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Background: Immune system dysregulation plays a critical role in aortic valve calcification
(AVC) and metabolic syndrome (MS) pathogenesis. The study aimed to identify pivotal
diagnostic candidate genes for AVC patients with MS.

Methods: We obtained three AVC and one MS dataset from the gene expression
omnibus (GEO) database. Identification of differentially expressed genes (DEGs) and
module gene via Limma and weighted gene co-expression network analysis (WGCNA),
functional enrichment analysis, protein–protein interaction (PPI) network construction, and
machine learning algorithms (least absolute shrinkage and selection operator (LASSO)
regression and random forest) were used to identify candidate immune-associated hub
genes for diagnosing AVC with MS. To assess the diagnostic value, the nomogram and
receiver operating characteristic (ROC) curve were developed. Finally, immune cell
infiltration was created to investigate immune cell dysregulation in AVC.

Results: The merged AVC dataset included 587 DEGs, and 1,438 module genes were
screened out in MS. MS DEGs were primarily enriched in immune regulation. The
intersection of DEGs for AVC and module genes for MS was 50, which were mainly
enriched in the immune system as well. Following the development of the PPI network, 26
node genes were filtered, and five candidate hub genes were chosen for nomogram
building and diagnostic value evaluation after machine learning. The nomogram and all five
candidate hub genes had high diagnostic values (area under the curve from 0.732 to
0.982). Various dysregulated immune cells were observed as well.
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Conclusion: Five immune-associated candidate hub genes (BEX2, SPRY2, CXCL16,
ITGAL, andMORF4L2) were identified, and the nomogram was constructed for AVC with
MS diagnosis. Our study could provide potential peripheral blood diagnostic candidate
genes for AVC in MS patients.
Keywords: aortic valve calcification, metabolic syndrome, differentially expressed genes, machine learning,
immune infiltration, diagnosis
1. INTRODUCTION

Aortic valve (AV) calcification (AVC) is the most common
valvular cardiac disease in the aging population of the
developed world. It has a high global prevalence;
approximately 12.6 million cases were reported in 2017 with
an estimated 102,700 deaths (1, 2). AVC is induced by several
risk factors, including genetic mutations, hyperlipidemia,
hyperglycemia, and infection (3). Metabolic syndrome (MS) is
a pathologic condit ion comprised of hypertension,
hyperlipidemia, abdominal obesity, and insulin resistance (4).
Therefore, patients with MS have an amplified risk of AVC but
also progresses rapidly from mild to severe (5). Both AVC and
MS are progressive diseases constituting a global health burden
for the aging population.

Previous studies have proved that early endothelial
inflammation and dysfunction take part in the initiation of
AVC (6). Several risk factors, including smoking, diabetes, and
hyperlipidemia, contribute to AVC, at least in part, through pro-
inflammatory molecules and lipid deposition (7). Furthermore,
inflammation reaction also exists in late-stage AVC (8).
According to multiple pieces of evidence, immune cells play a
crucial role in the physiological dysfunction associated with MS,
as well as the pathophysiology and development of subsequent
chronic diseases (9, 10). As a result, immune filtration and
related pro-inflammatory molecules may be useful in the early
diagnosis of AVC patients with MS.

It is well recognized that MS can accelerate the AVC
proceeding. After the onset of valve disease symptoms, the
prognosis is dismal. Patients usually do not seek medical
evaluation for AVC until they exhibit symptoms. Therefore, it
is crucial to discover sensitive and specific diagnostic tools for
early-stage AVC prior to irreversible heart injury, particularly for
MS patients who may be insensitive to aorta stenosis (AS)
symptoms. Proteomics and sequencing tools provide an
opportunity for identifying potential novel biomarkers and
their roles in diverse diseases (11). Machine learning is
gradually maturing in bioinformatics applications and can be
used to excavate underlying mechanisms, prospective
biomarkers, and therapeutic targets for a variety of diseases (12).

