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Abstract

Introduction: We evaluated the relationship between plasma levels of transactive

response DNA binding protein of 43 kDa (TDP-43) and neuroimaging (magnetic

resonance imaging [MRI]) measures of brain structure in aging.

Methods: Plasma samples were collected from 72 non-demented older adults (age

range 60–94 years) in the University of Kentucky Alzheimer’s Disease Research Cen-

ter cohort.Multivariate linear regressionmodelswere runwith plasmaTDP-43 level as

the predictor variable and brain structure (volumetric or cortical thickness) measure-

ments as thedependent variable. Covariates includedage, sex, intracranial volume, and

plasmamarkers of Alzheimer’s disease neuropathological change (ADNC).

Results: Negative associations were observed between plasma TDP-43 level and

both the volume of the entorhinal cortex, and cortical thickness in the cingu-

late/parahippocampal gyrus, after controlling for ADNC plasmamarkers.

Discussion: Plasma TDP-43 levels may be directly associated with structural MRI

measures. Plasma TDP-43 assays may prove useful in clinical trial stratification.
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HIGHLIGHTS

∙ Plasma transactive response DNA binding protein of 43 kDa (TDP-43) levels were

associated with entorhinal cortex volume.

∙ Biomarkers of TDP-43 and Alzheimer’s disease neuropathologic change (ADNC)

may help distinguish limbic-predominant age-related TDP-43 encephalopathy neu-

ropathologic change (LATE-NC) fromADNC.

∙ A comprehensive biomarker kit could aid enrollment in LATE-NC clinical trials.
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1 BACKGROUND

Transactive response DNA binding protein of 43 kDa (TDP-43) pro-

teinopathy is observed in > 25% of autopsies of older adults,1–4 and

the most prevalent TDP-43 proteinopathic condition has been termed

limbic-predominant age-related TDP-43 encephalopathy (LATE).1

LATE neuropathological change (LATE-NC) may be seen either with or

without comorbidAlzheimer’s disease (AD) neuropathological changes

(ADNC1,2,5,6). In addition, LATE-NC and ADNC both show a predilec-

tion formedial temporal lobe (MTL) structures and share impairmentof

episodic memory as an early clinical feature in their disease course.7,8

Consequently, LATE is considered an “ADmimic.”1,6,9

Increasing levels of TDP-43 pathology have been consistently asso-

ciated with poorer cognition for given levels of other pathologic

changes (such as ADNC and cerebrovascular pathologies), providing

evidence of the clinical significance of TDP-43 proteinopathy.1,10,11

This has led to calls for in vivo biomarkers to identify individuals at

high risk for LATE-NC for use in emerging LATE clinical trials.1,10,12

LATE-NC biomarkers could also serve to sharpen existing biomark-

ers for ADNC, given the overlap in both the location of pathology and

cognitive features between these diseases.

At present, no positron emission tomography (PET) tracers of cere-

bral TDP-43 exist. However, candidate plasma markers of TDP-43

have been developed.13–15 Previous biomarker work has indicated

that plasma TDP-43 (total and/or phosphorylated TDP-43 [pTDP-43])

levels are higher in patient groups such as AD, frontotemporal lobar

degeneration (FTLD), and amyotrophic lateral sclerosis (ALS), com-

pared to control groups.13,15,16 In addition, plasma pTDP-43 levels

have been found to correlate with TDP-43 brain pathology in FTLD,15

although not in ADNC.15 It should also be noted that plasma total

TDP-43 levels did not discriminate significantly between brains with

or without TDP-43 in either FTLD or AD.15 Thus, plasma TDP-43mea-

sures are currently limited as stand-alone diagnostic tools. However,

plasma TDP-43 levelsmay offer promise as an adjunctmeasure used in

clinical trial stratification, particularly if they can be linked with in vivo

patterns of neurodegeneration in limbic brain regionswhere TDP-43 is

known to accumulate.

