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Summary 
Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They 
are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting 
their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen-presenting 
cells, owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling 
support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage 
in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the 
extent of the MC’s capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen pres-
entation by MCs and its influence on adaptive immunity.
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Introduction
Mast cells (MCs) are granulated immune cells of the myeloid 
lineage that are dispersed throughout connective and mucosal 
tissues. A substantial proportion of MCs are located at the 
host-environment interfaces, including surrounding blood 
vessels and lymphatic vessels, and proximal to other tissue-
resident immune cells [1]. Mature MCs are found only in 
tissues, not in the blood, and these tissue-resident MCs are 
heterogeneous in phenotype, appearing in mucosal tissues 
with an expression of chondroitin sulphate, a type of gly-
cosaminoglycan (GAG) that is attached to the serglycin core 
protein, as the backbone of their granules, contrasting con-
nective tissue MCs where the granule GAG is heparin [2]. 
The contents of immunomodulatory compounds entrapped in 
the granules also vary between different tissues, for example, 
they have differential inclusion of histamine and MC-specific 
proteases [2, 3]. With a wide range of receptors presented 
on its cell surface, a MC can be activated by many types of 
stimuli, including pathogens, IgE receptor crosslinking, com-
plement components, and neuropeptides. Certain stimuli 
prompt MC degranulation, resulting in a release of variety 
of pro-inflammatory immune mediators, such as chemokines, 
cytokines, biogenic amines, and proteases [2], while others, 
such as toll-like receptor (TLR) stimulation (e.g. by TLR2, 4, 
3, 7, or 9), appear to prompt transcriptional activation without 
degranulation [4–6]. MCs are most well-known for mediating 
harmful inflammatory responses, such as during asthma, al-
lergy, or anaphylaxis; nevertheless, the significance of MCs 
extends beyond their involvement in pathological conditions, 
with mounting evidence pointing to their vital function in 
immunosurveillance. MCs play an indispensable role in 
recognizing and controlling certain infections, including those 
caused by parasites, bacteria, and viruses [1, 7–10].

The immediate MC-dependent pro-inflammatory responses 
that occur in tissues in response to insults and infections 
have an accelerated timeline compared to other immune 
cells, owing to the ability of MCs to respond within seconds 
to degranulating stimuli to release pre-formed mediators, 
contrasting the slower responses involving transcriptional 
changes. This response can prompt the recruitment of other 
immune cells from the circulation and lead to vasodilation 
and increased vascular permeability, improving tissue ac-
cess by leukocytes [11]. Aside from innate immune activity 
promoting host defence, these same aspects of MC activa-
tion can also promote the development of adaptive immune 
responses [12–15]. It has been shown that functional adaptive 
immune responses are impaired in MC-deficient animals fol-
lowing infectious challenges and/or vaccination involving 
MC-activating stimuli. For example, mice immunized with an-
tigen along with a potent MC activating compound showed 
increased antigen-specific IgG titres compared to MC-deficient 
mice (Kitw-sh/Kitw-sh; sash mice) or wild-type (WT) mice without 
MC stimulation [12]. Moreover, the resulting MC-induced hu-
moral response provided protection against a lethal bacterial 

challenge [12]. Subsequently, additional studies have supported 
that MC-activating compounds can be potent vaccine 
adjuvants [13–15]. However, there are also data suggesting 
that MC-dependency of the humoral response and adjuvant 
activity is not always reproducible in other MC-depletion 
mouse models [12, 16]. Since mouse models of MC deficiency 
have inherent caveats for interpretation [17–19], the situations 
in which MCs are involved in humoral or adaptive immune 
responses remain under debate and investigation.

With respect to cellular immunity, there is also evi-
dence that MCs enhance T cell responses. For example, Fcε
RI-dependent MC activation enhanced T cell responses [20] 
and impaired T cell activation was observed in MC-deficient 
models of allergy [20] and infection [21]. Mechanistically, one 
way that MCs promote early adaptive immune responses is 
through orchestrating the trafficking of antigen-presenting 
cells (APCs), such as dendritic cells (DCs), which can be 
recruited to sites of inflammation dependent on MC-specific 
products like tumour necrosis factor (TNF), after which they 
are able to traffic to T cell zones of lymph nodes [22]. TNF 
has also been shown to promote lymph node hypertrophy, 
the process of lymphocyte retention in draining lymph nodes, 
which can increase the likelihood that rare antigen-specific 
lymphocytes will be present in lymph nodes during the ini-
tiation of adaptive immune responses [23, 24]. These studies 
outline several ways that MCs may influence functional 
adaptive immunity, including indirectly through the secretion 
of pro-inflammatory mediators.