To the best of our knowledge, limited research has been
conducted on the identification of immune-associated diagnostic
candidates for AVC with MS, as well as the machine learning
application for AVC diagnosis. Here, we first downloaded three
AVC and one MS datasets from the gene expression omnibus
(GEO) database, identified differentially expressed genes (DEGs)
by Limma, and selected important module genes via weighted
org 2
gene co-expression network analysis (WGCNA). Functional
enrichment analysis, construction of protein–protein interaction
network, application of machine learning (least absolute shrinkage
and selection operator (LASSO) and random forest (RF))
algorithms, immune cell infiltration analysis, evaluation of
nomogram, and receiver operating characteristic (ROC) curve
evaluation were subsequently performed to identify pivotal
immune-related diagnostic biomarkers for AVC with MS. This
research could lead to the identification of immune-associated
potential diagnostic markers for AVC in MS patients.
2. MATERIALS AND METHODS

2.1 Microarray Data
Figure 1 depicts the study flowchart. Three raw datasets
(GSE51472 (13), GSE12644 (14), and GSE83453 (15))
including gene expression data for AVC patients and controls
and one dataset of MS (GSE98895 (16)) were downloaded from
the GEO (https://www.ncbi.nlm.nih.gov/geo/) database (17).
FIGURE 1 | Study flowchart. GSE, gene expression omnibus series;
WGCNA, weighted gene co-expression network analysis; Limma, linear
models for microarray data; DEGs, differentially expressed genes.
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Table 1 presents detailed dataset information, including the
microarray platform, sample groups, and numbers.

2.2 Data Processing and Differentially
Expressed Gene Screening
First, background calibration, normalization, and log2
transformation were performed on the three AVC raw datasets
using affy in R. When multiple probes identified the same gene,
the average value was calculated to determine its expression.
Following the merging of the three datasets, the Bioconductor
“SVA” R package was applied to eliminate batch effects (18).
Finally, |log2 Fold change (FC)| > 1 (AVC filtration) or 0.585 (MS
filtration) and p-value <0.05 were set as the criteria for
identifying DEGs using Limma package.

2.3 Weighted Gene Co-Expression
Network Analysis and Module
Gene Selection
WGCNA, a system biology strategy, was adopted to explore the
correlation between genes (19). First, the median absolute
deviation (MAD) of each gene was determined, and 50% of
genes with the smallest MAD were removed. Second, the DEG
expression matrix was filtered by the goodSamplesGenes
function to omit unqualified genes and samples, and a scale-
free co-expression network was built. Third, adjacency was
computed using the co-expression similarity-derived “soft”
thresholding power (b). The adjacency was then converted into
a topological overlap matrix (TOM), and the gene ratio and
dissimilarity were determined. The fourth step was the detection
of modules using hierarchical clustering and a dynamic tree cut
function. Genes with identical expression profiles were classified
into gene modules using average linkage hierarchical clustering,
with a TOM-based dissimilarity metric and a minimum gene
group size (n = 30) for the gene dendrogram. Fifth, the
dissimilarity of module eigengenes was computed, a cut line
for the module dendrogram was chosen, and several modules
were combined for further investigation. The eigengene network
was finally visualized. WGCNA analysis was employed to
identify important modules in MS.

2.4 Functional Enrichment Analysis
The Gene Ontology (GO) system provides structured, computable
information regarding the functions of genes and gene products
(20). The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
widely used database for the systematic investigation of gene
Frontiers in Immunology | www.frontiersin.org 3
functions (21). Functional enrichment analysis was conducted
based on the R package clusterProfiler (22), and the results of
enrichment analysis were visualized via the Sangerbox platform
(http://vip.sangerbox.com/). p-Value <0.05 was set as the criteria.
Here, GO and KEGG analyses were performed twice based on the
intersection of DEGs and the most significant module genes of MS,
and the intersection of DEGs for AVC and the most significant
module genes of MS.

2.5 Protein–Protein Interaction
Network Construction
To excavate interactions among protein-coding genes, a protein–
protein interaction (PPI) network was established using the
String database (23) (version 11.5; www.string-db.org), with
the minimum required interaction score set at 0.400.
Cytoscape software was applied to modify images downloaded
from String, and an MCODE plug-in was used to identify
important interacted genes (24). All genes that could interact
with each other in the PPI network were selected for
subsequent analysis.