Here, we sought to identify relationships between plasma TDP-43

levels (total TDP; section 2.2) and magnetic resonance imaging (MRI)-

basedmeasures of neurodegeneration in older adults, after controlling

for established plasma markers of ADNC. Most participants in this

study were cognitively normal and a small subset had mild cognitive

impairment (MCI). Thus, our initial hypothesis-driven region of interest

(ROI) analyses focused on the volume of three MTL regions (amyg-

dala, entorhinal cortex, [ERC], and subiculum of the hippocampus)

suggested to be affected by TDP-43 pathology in early stages of LATE-

NC (Stages1or2), according todetailedTDP-43 immunohistochemical

staging schemes.17–20 Additional exploratory cortical thickness anal-

ysis, unconstrained to specific ROIs, was also performed to identify

potential neurodegenerative effects of TDP-43within the neocortex.

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed publicly avail-

able literature with a focus on transactive response

DNAbinding protein of 43 kDa (TDP-43) neuropathology

in limbic-predominant age-related TDP-43 encephalopa-

thy (LATE) neuropathologic change (LATE-NC), with or

without comorbid Alzheimer’s disease neuropathological

change (ADNC). Relevant articles to this article are cited.

2. Interpretation: Our findings demonstrate that plasma

TDP-43 concentration is associatedwith neurodegenera-

tion in specific limbic system regions when controlling for

plasma biomarkers of ADNC. We highlight the utility of

using fluid biomarkers of TDP-43 and ADNC together to

help identify individuals at risk of LATE-NC.

3. Future Directions: This article proposes that the estab-

lished amyloid/tau/neurodegeneration framework may

beexpanded to includea fluidbiomarkerofTDP-43.Addi-

tional development of a comprehensive biomarker kit

could aid in the identification of individuals at risk for

LATE-NC for enrollment in (or exclusion from) future clin-

ical trials. Replication studies with larger sample sizes are

required.

2 METHODS

2.1 Participants

Seventy-two older adults participated in this study (47 women, age

range 60–94 years). Participantswere enrolled in an existing longitudi-

nal cohort at the University of Kentucky Alzheimer’s Disease Research

Center (UK-ADRC). Inclusion criteria for enrollment in the UK-ADRC

longitudinal cohort have been described in detail elsewhere.21 These

criteria include absence of medical, neurological, and psychiatric

conditions that affect cognition including dementia, significant cere-

brovascular disease (e.g., documented stroke), history of encephalitis,

meningitis, or epilepsy; major head injury or initial cognitive status

examination scores below standard clinical cut points for dementia;

and awillingness to consider brain donation at death. Neuropsycholog-

ical testing included the UniformData Set (UDS) Version 3.22

Additional inclusion criteria for thepresent studywere the availabil-

ity of plasma TDP-43 data from banked blood collected within 1 year

of a T1-weighted MRI scan. The TDP-43 kit was added to our ADRC

Biomarker Core plasma measures in March 2021. Characteristics of

the final participant cohort meeting inclusion criteria are reported in

Table 1.
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TABLE 1 Group demographics andMoCA23 scores.

Mean (SD) N

Age (years) 75.7 (7.3) 72

Sex ratio (F:M) 47:25 72

Education

(years)

16.7 (2.7) 71

MoCA 26.2 (3.0) 72

Notes: The table lists the female/male ratio and mean (SD) age, years of

education, andMoCA scores for the full sample.

Abbreviations: F:M, female to male; MoCA, Montreal Cognitive Assess-

ment; SD, standard deviation.

2.1.1 Consent statement

All participants provided informed consent under a protocol approved

by the University of Kentucky Institutional Review Board.

2.2 Plasma sample analysis

The general procedure for plasma sample analysis has been previously

described.24 Briefly, fasting ethylenediaminetetraacetic acid-plasma

was collected at the annual clinical visit, stored on ice, processed

within 4 hours of collection, and then aliquoted into 500 µl aliquots.

The samples were stored at −80◦C until retrieved and thawed on

ice immediately prior to biomarker assessment. Thawed plasma sam-

ples were centrifuged at 4◦C for 10 minutes at maximum speed

(≈21,000 × g). Samples were then diluted and assayed using the

Quanterix HD-X instrument (Table 2).