Aside from indirect ways that MCs may promote adaptive 
immune activation, until recently, a debate has surrounded 
whether MCs can contribute directly to antigen presentation 
in vivo. In this review, we discuss the recent evidence that 
MCs function as conventional and non-conventional APCs, 
with subsequent effects on adaptive immunity and immune 
protection.

Professional antigen-presenting cells
Contrasting the sentinel function of MCs primarily localized 
in peripheral tissues or in the sinuses of lymph nodes [1, 3, 
25], professional APCs migrate to or are resident in secondary 
lymphoid organs within the lymph node parenchyma [26]. 
Professional APCs such as DCs, macrophages, and B cells are 
characterized by their constitutive expression of major histo-
compatibility complex class II (MHC-II) and antigen processing 
machinery [27]. They take up exogenous antigens through 
multiple pathways including phagocytosis, micropinocytosis, 
and receptor-mediated endocytosis. These antigens are then 
trafficked into late-endosomal/lysosomal antigen processing 
compartments. These multivesicular bodies have a sufficiently 
low pH and are enriched in disulphate reductases, allowing 
the lysosomal enzymes (such as cathepsins S, H, and B) to 
process antigens efficiently, cleaving them into short peptides 
[27–29]. The invariant chain occupying the MHC-II molecule 
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peptide binding groove is cleaved in the antigen processing 
compartment to generate class II associated invariant chain 
peptide (CLIP) [27]. MHC-II accessory molecules (such as 
HLA-DM and DO) then facilitate the removal of CLIP and 
the loading of antigenic peptides to the peptide binding groove 
[30, 31]. Following peptide binding, the peptide-MHC-II 
complex traffics to the plasma membrane, where antigens are 
presented to T cells. The presentation of antigen by APCs to 
T cells often occurs in draining lymph nodes or secondary 
lymphoid organs within T cell zones, where the physical com-
munication of an antigen-bearing DC and a T cell specific for 
that antigen can last for hours as the cells form an ‘immuno-
logical synapse’ [26]. To become activated, a naïve CD4 T 
cell must not only recognize its cognate antigen presented on 
MHC-II but must also receive a secondary activating stim-
ulus in the form of CD80 (B7.1) and/or CD86 (B7.2) expres-
sion on the APC surface, which binds to CD28 on T cells 
[32]. After being activated by DCs, T cells also interact with 
and license DCs through CD40L (on T cells) interaction with 
CD40 (on DCs), which results in the secretion of chemokines 
to recruit CD8 T cells [32]. This is followed by cytokine pro-
duction from licensed DCs and CD4 T cells, which promotes 
CD8 T cell survival and their memory recall responses [33, 
34]. In addition to providing T cell help to CD8 T cells, 
CD4 T cells also interact with B cells, as T follicular helper 
cells (TFH) cells, to promote antibody affinity maturation, 
resulting in the production of high-affinity antigen-specific 
antibodies [35]. Another important attribute of professional 
APCs is their ability to cross-present exogenous antigens via 
major histocompatibility complex class I (MHC-I) molecules, 
a process that contrasts normal MHC-I presentation which 
sources antigens endogenously from the cell cytosol and pro-
tein pool [36]. Cross-presentation is thought to be crucial for 
the elimination of intracellular pathogens and tumours [36]. 
An advantage of antigen cross-presentation is that APCs are 
able to initiate a CD8 T cell response without being infected 
themselves [36]. These interactions between conventional T 
cells and professional APCs take place mostly in secondary 
lymphoid organs, such as lymph nodes [26].

MCs may be relatively few in secondary lymphoid organs 
compared to connective tissue sites, such as skin but, increas-
ingly, evidence supports their potential to perform certain 
functions of APCs including antigen processing and presen-
tation and activation of T cells, in certain contexts. For ex-
ample, MCs expressing human leukocyte antigen (HLA)-DR 
and costimulatory molecule CD80 were found to be present 
in close proximity to CD4 T cells in human tonsil tissue and 
were suggested to present antigens to T cells [37]. The unique 
aspects of MC gene expression and tissue distribution also 
may hint towards specialized roles in antigen presentation 
that warrant further investigation. While antigen presentation 
classically occurs in the draining lymph node T cell zones, 
there are many examples of antigen presentation events that 
occur at other sites, such as the presentation of antigen to 
patrolling T resident memory cells in tissues [38], or the pres-
entation of antigen by non-classical antigen presentation ma-
chinery to various subsets of innate-like T cells, which happen 
to be enriched at peripheral sites [39–41].