2.6 Machine Learning
Two machine learning algorithms were adopted to further filter
candidate genes for AVC diagnosis. LASSO is a regression
method for selecting a variable to improve the predictive
accuracy and is also a regression technique for variable
selection and regularization to improve the predictive accuracy
and comprehensibility of a statistical model (25). RF is an
appropriate approach with the benefits of no limits on variable
conditions and better accuracy, sensitivity, and specificity, which
can be used to predict continuous variables and provide forecasts
without apparent variations (26). “glmnet” (27) and
“randomForest” (28) R packages were used to perform LASSO
regression and RF analysis. The intersection genes of LASSO and
RF were considered as candidate hub genes in AVC diagnosis.

2.7 Nomogram Construction and Receiver
Operating Characteristic Evaluation
Nomogram construction is valuable for clinical AVC diagnosis.
Based on candidate genes, the “rms” R package was applied to
construct the nomogram (29). “Points” indicates the score of
candidate genes, and “Total Points” indicates the summation of
all the scores of genes above. The ROC was subsequently
established to evaluate the diagnostic value of candidate genes
and nomogram regarding AVC diagnosis, and the calculation of
TABLE 1 | Basic information of GEO datasets used in the study.

GSE series Type Sample size Platform

Control Aortic valve calcification

GSE51472 mRNA 5 5 GPL570
GSE12644 mRNA 10 10 GPL570
GSE83453 mRNA 8 9 GPL10558

Control Metabolic syndrome
GSE98895 mRNA 20 20 GPL6947
July 2022 | Volume 13 | Art
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area under the curve (AUC) and 95% CI was performed to
quantify its value. AUC > 0.7 was considered the ideal diagnostic
value. To further excavate the interrelation among the identified
genes, the network was constructed using the String online tool.

2.8 Immune Infiltration Analysis
CIBERSORT, a computational approach for identifying the
proportion of diverse immune cells using tissue gene
expression profiles, was utilized to determine immune cell
proportion in AVC and control (30). Immune cell infiltration
analysis was performed using the “Cibersort” R package. The
barplot was used to visualize the proportion of each type of
immune cell in different samples. The comparison regarding the
proportion of diverse types of immune cells between AVC and
control groups was visualized via the vioplot. A heatmap
depicting the correlation of 22 types of infiltrating immune
cells was carried out using the “corrplot” R package (31).

2.9 Statistical Analysis
The establishment of the ROC curve and the calculation of AUC
as well as 95% CI were constructed using SPSS Version 26.0
(IBM Corporation, Armonk, NY, USA).

Student’s sample t-test was applied to compare the
proportion of different immune cells between the control and
AVC groups via GraphPad Prism Version 8.3.0 (GraphPad
Software, San Diego, CA, USA). p-Value <0.05 was considered
statistically significant.
3. RESULTS

3.1 Identification of Differentially
Expressed Genes
A total of 587 DEGs were identified in the AVC combined
dataset using the Limma method, of which 320 were upregulated
and 267 were downregulated. The heatmap and volcano plot of
AVC DEGs are shown in Figures 2A, B. Regarding the MS
dataset, 62 DEGs were screened out (38 upregulated and 24
downregulated) (Figures 3A, B).

3.2 Weighted Gene Co-Expression
Network Analysis and Key
Module Identification
Here, WGCNA was applied to identify the most correlated
module in MS. We chose b = 18 (scale-free R2 = 0.9) as the
“soft” threshold based on the scale independence and average
connectivity (Figures 3C, D). Figure 3E depicts the clustering
dendrogram of the MS and control. On the basis of this power,
six gene co-expression modules (GCMs) were generated, which
are presented in Figures 3F, G in different colors. The
correlation between MS and GCMs is shown in Figure 3H,
and the green module (1,436 genes) demonstrated the highest
correlation with MS (correlation coefficient = 0.71, p = 2.5 * 10−7)
and was regarded as the pivotal module for subsequent analysis.
Additionally, we calculated the correlations between module
membership and gene significance in the green module for
Frontiers in Immunology | www.frontiersin.org 4
MS. As expected, a significant positive correlation was
observed between them (r = 0.6) as shown in Figure 3I.
Therefore, green module genes were most significantly
associated with MS.