Quanterix Simoa immunoassays for markers of ADNC (amyloid

beta 42 [Aβ42], Aβ40, and phosphorylated threonine-181 tau [p-

tau181])24 and for total TDP-43 were measured in singlicate and

quantified (pg/mL) for each participant using the Quanterix Simoa

HD-X instrument. The Aβ42/Aβ40 and the p-tau/Aβ42 ratios were cal-
culated for every participant as these ratios may be more informative

than individual measures.25,26 Plasma values were not normally dis-

tributed, as is typical,13,24 and were log-transformed (log10) for all

analyses.24

2.3 Image acquisition

Participants were scanned with a 3 Tesla Siemens Magnetom Prisma

MRI scanner using a 64-channel head coil at the University of

Kentucky’s Magnetic Resonance Imaging and Spectroscopy Center

(MRISC). A 3D T1-weighted, magnetization prepared rapid gradient

echo (MPRAGE) sequence was acquired in the sagittal plane using

a generalized autocalibrating partial parallel acquisition acceleration

factor (factor 2), which had 1 mm3 spatial resolution and covered the

entire brain.Other parameters varied slightly dependinguponwhether

the participant’s T1-weighted image (collected within 1 year of their

plasma draw) came from our UK-ADRC Biomarker Core Longitudinal

MRI battery or from our UK-ADRC Supplement from the Standard-

ized Centralized Alzheimer’s Related Neuroimaging (SCAN) Initiative

(UK-ADRC Longitudinal battery Multiecho MPRAGE [(MEMPRAGE):

256 × 256 × 176 mm acquisition matrix (176 slices), repetition time

(TR) = 2530 ms, first echo time (TE1) = 1.69 ms, echo time spacing

echo spacing (ΔTE=1.86ms), flip angle=7◦, scan duration=5.88min-

utes (n= 21)]; UK-ADRC SCAN StudyMPRAGE: [256× 240× 208mm

acquisition matrix (208 slices), TR = 2300 ms, (TE = 2.98 ms) flip

angle= 9◦, scan duration= 5.20minutes (n= 51)]).

2.4 Hypothesis-driven ROI, volumetric analyses

All participants’ T1 images were visually examined for significant

motion artifacts, poor contrast, or the presence of significant brain

abnormalities that could reduce segmentation accuracy. All T1 images

in this sample passed quality control criteria. FreeSurfer 6.0 was used

with the recon-all option (with all available parcellations)27 to auto-

matically segment each participant’s MPRAGE image or MEMPRAGE

image (after averaging the four echoes into a single root mean square

image), as described previously.28

For our initial hypothesis-driven a priori analyses, and to limit the

number of statistical comparisons, we focused on potential relation-

ships between plasma TDP-43 levels and volume of threeMTL regions

known to be early predilection sites of TDP-43 proteinopathy. Specifi-

cally, as the majority of our participants were cognitively normal, with

a small subset having MCI (section 3.1), we focused on brain regions

suggested to be affected by TDP-43 in Stages 1 or 2 LATE-NC, accord-

ing to detailed TDP-43 immunohistochemical staging schemes17—20:

the amygdala, ERC, and the subiculum of the hippocampus. The total

volumes of the amygdala and ERC (in mm3) were calculated per partic-

ipant from ROI masks derived from the FreeSurfer segmentation and

recorded for subsequent statistical analyses. FreeSurfer’s estimated

intracranial volume (eICV, in mm3) was also extracted to control for

participant head size in all ROI analyses. To compute the volume of

the subiculum, the hippocampus was segmented into subfield ROIs as

described previously.29

2.5 Exploratory cortical thickness analysis

Cortical thickness analysis, unconstrained to specific ROIs, was per-

formed to identify potential neurodegenerative effects of TDP-43

in the neocortex. Cortical thickness analyses are preferable to vol-

umetric analyses of the neocortex given its folded structure, with

most of its surface area being buried inside sulcal folds. Cortical

thickness analyses were developed to address this issue using cor-

tical inflation, flattening, and providing a surface-based coordinate

system.30Weusedavertex-wise, surface-based31 general linearmodel

(GLM) approach with FreeSurfer 6.0. After FreeSurfer segmentation

(section 2.4), each participant’s surface (cortical thickness) data was

resampled to an “average” subject (fsaverage; https://surfer.nmr.mgh.

harvard.edu/fswiki/FsAverage) in MNI305 space and concatenated

https://surfer.nmr.mgh.harvard.edu/fswiki/FsAverage
https://surfer.nmr.mgh.harvard.edu/fswiki/FsAverage
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TABLE 2 Dilutions and performance analytics for each of theQuanterix Simoa immunoassays.