Antigen uptake and processing by MCs
An important ability of professional APCs is that they can 
take up exogenous antigens. While MCs have also been 

shown to take up antigens from the extracellular environ-
ment, the type of antigen appears to influence the endocytic 
pathways used. For example, human skin-derived MCs 
were shown to take up cytomegalovirus (CMV) antigen via 
dynamin-dependent pathways, not through phagocytosis or 
micropinocytosis, whereas uptake of ovalbumin (OVA) was 
not restricted to a specific pathway [42, 43]. MCs were also 
shown to take up antigens by Fc receptor-mediated endocy-
tosis, either by IgG- or IgE-mediated opsonization [42, 43]. 
Cytokine treatment could also affect antigen uptake, as IFNγ 
treatment was shown to enhance DEC-205 (C-type lectin) 
receptor expression, thus promoting DEC-205-mediated an-
tigen internalization [42]. These studies suggest that there 
are multiple antibody-dependent and independent pathways 
through which MCs can potentially acquire antigens.

MHC class II and costimulatory molecules 
expression by MCs
Unlike professional APCs (DCs, macrophages, B cells), MCs do 
not constitutively express MHC-II on the cell surface in their 
resting state. In mouse bone marrow-derived MCs (BMMCs), 
most of the MHC-II molecules are stored in the prelysosome/
lysosome-related internal multivesicular membranes of MC 
granules [44]. Similarly, in humans, HLA-DR was observed 
to be colocalized with the secretary granules in skin-derived 
MCs [42]. Degranulation of MCs triggers the fusion of intra-
cellular vesicles with the cell membrane and coincides with the 
increased expression of MHC-II on the MC surface [42, 44] 
(Fig. 1), suggesting that MC activation/degranulation could 
be a checkpoint for physiologically relevant levels of MC an-
tigen presentation. Interestingly, MHC-II can also be induced 
by activation, independent of degranulation. Treatment of 
professional APCs with type-I or type-II interferons is known 
to modulate MHC-II expression [45–48] and, similarly, IFNγ 
treatment increased HLA-DR on human MCs without af-
fecting degranulation [42]. Furthermore, treatment with 
anti-FcεRI in addition to IFNγ stimulation promotes longer 
HLA-DR persistence on the MC surface [42]. MHC-II surface 
induction was also shown in BMMCs and peritoneal MCs 
with activated Notch signalling [49]. These data support that 
MCs are capable of presenting MHC-II at the cell surface but 
that an activating stimulus may be required for substantial 
MHC-II presentation. This observation makes it likely that 
MCs are most consequential to antigen presentation when 
they are present in a pro-inflammatory microenvironment 
that induces their activation. Contrasting these observations 
of the type of reactions MCs are capable of in experimental 
systems, it should be noted that there are inconsistent findings 
regarding the expression of MHC-II on MCs in human 
patients under different conditions. For example, MC expres-
sion of MHC-II proteins HLA-DR and HLA-DQ were hardly 
detected in the skin of patients with various allergic and au-
toimmune conditions [50]. However, intraplaque MCs in ath-
erosclerosis patients were stained positive for HLA-DR [51]. 
Nevertheless, the antigen presentation responses of human 
MCs during infections or during the presentation of non-
endogenous antigens remain to be explored.

Apart from the interaction between MHC-II–peptide 
complexes and T cell receptors (TCRs), the binding of 
co-stimulatory molecules such as B7 molecules (CD80 and 
CD86) on APCs with CD28 on T cells also plays a crucial role 
during the process of MHC-II-mediated antigen presentation 
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[32]. CD80/86 expression on MCs can be influenced by 
cytokines and growth factors. For example, GM-CSF treat-
ment was shown to increase CD80 and CD86 mRNA expres-
sion in BMMCs while IFNγ inhibited their expression [52]. 
However, there have been some discordant data that may be 
due to the species of MCs used, their tissue source, or culture 
conditions [42, 53]. For example, another study showed that 
IFNγ stimulates CD80 but not CD86 expression by human 
MCs [42], while a different study detected no effect of IFNγ 
on spleen-derived MCs [53]. Another co-stimulatory mole-
cule, OX40L, which is commonly seen on APCs and interacts 
with OX40 on T cells, was also shown to be inducible on 
MCs, while the regulatory mechanism still remains to be 
elucidated [49, 54]. Thus, with respect to the ability of MCs 
to express the co-stimulatory signals required for naïve T cell 
activation, the context of the microenvironment appears key 
to whether they are capable of this function.