3.3 Functional Enrichment Analysis of
Metabolic Syndrome
GSE98895 is a new MS dataset that has not been excavated
before. To assess whether this dataset could reflect MS
pathogenesis to a reliable extent, we further performed
functional enrichment analysis based on the intersection of
genes from Limma and WGCNA module genes. A total of 36
common genes (CGs) were screened out via the intersection of
62 DEGs and 1436 genes in the green module (Figure 4A).

KEGG analysis showed that CGs were primarily enriched in
the “IL-17 signaling pathway” and “rheumatoid arthritis”
(Figure 4B). GO analysis elucidated that CGs were mainly
enriched in biological process (BP) terms, including
“regulation/positive regulation of immune system process” and
“immune system process” (Figure 4C). With regard to cellular
component (CC) ontology, the CGs were mainly located in the
“nuclear body,” “glial limiting end-foot,” and “nuclear speck”
(Figure 4D). Molecular function (MF) analysis showed that
“collagen binding,” “small GTPase binding,” and “fibronectin
binding”were the most significant items in CGs (Figure 4E). The
detailed top ten enrichment ontologies for GO and KEGG are
listed in Supplementary Table S1.

The enrichment analysis revealed that CGs of MS were
mainly related to immune response and inflammatory
response, which were highly correlated with MS pathogenesis
and reliable for subsequent AVC analysis.

3.4 Enrichment Analysis of Aortic Valve
Calcification With Metabolic Syndrome
and Node Gene Identification via Protein–
Protein Interaction Network Construction
To further explore whether MS-associated pivotal genes could be
related to AVC pathogenesis, 50 genes were identified from the
intersection of DEGs from AVC and module genes from MS
visualized via the Venn diagram (Figure 5A). The KEGG
enrichment analysis revealed that 50 genes were primarily
enriched in the “Fc epsilon RI signaling pathway,” “Leukocyte
transendothelial migration,” and “Chemokine signaling
pathway”; all of the above ontologies were intimately related to
the immune system (Figure 5D). Also, GO analysis showed that
genes were enriched in “cell activation,” “immune response,” and
“immune system process” (BP); “specific granule membrane,”
“whole membrane,” and “cytosol” (CC); and “non-membrane
spanning protein tyrosine kinase activity,” “C-C chemokine
binding,” and “ l ipid binding” (MF) (Figures 5E–G ,
Supplementary Table S2).

After confirming that the screened genes were closely related
to immunity, we constructed a PPI network to find node genes
that could interact with each other for the subsequent machine
learning filtration. Figure 5B shows the PPI network and that 26
genes could interact with each other; the most active module was
July 2022 | Volume 13 | Article 937886
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visualized through the MCODE plug-in, and the genes were
ranked by node numbers in Figure 5C.

3.5 Identification of Candidate Hub Genes
via Machine Learning
LASSO regression and RF machine learning algorithms were
applied to screen candidate genes for nomogram construction
and diagnostic value evaluation. As we can see from Figures 6A,
B, the LASSO regression algorithm identified six potential
candidate biomarkers, and the RF algorithm ranked the genes
based on the calculation of the importance of each gene
(Figures 6C, D). The intersection of the top 10 most
important genes from the RF and six potential candidate genes
from LASSO was visualized via the Venn diagram (Figure 6E),
and five genes (BEX2, CXCL16, ITGAL, MORF4L2, and SPRY2)
were identified for the final validation. Moreover, based on the
five genes, we found that CXCL16, ITGAL, MORF4L2, and
SPRY2 could interact with each other through intermediate
molecules , while BEX2 showed a different pattern
(Supplementary Figure S1).

3.6 Diagnostic Value Assessment
The nomogram was constructed based on the five candidate hub
genes (Figure 7A), and a ROC curve was established to assess the
diagnostic specificity and sensitivity of each gene and the
nomogram. We calculated the AUC and 95% CI for each item.
The results were as follows: BEX2 (AUC 0.746, CI 0.601–0.892),
SPRY2 (AUC 0.788, CI 0.660–0.916), CXCL16 (AUC 0.851, CI
0.746–0.957), ITGAL (AUC 0.830, CI 0.711–0.948), MORF4L2
(AUC 0.732, CI 0.587–0.877), and nomogram (AUC 0.982, CI
0.953–1.000) (Figures 7B–G). All the candidate genes possess a
Frontiers in Immunology | www.frontiersin.org 5
high diagnostic value for AVC with MS, and the constructed
nomogram had the highest diagnostic value.