Assay Dilution

Catalog

number LLOQ LOD

Dynamic

range

TDP-43 1:10 103293 8.23 pg/mL 2.48 pg/mL 0-8000 pg/mL

Aβ42 1:20 101995 0.142 pg/mL 0.045 pg/mL 0-240 pg/mL

Aβ40 1:20 101995 0.675 pg/mL 0.196 pg/mL 0-560 pg/mL

p-tau181 NEAT 103714 0.085 pg/mL 0.028 pg/mL 0-424 pg/mL

Notes: All immunoassays were carried out using themanufacturer’s instructions. LLOQ and LODwere used to determine dilution.

Abbreviations: Aβ, amyloid beta; LLOQ, lower limit of quantification; LOD, limit of detection; p-tau181, phosphorylated threonine-181 tau; TDP-43, tar DNA

binding protein of 43 kDa.

into a single file using mris_preproc (https://surfer.nmr.mgh.harvard.

edu/fswiki/mris_preproc). Each participant’s resampled data was then

smoothed with a 10 mm full-width-at-half-maximum Gaussian ker-

nel using mri_surf2surf (https://freesurfer.net/fswiki/mri_surf2surf) to

improve the signal-to-noise ratio.

After conducting each GLM (section 2.6), surface clusters were cor-

rected for multiple comparisons using a precomputed Z Monte Carlo

simulation with 10,000 iterations provided with FreeSurfer32 with the

mri_glmfit-sim command (https://surfer.nmr.mgh.harvard.edu/fswiki/

FsTutorial/GroupAnalysis). The cluster-forming threshold was set to

P<0.001, as recommended,33 while the cluster-wise thresholdwas set

to P < 0.05. The P-values were additionally adjusted for multiple com-

parisons in the initial GLM because both brain hemispheres (left and

right)were explored.Only the left hemispherewas explored in the post

hocGLMbecause the initial GLMdid not reveal any significant clusters

in the right hemisphere.

2.6 Statistical analyses

All ROI linear regressionanalyseswere conductedusingSPSS28 (IBM).

We first exploredwhether plasmaTDP-43 levelswere negatively asso-

ciated with volumes of the amygdala, the ERC, or the subiculum of the

hippocampus. Separate linear regressionmodels were runwith plasma

TDP-43 level as the independent variable and each ROI volume as

the dependent variable. All models controlled for age, sex, and ICV.

Multiple comparisons were corrected using a Bonferroni-corrected

threshold for the three ROIs tested (P= 0.05/3 ROIs; P< 0.0167). The

uncorrected P-values are reported using this threshold (P < 0.0167)

to determine statistical significance. For significant models, additional

analyses were run to control for fluid biomarkers of ADNC. Specif-

ically, significant regression models were repeated using the plasma

Aβ42/Aβ40 ratio and the p-tau/Aβ42 ratio as additional covariates.

Separate models were required as these markers of ADNC are inter-

correlated. All participants with plasma TDP-43 were included in all

models using a pairwise deletion method to mitigate missing values.

Statistical outlierswere defined as values greater than3 standard devi-

ations from the group mean for any variable and were excluded from

relevant analyses.

The initial vertex-wise GLM explored the association between

plasma TDP-43 levels (independent variable) and cortical thickness

(dependent variable), with age and sex as covariates (nuisance regres-

sors) in the model. A second, post hoc vertex-wise GLM was then

conducted adding the plasma Aβ42/Aβ40 ratio as an additional covari-
ate, to statistically remove effects associated with markers of ADNC.

Anyparticipantswhodidnot haveplasmaAβ42/Aβ40 ratio valueswere
excluded from this post hoc analysis, as the sole purpose of this analysis

was to determinewhether plasmaTDP-43was associatedwith cortical

thickness after controlling for a plasmamarker of AD.

3 RESULTS

3.1 Participant and data characteristics

Participant summary demographics are presented in Table 1. Of the 72

participantswith available plasmaTDP results, a subset of 59had avail-

able plasma Aβ42 and Aβ40 results, while a subset of 60 had available

p-tau181 results. Fifty-five participants were cognitively normal while

the remaining17hadMCI. Therewasoneoutlier value for plasmaTDP-

43, which was excluded from relevant analyses; no other outliers were

present in any analyses.