Peptide loading on MHC-II by MCs
Following the sequential steps in the process of antigen presen-
tation, the next question is whether MCs, which are believed 
to generate antigenic peptides and express MHC-II molecules, 
possess the ability to effectively load these peptides onto 
MHC-II. Using antigens such as dye-quenched (DQ)-OVA or 
DQ-bovine serum albumin, one study suggested that antigens 
can be processed by human MCs as measured by proteolysis-
mediated fluorescence [42]. YAe staining (which specifically 

recognizes MHC-II bound to Eα, a peptide derived from the 
α chain of the mouse MHC-II molecule I-E) was detected on 
2,4,6-Trinitrophenyl hapten (TNP)-Eα-treated WT but not 
MHC-II-deficient mouse splenic MCs in an H2-DM (mouse 
homologue of HLA-DM in humans)-dependent manner, also 
suggesting that MCs were able to process and present pro-
tein antigens on MHC-II. Antigen uptake by Fc receptors 
did not enhance antigen processing or presenting ability, 
since TNP-Eα incorporated into MCs by TNP-specific IgG1 
or IgE did not increase YAe staining [53]. However, another 
study showed that IgE/FcεRI-mediated Escherichia coli up-
take protected the bacterial antigens from proteolysis, such 
that the bacteria remained intact and viable in MCs, and this 
was proposed to be associated with the particulate nature of 
the antigens [55]. Together, these studies suggest that while 
antigens can be loaded onto MHC-II in some contexts, in-
ternalization of antigen by MCs via Fc receptor-mediated en-
docytosis may divert the antigen to compartments that are 
distinct from antigen uptake pathways in conventional APCs.

Evidence for MC-dependent T cell activation
In vitro studies have supported that human and mouse MCs 
can promote T cell activation in cell culture. Activation of 
T cells was observed when they were co-cultured with OVA 
peptide-pulsed BMMCs that had been stimulated by FcɛRI 
crosslinking [49]. In that experiment, activation of the Notch 
signalling pathway in BMMCs also promoted a significant 

Figure 1: MHC-II expression on MCs. MCs have low surface expression of MHC-II in the steady state, where most of the MHC-Il molecules are stored 
in the intra-granular vesicles. After activation of MCs, MHC-II surface expression increases when intracellular vesicles fuse with the plasma membrane. 
Diagram was created with Biorender.com.
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increase in T cell activation [49]. Another study co-cultured 
IgE-pre-sensitized human cord blood-derived MCs isolated 
from healthy donors with T cells and observed significant ac-
tivation of CD4 T cells [54]. Moreover, IL-4-treated BMMCs 
or exosomes derived from them were shown to induce T cell 
proliferation in vitro [56, 57]. Co-stimulatory signalling pro-
vided by APCs through B7-CD28 ligation is generally thought 
to be crucial for CD4 T cell activation, yet interestingly, it 
appears that MC-mediated co-stimulation could occur inde-
pendently of these interactions [58]. Specifically, activation 
of CD4 T cells via anti-CD3 treatment was enhanced in the 
presence of human peripheral blood-derived MCs, and no 
reduction was seen when CD28 was blocked by CTLA4-Ig 
[58]. These reports suggest that MCs may be able to present 
antigens to T cells (Fig. 2a) but also that they might have 
alternate mechanisms for promoting T cell activation or 
co-stimulation aside from those used by conventional APCs.