3.7 Immune Cell Infiltration Analysis
Since we observed that MS-associated genes could regulate AVC
pathogenesis and were mainly enriched in immune regulation
and could be used as the potential AVC diagnostic biomarker by
nomogram construction with ROC evaluation, immune cell
infiltration analysis was performed to better elucidate the
immune regulation of AVC.

Regarding the AVC and control groups, the proportion of 22
kinds of immune cells in each sample is displayed in the barplot
(Figure 8A). The vioplot demonstrated that AVC patients had a
higher level of CD8+ T cells, plasma cells, CD4 memory activated T
cells, and M0 macrophages and a lower level of naive B cells, CD4
resting T cells, activated NK cells, and M2 macrophages
(Figure 8B). The correlation of 22 types of immune cells revealed
that CD4 memory activated T cells were positively associated with
resting mast cells (r = 0.59) and that naive B cells were positively
related to activated mast cells (r = 0.56), whereas resting mast cells
were negatively related to resting NK cells (r = −0.50) (Figure 8C).
In general, various kinds of immune cells were differentially
infiltrated in AVC patients, which could serve as the potential
regulation point for AVC treatment.
4. DISCUSSION

AVC is a major cause of cardiac dysfunction in the elderly
population and leads to a great public health burden. Recent
A

B

FIGURE 2 | Heatmap and volcano plot for the DEGs identified from the integrated AVC dataset. (A) Each row shows the DEGs, and each column refers to one of
the samples of AVC cases or controls. The red and blue represent DEGs with upregulated and downregulated gene expression, respectively. (B) Red and green plot
triangles represent DEGs with upregulated and downregulated gene expression, respectively. AVC, aortic valve calcification; DEGs, differentially expressed genes.
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studies have identified several new biomarkers for AVC
diagnosis, such as matrix remodeling associated with protein 5,
fibronectin type III domain containing 1, and miR-34a (32, 33).
There have been no previous studies that have combined the two
diseases. Furthermore, machine learning methods and
nomogram generation have not been used in the diagnosis of
AVC. Here, we used a series of integrated bioinformatics analysis
and machine learning methods to construct the nomogram and
to evaluate the diagnostic value for AVC in MS patients. The
most noteworthy discovery is that we identified five pivotal
immune-associated candidate genes (ITGAL, CXCL16, BEX2,
Frontiers in Immunology | www.frontiersin.org 6
SPRY2, and MORF4L2) and developed a nomogram for
diagnosing AVC in MS patients.

Samples regarding the MS dataset used in the study are all
from peripheral blood; therefore, we only need to collect
peripheral blood from MS patients and evaluate the expression
of the five discovered immune-associated genes to infer the
probability of AVC incidence in MS patients, which is an
efficient and practical method for clinical usage. The
application of peripheral blood tests in diagnosing different
diseases has also been widely accepted (34, 35). Moreover,
although we confirmed that gene expression level can be used
A

B

D E

F
G

I
H

C

FIGURE 3 | Identification of DEGs via Limma and module genes via WGCNA in MS. (A) The heatmap displays the top 50 upregulated and downregulated DEGs
identified from MS dataset. Each row represents the intersection of genes, and each column represents one of MS cases or controls. Red and blue represent
upregulated and downregulated gene expression. (B) The volcano plot shows all DEGs, of which red and green triangles refer to significant DEGs. (C, D) b = 18 is
selected as the soft threshold with the combined analysis of scale independence and average connectivity. (E) Clustering dendrogram of the MS and control
samples. (F) Gene co-expression modules represented by different colors under the gene tree. (G) Heatmap of eigengene adjacency. (H) Heatmap of the association
between modules and MS. The green module is shown to be correlated significantly with MS. Numbers at the top and bottom brackets represent the correlation
coefficient and p-value, respectively. (I) Correlation plot between module membership and gene significance of genes included in the green module. WGCNA,
weighted gene co-expression network analysis; Limma, linear models for microarray data; DEGs, differentially expressed genes.
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as an independent diagnostic marker, we intend to develop a
more comprehensive diagnosis pattern by converting it into a
score and taking all these five markers into consideration (36).
The expression of each gene was quantified and transferred to a
score, with the augmentation of the score referring to the linear
predictor. We can monitor and intervene early in the MS patients
when the linear predictor is high, which is more valuable for
implementation in AVC with MS diagnosis.