3.2 Associations between plasma TDP-43 levels
and volume in ROIs

Plasma TDP-43 level was negatively associated with volume of

the entorhinal cortex after controlling for multiple comparisons

(Bonferroni-corrected threshold: P < 0.0167; ERC; Figure 1A; Table 3,

P = 0.009), but was not associated with volume of the amygdala

(P= 0.796) or the subiculum of the hippocampus (P= 0.521).

Follow-up analyses investigating the association between plasma

TDP-43 level and ERC volume revealed that TDP-43 level was still

associated with ERC volume after adding the plasma Aβ42/Aβ40 ratio

to the model (Table 3, P = 0.045). Plasma TDP-43 level was also

still associated with ERC volume when adding the plasma p-tau/Aβ42
ratio (P = 0.037) to the model instead of the plasma Aβ42/Aβ40
ratio.

To identify individuals at potential risk for LATE-NC+ADNC, versus

those at risk for more “pure” LATE-NC, the scatterplot demonstrat-

ing a significant relationship between plasma TDP-43 level and ERC

https://surfer.nmr.mgh.harvard.edu/fswiki/mris_preproc
https://surfer.nmr.mgh.harvard.edu/fswiki/mris_preproc
https://freesurfer.net/fswiki/mri_surf2surf
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/GroupAnalysis
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/GroupAnalysis
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TABLE 3 Associations between plasma TDP-43 levels and volume in regions of interest.

Predictor β Estimate 95%CI P value

Model 1: amygdala volume is DV

Age −0.418 −0.598 –−0.238 < 0.001

Sex −0.216 −0.443 – 0.010 0.061

Estimated intracranial volume 0.441 0.214 – 0.668 < 0.001

Plasma TDP-43 −0.023 −0.202 – 0.155 0.796

Model 2: ERC volume is DV

Age −0.275 −0.475 –−0.076 0.007

Sex −0.238 −0.489 – 0.014 0.063

Estimated intracranial volume 0.322 0.070 – 0.574 0.013

Plasma TDP-43 −0.267 −0.465 –−0.069 0.009

Model 3: subiculum volume is DV

Age −0.421 −0.603 –−0.239 < 0.001

Sex −0.270 −0.499 –−0.040 0.022

Estimated intracranial volume 0.378 0.148 – 0.607 0.002

Plasma TDP-43 −0.058 −0.239 – 0.122 0.521

Post hocModel 1: ERC volume is DV

Age −0.286 −0.509 –−0.064 0.013

Sex −0.260 −0.543 – 0.023 0.071

Estimated intracranial volume 0.315 0.035 – 0.595 0.028

Plasma TDP-43 −0.236 −0.465 –−0.006 0.045

Plasma Aβ42/Aβ40 ratio 0.112 −0.123 – 0.346 0.343

Post hocModel 2: ERC volume is DV

Age −0.267 −0.530 –−0.004 0.047

Sex −0.226 −0.560 – 0.107 0.178

Estimated intracranial volume 0.325 0.005 – 0.645 0.047

Plasma TDP-43 −0.271 −0.525 –−0.17 0.037

Plasma p-tau/Aβ42 ratio −0.030 −0.308 – 0.247 0.826

Notes: The table displays the standardized β estimates, the 95% confidence intervals (CI) for β estimates, and the P values for each predictor in the linear

regressionmodels investigating plasma TDP-43 and volumes of the amygdala, the ERC, and the subiculum of the hippocampus.

Abbreviations: Aβ, amyloid beta; CI, confidence interval; DV, dependent variable; ERC, entorhinal cortex; p-tau, phosphorylated threonine-181 tau; TDP-43,

tar DNA binding protein of 43 kDa.

volume (Figure 1B) was split by the plasma Aβ42/Aβ40 ratio using a

median split (median value=−1.20; Figure1C). Thebottomright quad-

rant in Figure 1C (highlighted by the black oval), represents individuals

with low ERC volume and high plasma TDP-43 values; individuals at

high risk for LATE-NC. However, splitting this group based on plasma

Aβ42/Aβ40 ratio values (using a median split) reveals two subgroups:

Participantswith lowplasmaAβ42/Aβ40 ratio values (red circleswithin
the black oval) are at high risk for ADNC + LATE-NC, while a smaller

subgroup with high plasma Aβ42/Aβ40 ratio values (blue circles within
the black oval) are at low ADNC risk but are at high risk for “pure”

LATE-NC. The small subgroup of individuals at risk for “pure” LATE-

NC consisted of the following participants: S09 (female, 81 years old,

Montreal CognitiveAssessment [MoCA]=21), S47 (male, 70 years old,

MoCA= 27), and S70 (female, 94 years old, MoCA= 26).