Studies that have aimed to confirm MCs can present antigen 
to T cells in vivo have done so in mice, but, importantly, there 
are MC-dependent effects on T cells that have been observed 
in mice that may precede or augment opportunities for an-
tigen presentation by MCs themselves or by conventional 
APCs. Multiple studies have demonstrated the coordination 
between MCs and T cells during inflammatory responses. 
For example, MCs promote CD8 T cell recruitment and ac-
tivation during Newcastle disease virus and lymphocytic 
choriomeningitis virus (LCMV) infections, respectively [59, 
60], and the recruitment and activation of natural killer (NK) 
T cells, CD4 T cells, CD8 T cells, and γδT cells were also 
shown to be MC-dependent during dengue virus infection in 
vivo in mice [7, 21]. On the other hand, in addition to releasing 
vasoactive mediators to promote leukocyte extravasation, 
MCs release chemokines such as CCL5, CXCL10, CXCL12, 
and CX3CL1 during viral infections, which are known to at-
tract various subsets of T cells [7, 59, 61] (Fig. 2b). During 
parasitic infections, such as Leishmania major skin infec-
tion, recruitment of DCs, macrophages, and neutrophils was 
shown to be MC-dependent, and the loss of MCs resulted 
in markedly larger skin lesions and delayed antigen-specific 
T cell priming [62]. Aside from pro-inflammatory responses, 
IL-10 production by MCs likely plays a role in the suppres-
sion of CD4 T cell responses [63], or contraction of a pro-
inflammatory T cell-mediated responses [64], for example, 
during Schistosoma mansoni or E. coli infections, respectively. 
These results show that MCs can regulate T cell functions 
and trafficking in tissues during both the acute and resolution 
phases of infection/inflammation, in ways independent of an-
tigen presentation (Fig. 2b).

In addition to infections, MCs have been suggested to 
play a role in solid tumours as well, as MC infiltration was 
observed in multiple types of cancer and has been correlated 
with tumour progression [65]. MCs are thought to shape the 
tumour microenvironment, exemplified by their ability to pro-
mote angiogenesis by releasing vascular endothelial growth 
factor or by their facilitation of metastasis by degrading extra-
cellular matrix with matrix metallopeptidase 9 (MMP-9) [66, 
67]. In addition to these functions in tumours that maybe an-
tigen independent, mounting evidence suggests the interaction 
between MCs and T cells within the tumour microenviron-
ment. Tumour-infiltrating MCs recruited by tumour-secreted 
stem cell factor, produced cytokines that favoured Treg dif-
ferentiation in a hepatocarcinoma model [68]. Moreover, 
in that system, adenosine released by MCs supressed T cell 

and NK cell proliferation [68]. A recent investigation of the 
transcriptomic alterations in head and neck squamous cell 
carcinoma found that MC gene signatures could be used to 
predict tumour prognosis and that patients rated low-risk by 
MC gene signature scoring were the most likely to benefit 
from immune checkpoint inhibitor-related treatments such 
as anti-PD-1 or CTLA4 [69]. This was further supported by 
another study where tumour-infiltrating MCs were associ-
ated with anti-PD1 resistance in a humanized mouse mela-
noma model [70]. There, co-localization of MCs and Tregs 
was also observed post-anti-PD1 treatment [70], suggesting 
possible interactions between MCs and Tregs. This interac-
tion was shown to be associated with down-regulation of 
HLA-I expression in tumours and, therefore, it was proposed 
that the depletion of MCs might improve the efficacy of 
anti-PD1 therapy [70]. Although these data were supportive 
of MC/T cell interactions having functional consequences in 
the tumour microenvironment, this observation was made 
in a humanized mouse model of tumour progression and it 
remains unclear if this benefit of MC-depletion pertains to 
certain types or stages of tumours and if it is consistent in 
humans. Interestingly, a study targeting gastric cancer saw 
that intra-tumour MCs express higher levels of PD-L1 and 
that this is induced by tumour-secreted TNF-α [71]. These 
findings indicate a potential T cell regulatory role by MCs, 
possibly dependent on contact and/or utilizing antigen pres-
entation machinery.

Besides the broader functional role of MCs in modulating 
T cell responses during infection and in the tumour micro-
environment, the effect of MCs on antigen-specific T cell 
responses has also been studied. MC activation by OVA-
specific IgE sensitization and crosslinking promotes antigen-
specific T cell activation in a system combining 2W1S peptide 
(variant of α chain in I-E molecule) immunization and TLR4 
agonist treatment in vivo [72]. This observation comparing 
the T cell responses in MC-deficient and -sufficient animals 
implicated MCs in the antigen-specific responses to T cells. 
MCs were also shown to potentiate CD4 T cell activation, in 
the absence of antigen presentation [73, 74]. Finally, it was 
shown that MC-derived nicotinamide adenine dinucleotide, 
an important co-enzyme in re-dox reactions [75] can promote 
T cell differentiation and cytokine production in vivo and in 
vitro in a manner independent of conventional APCs [73, 74].

