458507077626

ª 2013 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. 561

F. W. Sabb et al. Cognitive Assessment using Braintest.org


