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Study of visual evoked potential (VEP) is one of the utilized methods in clinical diagnosis of ophthalmology and neurological dis-
orders. The automatic detection of VEP spectral components is an important tool in the diagnosis of mental activity. This paper
presents a novel computational approach using feedforward neural network to identify abnormal subjects from changes in spectral
components. The output vector from the feedforward neural network is based on the VEP spectral components. The software was de-
veloped to identify mental state from the VEP spectral components using Matlab software package. Using this approach, it is possible
to perform real-time abnormality identification accurately on personal computers.

INTRODUCTION

In recent years, a recording of visual evoked poten-
tial (VEP) has become a clear trend in brain research. It
provides important insights into the functioning of the
optic nerve and thereby it is useful in diagnosis of many
diseases [1, 2]. Analysis of VEP using spectral response is
the latest technique yet to be applied in the ophthalmol-
ogy and neurological centers. In general, the clinical use
of VEP is based on the peak amplitude and the latencies
of the N75, P100, and N145 waves. In human beings, VEP
has been helpful in diagnosing demylination, optic nerve
damage as consequence of multiple sclerosis (MS), motor
neural disorder (MND), and neurotransmitter deficien-
cies [3]. When humans are affected by the neurological
and ophthalmologic disorders, VEP recordings change in
latency and the diagnosis is based on the measurement of
latency directly from the signal [4, 5, 6, 7]. In certain cases,
background EEG found to have effect on VEP waveforms,
which in turn results in irregular peaks, and special pro-
cessing techniques like averaging and interpolation have
to be done to overcome these irregular peaks. These mea-
surements become complex when background EEG am-
plitude is stronger and it is very difficult to locate the P100
latency value. The spectral analysis of the VEP data allows
a clear-cut discrimination between normal and patholog-
ical cases [8, 9, 10, 11].

Most of the researchers are using artificial neural net-
work (ANN) for classification of EEG signals [12, 13, 14,
15]; in this paper, we present a new ANN approach to
the VEP classification. An ANN is trained to classify the
subjects based on VEP spectral components. Here, we

present, first, detection of abnormal subjects using VEP
spectral components linked to changes in latency of ab-
normal subjects. Secondly, we present design of neural
networks to identify abnormal subjects from changes in
VEP spectral components.

MATERIAL AND METHOD

Experiments were carried with 20 normal and 40
abnormal subjects (19–32 years old, 25 females and 35
males). In the 40 abnormal subjects, there were 13 sub-
jects having MS, 13 subjects having diminished vision,
and 14 subjects having MND.

All the recordings were done in a darkened sound-
attenuated room. Light emitting diodes (LED) mounted
in goggles served as stimulus (rate 1.3 Hz). VEP recording
was done using electrode located at Oz and FPz position.
The ground electrode was attached to the ear lobe. The
recorded data was converted as X-Y components and with
interpolation to make 256-sample data block [16] (Fig-
ures 1 and 2). The spectral components of the recorded
data were identified using Matlab signal processing tool-
box functions with 95% confidence level [17]. Correla-
tion between the resulting spectral components and pa-
tient abnormality was identified.

After identifying the correlation between spectral
components and patient abnormality, using these data
we trained three layer feedforward neural networks to
predict patient abnormality. The feedforward neural net-
works had six hidden units; the weights and biases of
the network were adjusted using the error back propaga-
tion algorithm [18, 19, 20]. Gradient descent was used to
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Figure 1. Normal VEP waveform.
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Figure 2. Abnormal VEP waveform (MND patient).

minimize the mean squared error between network out-
put and the actual error rate. The neural network output
vector is based on the VEP spectral components. Weights
were initialized by random values and networks were run
until at least one of the following termination conditions
was satisfied:

(1) maximum epoch;

(2) minimum gradient;

(3) performance goal.

A group of Matlab functions were written to examine,
transform, plot, and identify abnormality. For example,
AND operation implementation using feedforward neu-
ral network is shown in Figure 3.

RESULTS

Using the signal processing toolbox in the Matlab soft-
ware package, the spectral response of the VEP waveform
for 30 patients has been computed. The spectral response
shows that the peak response occurs at specific frequencies
like 2, 3, 4, 5, and 6 Hz (Table 1). The important finding of

Table 1. Disease condition and spectral component values.