3.3 Exploratory cortical thickness results

Plasma TDP-43 level was negatively associated with two surface

cortical clusters in the left hemisphere (Figure 2A: left inferior/ventral

temporal cluster [inferior temporal gyrus/fusiform gyrus]; peak

t-value: −5.154, peak Montreal Neurological Institutes [MNI]

right/anterior/superior [RAS] coordinates: [X = −49.2, Y = −48.7,

Z = −16.0], cluster area: 355.00 mm2; left inferior parietal cluster

(angular gyrus): peak t-value: −3.835, peak MNI [RAS] coordinates:

[X = −36.8, Y = −80.2, Z = 28.7], cluster area: 232.87 mm2). No

significant clusters were identified in the right hemisphere.

Repeating the same analysis but adding plasma Aβ42/Aβ40 ratio

values to the model revealed a unique, negative association between

TDP-43 values and 1 surface cortical cluster in the left hemisphere
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F IGURE 1 Association between plasma TDP-43 levels and ERC
volume. The figure displays the ERCROImask on a representative
participant from this study (A; red) and a scatterplot displaying plasma
TDP-43 levels against ERC volume (B). There was a significant
negative association between plasma TDP-43 level and ERC volume
after controlling for age, sex, and ICV. Furthermore, a median split (C)
was used to divide participants shown in (B) into low plasma
Aβ42/Aβ40 ratio (red circles) and high plasma Aβ42/Aβ40 ratio (blue
circles) groups to help identify those individuals at high risk for “pure”
LATE-NC versus those at high risk for mixed pathologies of LATE-NC
+ADNC (C). Participants in the bottom right quadrant (within the
black oval) had both high plasma TDP-43 levels and low ERC volume.
While most of these participants had a low plasma Aβ42/Aβ40 ratio
(red circles: high risk for both ADNC+ LATE-NC), a small subgroup
had a high plasma Aβ42/Aβ40 ratio (blue circles: low ADNC risk, high
risk for “pure” LATE-NC). Aβ, amyloid beta; ADNC, Alzheimer’s disease
neuropathologic change; ERC, entorhinal cortex; ICV, intracranial
volume; LATE-NC, limbic-predominant age-related TDP-43
encephalopathy neuropathological change; ROI, region of interest;
TDP-43, tar DNA binding protein of 43 kDa.

(Figure 2B: left isthmus of the cingulate/parahippocampal gyrus; peak

t-value: −4.998, peak MNI [RAS] coordinates: [X = −15.2, Y = −43.8,

Z=−4.1], cluster area: 203.00mm2).

4 DISCUSSION

We found that plasma TDP-43 levels were negatively associated with

ERC volume in a cohort of community-dwelling older adults, after con-

trolling for plasmamarkers of ADNC. Subsequent exploratory analyses

demonstrated a negative relationship between plasma TDP-43 level

and cortical thickness in the left cingulate/parahippocampal gyrus,

after controlling for plasma markers of ADNC. Our findings indicate

that plasma TDP-43 level is associatedwith neurodegeneration in spe-

cific limbic system brain regions, suggesting that it may be a useful in

vivo biomarker of TDP-43-mediated neurodegeneration for those at

risk for LATE-NC.

4.1 Plasma TDP-43 level and ERC volume

Our results link plasma TDP-43 levels with volume of the ERC in

nondemented older adults, after controlling for age, sex, and ICV.