Potential of conventional antigen presentation 
by MCs to CD4 T cells
Whether MCs can present antigen to CD4 T cells, and do so 
to an appreciable extent in vivo, is suggested by many studies 
but still remains a question that is not fully resolved. For ex-
ample, splenic MCs expressing MHC-II-loaded OVA peptides 
failed to activate naïve T cells isolated from mice expressing 
TCRs specific for OVA (OT-II mice), despite their treatment 
with lipopolysaccharide (LPS) and IFNγ [53]. The absence 
of MC-mediated CD4 T cell activation was supported by 
another study where CMV peptide-pulsed, human skin-
derived MCs isolated from CMV seronegative donors failed 
to activate autologous CD4 T cells ex vivo [42]. However, 
contradicting results were shown by a group co-culturing 
human MCs with cells expressing an adenovirus-specific T 
cell clone. There, they observed elevated cytokine-producing 
CD4 T cells post-peptide pulsing, which was abolished using 
HLA-DR blocking antibodies [37]. Similarly, another study 
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Figure 2: MC-dependent T cell activation and differentiation. (A) MCs can take up and process exogenous antigens. Stimulation of MCs by 
degranulating stimuli boosts MHC-Il-mediated Ag presentation, where processed antigens can then be loaded on to MHC-lI molecules, presented to 
CD4 T cells and activate them. Co-stimulatory interactions similar to those used by APCs and some that are yet to be defined also likely contribute 
to naïve T cell activation. (B) Tissue-resident MCs have been shown to secrete vasoactive mediators and chemokines to promote extravasation and 
recruitment of immune cells, including T cells to the site of inflammation. MCs also promote LN swelling or hypertrophy, which can promote efficient 
adaptive immune responses. (C) CD4 T cell polarization can be MC-dependent, and the skewing of different CD4 subsets varies between studies. 
Diagrams were created with Biorender.com.
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showed that BMMCs could stimulate OVA-specific T cells 
after their treatment with either OVA peptide or IgE-TNP-
OVA complexes [43], also supporting the ability of BMMCs 
to both present peptides and process and present complex 
antigens. Finally, BMMCs exposed to dengue virus also caused 
CD4 T cell activation ex vivo in co-culture experiments [21]. 
These studies suggest that naïve T cells can be activated by 
MCs, potentially when complex pathogens or degranulating 
stimuli are provided as antigens rather than cytokines alone.

In contrast to naïve CD4 T cell activation, antigen-specific T 
cell memory recall by MCs appears to require only cytokines. 
For example, OVA-pulsed MCs isolated from WT but not 
MHC-II-deficient mice were able to restimulate previously ac-
tivated OT-II T cells with the addition of LPS/IFNγ, suggesting 
that this recall response was dependent on MHC-II-mediated 
antigen presentation [53]. OVA-pulsed peritoneal cell-derived 
MCs, primed with IFNγ/IL-4, induced activation of antigen-
specific effector T cells but not their naïve counterparts [76]. 
Similarly, human skin-derived MCs isolated from CMV sero-
positive patients induced autologous CD4 T cell proliferation 
ex vivo [42]. Likewise, human MCs cultured from CD133+ 
peripheral blood precursors were shown to form functional 
immune synapses with memory CD4 T cells after priming 
with IFNγ [77]. These consistent findings support the role of 
MCs as APCs in initiating memory recall responses.

Skewing of T cell responses may also be influenced by 
MCs. MCs are known to produce a variety of cytokines and 
chemokines, which have the potential to influence T cell po-
larization and activation [3]. IL-4 and IL-13, for example, are 
known to polarize CD4 T cells towards the Th2 subset [78], 
and TGF-β is understood to promote T cell differentiation 
into iTreg (induced Treg) cells [79]. Although MCs responses 
to allergic diseases are primarily Th2-driven [80, 81], MCs 
can promote the polarization of immune responses towards 
a Th1 profile during virus exposure, through the production 
of IL-12 [82], and through memory recall of Th1-polarized 
CD4 T cells [42]. Contrasting the CMV-specific T cell acti-
vation by human MCs that showed Th1 skewing [42], pref-
erential activation of Treg cells was shown after co-culturing 
influenza peptide-pulsed LPS/IFN-γ-stimulated MCs with 
T cells isolated from mice expressing endogenous influenza 
haemagglutinin (HA) protein [53]. These studies indicate 
that the skewing of T cell subsets by MCs could be model- or 
antigen-dependent, as well as affected by the exogenous or 
endogenous expression of antigens. Nonetheless, these studies 
support that MCs are capable of influencing T cell polari-
zation, either through a contact-dependent or -independent 
fashion (Fig. 2c).