S.no
Latency

Disease
Spectral components

in ms in Hz

1 100 Normal 2
2 100 Normal 2, small peak at 6
3 118 Diminished vision 3
4 120 MND 3
5 122 Diminished vision 3, small peak at 2
6 130 MS 4, small peak at 2
7 138 MS 6, small peak at 2

P = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
net = newff(minmax(P), [3, 1], {purelin,
purelin}, traingdm);
net.numInputs = 1;
net.inputs{1}.size = 2;
net.numLayers = 1;
net.layers{1}.size = 1;
net.inputConnect(1) = 1;
net.outputConnect(1) = 1;
net.targetConnect(1) = 1;
net.layers{1}.transferFcn = purelin;
net = init(net);
net.initFcn = initlay;
net.trainParam.show = 500;
net.trainParam.lr = 0.50;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 5000;
net.trainParam.goal = 0.001;
[net,tr] = train(net, P, t);
p = [1; 0];
a = sim(net,p);
print a;
gensim(net,−1);
if (a < 0.5) a = 0
else a = 1;
end; disp(a);

Figure 3. AND operation implementation using feedforward
neural network.

this result is that there are distinct differences at the peak
frequencies for normal and abnormal condition like MS,
diminished vision, and MND (Figures 4 and 5).

The ANN was implemented on a personal computer
using the neural network toolbox in the Matlab software
package. During training period, we utilized 6 numbers
of input nodes, 4 numbers of hidden nodes, 4 numbers
of output nodes, logsin transfer function, GDM train-
ing method, 5000 numbers of epochs, initial and bias
value, 0.9 MC value, 0.8 learning rate, and 0.0017 goal.
The training error continues to decrease as the num-
ber of epochs increases (Table 2 and Figure 6). Repeated
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Figure 4. Normal VEP spectrum plot.
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Figure 5. Abnormal VEP spectrum plot (MND patient).

experiments were performed to determine the size of the
hidden layer and training sample. Our final ANN consists
of 6 hidden units, which provide compromise between the
mapping error and the computational time (Figure 7). Fi-
nally, we found the neural network precisely predicts the
patient abnormality based on the spectral components.

DISCUSSION

All disorders analyzed in this study are found to have
the common phenomenon that latency is elongated com-
pared to normal condition. Main disorder associated with
MS is demyelination of the optic nerve. Demyelination
produces decreased velocity of conduction, which in turn
increases the latency . For the MS condition patient, previ-
ous reports indicate that the latency will be prolonged by
10 to 30 milliseconds [3, 21]. As the severity of the disease
increases, the prolongation will also increase. The present
study patient with MS was found to have prolongation of

Table 2. ANN training result.

TRAINGDM

Epoch MSE Gradient

0/5000 0.727095/0.001 0.198489/1e-010

2500/5000 0.00481211/0.001 0.00063416/1e-010

5000/5000 0.00451022/0.001 0.000414329/1e-010

Maximum — —
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Figure 6. ANN training plot. Goal is 0.001.
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Figure 7. Feedforward neural network.

latencies by 30 to 38 milliseconds compared to normal.
As the latency increases, the peak frequency is found to
shift towards the higher side. As indicated in Table 1 for
the 130-milliseconds peak, frequency was at 4 Hz whereas
for 138 milliseconds it was at 6 Hz.

The next disorder namely diminished vision, which
results either due to hereditary or degenerative condition
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like MND, was found to have small increase in latency
[22]. In the present work, latency is found to increase by
18 to 22 milliseconds (ie, latency of 118 to 122 millisec-
onds). For these waveforms, peak response is found to oc-
cur at 3 Hz. Comparatively less shift occurs in spectral re-
sponse compared to MS cases where latency was increased
by 30 to 40 milliseconds.

Thus the spectral response technique agrees with the
pathological conditions. The further work is in progress
to test this technique on more number of patients with
similar disorders which will help to identify the similar
ophthalmological and neurological disorders automati-
cally without any subjective error and without any com-
plicated processing technique like averaging and interpo-
lation and so forth.

ANN has been used in a number of different ways in
medicine and medically related fields [23, 24]. This pa-
per examined one aspect of their use; this can be extended
to many applications in medicine. At the current stage,
we have tested a simple case and it can be extended to
complex cases. Presently, we are testing the system on a
large patient data and in future it can be implemented
for routine clinical use. Using this method, it is possible
to perform real-time mental state identification on per-
sonal computer. The most attractive feature of the pro-
posed ANN-based algorithm is being virtually parameter-
free, the user does not have to either initialize or select any
parameter.

The combination of computer and the Matlab envi-
ronment for controlling and analyzing neural network ex-
periments has been proved to be useful in many domains.
The user can alter a number of parameters and quickly see
the results graphically. The application of ANN to VEP
analysis may yield improvements in classification accu-
racy over more traditional methods. The extension of this
work will even help to quantify the prognosis of the treat-
ment.
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