The ERC (Brodmann Area 28) is a critical hub of the episodic mem-

ory system, involved in relaying and integrating information between

the hippocampus and neocortex.34,35 The ERC is a very early site

of ADNC36 but also of LATE-NC.17–20 Neuroimaging studies have

reported reduced volume of the ERC, as well as other MTL struc-

tures, in individuals with presumed ADNC and amnestic MCI.37–39 In

addition, neuroimaging studies, including our own, have shown that

low baseline ERC volume is a significant predictor of later decline in

memory function and conversion to amnesticMCI.40,41

The assumption underlying most of these previous studies is that

ERC volumetric reductions result from underlying ADNC. However,

TDP-43 was not assessed in these previous studies and the present

results suggest that TDP-43 is a contributor to ERC neurodegener-

ation, even after controlling for plasma markers of ADNC. Previous

relevant studies have explored relationships between pathological

TDP-43 loadwith either ex vivoMRImeasures42,43 or antemortemMRI

measures.2,17,44–46 One of the reported patterns is that “pure” LATE-

NC is associated with lower volume of specific MTL structures than

“pure” ADNC, with volumes of MTL structures being lowest in mixed

LATE-NC+ADNC.2,17,42,44,45,47

In the current study, our hypothesis-driven analyses focused on the

volume of three MTL ROIs (amygdala, ERC, and subiculum of the hip-

pocampus) affected by TDP-43 in early stages (Stages 1 or 2) of LATE-

NC, according to TDP-43 immunohistochemical staging schemes.17–20

Our results implicate low normalized ERC volume as a potential in

vivo marker of LATE-NC. Nevertheless, while MRI-based patterns are

a necessary component of the amyloid/tau/neurodegeneration (ATN)

framework (i.e., theNcomponent), the regional overlap between LATE-

NC and ADNC established in post mortem studies suggests that other

biomarkers will be needed for in vivo identification of individuals at

risk for “pure” LATE-NC versus those at risk for “pure” ADNC ormixed

pathology (i.e., LATE-NC+ADNC).

4.2 Plasma TDP-43 level as a potential biomarker
for LATE-NC

Our results suggest that the addition of plasma TDP-43 measures to

the canonical ATN framework may aid in vivo differentiation of mixed

ADNC + LATE-NC from more “pure” presentations (Figures 1 and 3).

For example, as seen in Figure 1C, approximately 12 of our study par-

ticipants appear to be at high risk for LATE-NC (those within the black
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F IGURE 2 Relationship between plasma TDP-43 level and cortical thickness. Plasma TDP-43 level was negatively associated with cortical
thickness in the left inferior/ventral temporal areas and in the left inferior parietal lobe (A; blue regions). However, after controlling for plasma
Aβ42/Aβ40 ratio values, plasma TDP-43 level was only negatively associated with cortical thickness in the left inferior isthmus of the
cingulate/parahippocampal gyrus (B; blue). Aβ, amyloid beta; TDP-43, tar DNA binding protein of 43 kDa.

F IGURE 3 A schematic summarizing the potential implications of our results for future clinical trials. Our results suggest that integrating
TDP-43 values and ERC volumewithin the ATN framework could aid in the differentiation of those at high risk for “pure” ADNC and those at risk
for “pure” LATE-NC. Further validation of fluid biomarkers of TDP-43will be necessary to ensure accurate quantification of TDP-43 levels in vivo.
ADNC, Alzheimer’s disease neuropathologic change; CVD, cerebrovascular disease; ERC, entorhinal cortex; DLB, dementia with Lewy bodies;
FTD, frontotemporal dementia; LATE-NC, limbic-predominant age-related TDP-43 encephalopathy neuropathological change;MRI, magnetic
resonance imaging; ROI, region of interest; TDP-43, tar DNA binding protein of 43 kDa.

oval in Figure 1C) based on their pattern of high plasma TDP-43 pro-

tein levels along with low normalized ERC volume. However, splitting

this group based on the Aβ42/Aβ40 ratio (using a median split) shows

that the majority (N= 9) of these participants appear to be at high risk

for the more common mixed pathology of ADNC + LATE-NC, while a

small subgroup (N= 3) appear to be at high risk for “pure” LATE-NC.

Interestingly, of all study participants with available fluidmarkers of

ADNC, 3 out of 59 showed a pattern of low ERC volume, low risk for

ADNC, and high risk for LATE-NC. This percent of participants (5%)

is similar to the percent reported10 to show the pathologic combi-

nation of LATE-NC (Stage > 1) and low/no ADNC (8.9%). The lower

percentage in our study is not unexpected in that we included low

ERC volume as an additional metric in our classification of high risk for

LATE-NC. It may be possible to test the relationship between plasma

TDP-43 level andTDP-43pathologymoredirectly in our sample,which

consists of participants who have agreed to brain donation at death.