Cross-presentation of antigens by MCs to CD8 
T cells
Cross-presentation, a process defined as the presentation of 
exogenous antigens to T cells on MHC-I molecules, allows 
the initiation of CD8 T cell responses without the APCs being 
infected. Although various types of APCs have been shown 
to cross-present antigens, DCs are the main cross-presenting 
APC [36]. One study that investigated whether MC are ca-
pable of cross-presenting antigens observed that adoptive 
transfer of antigen (OVA)-pulsed BMMCs into WT mice 
induced MHC class I-dependent, antigen-specific primary 
CD8+ T cell proliferation in vivo [83]. Consistent with this, 

using an experimental autoimmune encephalomyelitis model, 
with myelin oligodendrocyte glycoprotein (MOG) peptide-
immunized MC-deficient mice, only MOG-specific CD8 T 
cells showed decreased proliferation compared to WT mice, 
while no effect was seen in the CD4 T cell subset [83], also 
supporting the ability of MCs to promote cross-presentation 
(yet suggesting again that CD4 T cell responses to endoge-
nous antigens are not enhanced by MCs). Despite the need of 
more supporting studies, these studies provide new insights 
into the MCs’ functional resemblance to professional APCs.

Non-conventional antigen presentation by 
MCs
In contrast to conventional antigen presentation that requires 
peptides binding to the groove of classical MHC proteins and 
the relatively slower initiation of adaptive immune responses, 
non-classical antigen presentation involves MHC-like 
molecules (e.g. CD1, MR1, endothelial protein C receptor 
(EPCR), HLA-E, G, and F) [84] that present a wider range 
of antigens, such as lipids, metabolites and modified peptides, 
and stimulate innate immune-like rapid effector responses 
[85, 86]. For example, in a dengue virus infection mouse 
model, activation and proliferation of γδT cells were shown 
to be MC-dependent, and further investigation revealed that 
MCs activate γδT cells via direct contact between the non-
classical antigen presentation molecule EPCR and γδTCR 
[21]. MCs can also express CD1d, and mouse primary MCs 
have been found to promote invariant NKT cell prolifera-
tion and CD1d-dependent release of IFN-γ, IL-13, and IL-4. 
Co-stimulatory molecules including CD48, CD137L, CD252, 
CD274, and CD275 were shown to promote these activation 
read-outs in T cells based on monoclonal antibody-blocking 
experiments [87]. In vivo, in an MC-deficient mouse model of 
atherosclerosis with and without experimental reconstitution 
of MCs with CD1d-deficient BMMCs, interaction between 
MCs and T cells was shown to reduce plaque sizes, while 
augmenting intraplaque CD4 T cell numbers and cytokine 
production [88]. HLA-G is a non-classical antigen presenta-
tion molecule, primarily associated with inducing tolerance, 
which has been shown to be expressed on human MCs, and 
produced by MCs in the livers of patients with liver diseases, 
including those caused by hepatitis C virus [89, 90]. For these 
patients, the number of HLA-G positive MCs was correlated 
with disease progression [89, 90]. Ligands for HLA-G are 
not only expressed by T cells but also expressed in various 
immune cells, including NK cells and DCs [91–94], so the 
effects of HLA-G might not be confined to T cells alone. MCs 
have also been shown to present superantigens to T cells. For 
instance, BMMCs presented exogenous superantigen (staph-
ylococcal enterotoxin B) to antigen-specific T cells [52]. A 
similar phenomenon was observed in humans, as human 
skin-derived MCs treated with superantigens such as staph-
ylococcal enterotoxin E were able to induce Jurkat (lympho-
cyte T cell line) cell activation with IFNγ stimulation [42]. 
This did not occur with toxic shock syndrome toxin from 
Staphylococcus aureus, possibly suggesting antigen specificity 
[42]. Together these studies indicate that non-classical antigen 
presentation by MCs or the use of non-classical antigen pres-
entation molecules may have important effects on T cell-me-
diated functions from infection clearance to inflammation 
resolution to tissue remodelling (Table 1).
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MC partnerships with conventional APCs to 
promote antigen presentation
Although a field less explored, several independent groups 
have shown evidence of antigen transferring between MCs 
and other immune cells. For example, mouse perivascular 
DCs can take up blood-borne allergens, and after their 
allergen-carrying micro-vesicles are transferred to MCs, acti-
vation and degranulation of MCs occurs, leading to anaphy-
laxis in vivo [96]. In another study, dermal DCs were shown 
to transfer MHC-II complexes to surrounding MCs during 
dinitrofluorobenzene (DNFB)-induced skin inflammation. 
This DC–MC interaction was thought to contribute to an-
tigen presentation by MCs to T cells ex vivo and T cell-driven 
skin inflammation in vivo [97]. On the other hand, activa-
tion of perivascular MCs through FcɛRI crosslinking has been 
shown to trigger cell–cell interaction with DCs [98]. This con-
tact facilitates the transport of MC-endocytosed antigens to 
DCs, which can further be processed and presented to T cells 
[98]. Another group showed that BMMCs that had taken 
up OVA (via interactions between anti-OVA IgE and FcɛRI) 
enhanced CD4 T cell activation, and this was not dependent 
on MHC-II expression by MCs [99]. Instead, the captured 
antigens were taken up by DCs after FcɛRI-mediated MC ap-
optosis, thus promoting T cell activation [99]. These studies 
suggest that in addition to secreting immune mediators, MCs 
may also promote antigen presentation of conventional APCs 
by sampling and transferring antigens.

Conclusion
MCs are present in the lymphoid tissues supporting the idea 
that they may have an evolutionary conserved role in these 
tissues. The growing body of literature has established that 
MCs are consequential for cellular and humoral adaptive im-
mune responses that are evoked after antigen exposure. In 
addition to their ability to secrete mediators to act on immune 
cells, MCs are capable of antigen uptake and presentation to 
B and T cells, which influences the downstream functions of 
these lymphocytes. However, there are discrepancies in the 
functions of MCs as APCs and effectors of adaptive immune 

responses that have emerged from discordant data from 
mouse models of MC deficiency as well as differences noted 
between disease models. These may not necessarily be in con-
tradiction but support the idea that MCs responses may be 
disease- or antigen-specific. Despite these inconsistent results 
from different studies, there are some consistencies between 
groups, such as the inducible expression of MHC-II by MCs, 
their ability to uptake and process exogenous antigens, and 
their ability to reactivate memory T cells.

There are still major gaps in our understanding of an-
tigen processing by MCs and whether MCs uniquely con-
tribute to antigen processing compared to other conventional 
APCs. It should also be noted that MCs could utilize non-
conventional mechanisms to activate or co-stimulate T cells. 
Future research should consider these aspects when designing 
experiments towards addressing the role of MCs as APCs. 
Nonetheless, the increasing evidence of antigen uptake, proc-
essing, and naïve T cell activation, or memory T cell recall by 
MCs suggests that they are capable of antigen presentation, 
adding to their well-described roles in allergy and inflamma-
tion.
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Table 1: Non-classical MHC molecules expressed by MCs

Non-classical MHC 
molecule

Species where 
shown

MC-related function Citation

CD1d Mouse • Induces invariant NKT cell proliferation and the release of IFN-γ, IL-13, and 
IL-4 in vitro.

• Interacts with NKT cells, reduces intraplaque CD4 T cell number and regulates 
pro-inflammatory T cell responses that lead to decreased atherosclerosis pro-
gression in vivo.

[87, 88]

HLA-G Human (liver-
resident MCs)

• Induces immunosuppressive effects on immune cells. HLA-G-expressing liver-
resident MCs correlate with HCV disease progression in humans.

[89, 90]

EPCR Mouse • MCs present antigens via EPCR to activate γδ T cells in a dengue virus infec-
tion mouse model.

[21]

HLA-DM (H2-DM 
in mice)

Human (skin-
derived MCs) 
and mouse

• Participates in MHC-II-mediated antigen presentation. Facilitates antigen selec-
tion, CLIP removal, and peptide loading of MHC-II molecules in professional 
APCs.

[42, 53]

MICA, MICB Human (MC leu-
kemic cell lines)

• Transcripts expressed in human MC leukemic cell lines (HMC-1, LAD2).
• Unknown role in MCs.

[95]
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