Based on our results, we provide a schematic (Figure 3) of howTDP-

43 could be added to the canonical ATN framework for clinical trials

focused on “pure” LATE-NC. First, inclusion criteria for future clini-

cal trials focusing on “pure” LATE-NC or “pure” ADNC can exclude

for cerebrovascular disease using clinical or MRI data and exclude for

FTD and dementia with Lewy bodies clinical phenotypes. Individuals
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meeting inclusion criteria would then be grouped based on both

their ATN status and biofluid TDP-43 levels. Our results suggest that

volumes of the ERC would be an appropriate measure of neurode-

generation (i.e., the N in ATN) for trials focused on LATE-NC. Further,

grouping based on TDP-43 values andAT valueswould allow for differ-

entiation between individuals at high risk of “pure” LATE-NCpathology

and those at risk for “pure” ADNC.

It is important to point out that our schematic is intended sim-

ply as a working heuristic based on our findings. The optimal choice

of biomarkers will need to evolve over time based on scientific and

technological advancements. Continued refinement of biomarkers for

LATE-NC is a worthwhile endeavor that has potential to aid the devel-

opment of pharmacological interventions for use in future clinical trials

focusing on LATE-NC. In addition, development of accurate biomark-

ers of LATE-NC will also implicitly sharpen/refine existing biomarkers

of ADNC.

4.3 Plasma TDP-43 level and cortical thickness

Our exploratory analyses focused on potential relationships between

plasma TDP-43 and neocortical structure. Results indicated that high

levels of plasma TDP-43 were associated with cortical thinning in the

inferior temporal lobe and inferior parietal lobe. However, after con-

trolling for plasma Aβ42/Aβ40 ratio values, TDP-43 pathology was

associated with cortical thinning in the cingulate/parahippocampal

gyrus. This suggests that “pure” LATE-NC may not be associated with

neurodegeneration in the lateral, inferior temporal, or parietal lobes

independent of ADNC.

In contrast, our cortical thickness results suggest that TDP-43 may

uniquely contribute to neurodegenerative processes in portions of

the limbic system. Specifically, plasma TDP-43 levels were associated

with cortical thickness in the left inferior isthmus of the cingu-

late/parahippocampal gyrus, a region of the limbic system situated

between the posterior, inferior portion of the cingulate gyrus, and the

posterior portion of the parahippocampal gyrus. Gray matter reduc-

tions in this area have also been linked to earlyAD.48,49 However, these

studies did not also consider the potential association of TDP-43 with

gray matter reductions in this area. Our exploratory cortical thickness

results converge with our a priori volumetric findings, linking plasma

TDP-43 with neurodegeneration in portions of the limbic system,

although future research will be required to confirm this exploratory

result.

4.4 Limitations

Current plasma immunoassays for TDP-43 have not yet been shown

to demonstrate clinical utility.14,15,50 This study used Quanterix Simoa

immunoassays and future studies are needed to establish which

immunoassays are optimally sensitive and specific to detect total

TDP-43 or pTDP-43 in human plasma.14,50 Another potential limita-

tion relates to the use of continuous measures of plasma values rather

than defined cut points, as such cut points have yet to be established

for plasma TDP-43. Further, we lack pathological confirmation related

to those individuals identified for being at high risk for “pure” LATE-

NC in this study (Figure 1C), although this may be possible in the

future as most participants in our longitudinal cohort have agree to

brain donation at death. Finally, this was a study of convenience in

which participants were recruited based on the availability of plasma

and neuroimaging data. This may limit generalizability to other aging

populations.

In summary, this study demonstrates that plasma TDP-43 levels are

associated with unique patterns of neurodegeneration in specific lim-

bic system brain regions after statistically removing effects associated

with ADNC. These results suggest that adding biofluid TDP-43 mea-

sures to the ATN frameworkmay aid the identification of individuals at

high risk for LATE-NC for enrollment in future clinical trials. We offer

one possible set of criteria for future trials of individuals at high risk

for LATE-NC that incorporates biofluid TDP-43 levels andERCvolume.

These criteria remain a working heuristic that will need to be further

developed based on results from studies with larger sample sizes.
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