Integrin alpha L (ITGAL) is the novel biomarker identified in
our study in diagnosing AVC in MS patients. It belongs to the
integrin family and is also known as CD11a. It serves as the
receptor for the intercellular adhesion molecule (ICAM) family
(ICAM1, ICAM2, ICAM3, and ICAM4) (37) as well as the
secreted form of ubiquitin-like protein ISG15 (38). It is
predominantly expressed in immune cells and is involved in
numerous immunological phenomena, such as leukocyte–
Frontiers in Immunology | www.frontiersin.org 7
endothelial cell contact, cytotoxic T cell-mediated killing, and
antibody-dependent killing by granulocytes and monocytes (39).
It promotes apoptotic neutrophil phagocytosis by macrophages
together with ICAM3 (40). It is involved in immunological
reactions and inflammatory processes, as well as angiogenesis
and cancer growth. It has been identified as a biomarker in
diverse cancers, including gastric, ovarian, colorectal, and renal
cancers (41–43). However, the mechanisms of ITGAL regarding
immune engagement with AVC remain unclear. Some AVC risk
factors enhance the production of adhesion molecules such as
ICAM in valvular endothelial cells. Pulsatile shear stress caused
elevated ICAM-1 levels in aortic explanted leaflets (44). Wang
et al. (45) discovered that ICAM signaling is involved in
decreased osteogenic bone morphogenic protein and ALP
alkaline phosphatase levels in valvular interstitial cells, which
are engaged in calcific valve rebuilding. As a receptor of multiple
A B

D

E

C

FIGURE 4 | Enrichment analysis of the intersection of genes in MS. (A) Venn diagram shows that 36 genes are identified from the intersection of DEGs via Limma
and green module genes via WGCNA. (B) KEGG pathway analysis of the intersection of genes. Different colors represent various significant pathways and related
enriched genes. (C–E) GO analysis of the intersection of genes, including biological process, cellular component, and molecular function, respectively. The y-axis
represents different GO terms, the x-axis represents gene ratio enriched in relative GO terms, the circle size refers to gene numbers, and the color represents p-
value. MS, metabolic syndrome; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; WGCNA, weighted gene co-expression network analysis;
Limma, linear models for microarray data; DEGs, differentially expressed genes.
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ICAM family members, ITGAL is also overexpressed in AVC.
Thus, we suggest that ITGAL could represent a potential
diagnostic target for AVC in MS patients.

C-X-Cmotif chemokine ligand 16 (CXCL16) may serve a pro-
inflammatory function in human atherosclerosis, particularly in
acute coronary syndrome (46). Its expression was shown to be
considerably elevated in atherosclerotic plaque, and it
participates in mechanisms that lead to increased stenosis in
atherosclerotic coronary arteries (47). During inflammatory
valvular heart disease, SR-PSOX/CXCL16 is engaged in the
recruitment of CD8+ T cells via activating VLA-4 and
stimulating IFN-g production (48). Studies have demonstrated
Frontiers in Immunology | www.frontiersin.org 8
that cytokine signaling and small dense low-density lipoprotein
(LDL) particles play a role in the fibrotic and calcific remodeling
of AVC. Our study found that CXCL16 was overexpressed in the
AVC with MS patients; thus, we surmise that CXCL16 may
induce CD8+ T-cell infiltration and ox-LDL metabolism,
resulting in the AVC process. It can also be used as a
diagnostic biomarker.

Brain expressed X-linked 2 (BEX2) has been shown to control
mitochondrial apoptosis and the G1 cell cycle in breast cancer
(49) and to increase the proliferation of human glioblastoma cells
(50). Sprouty RTK Signaling Antagonist 2 (SPRY2) is involved in
cell proliferation and differentiation and can modulate receptor
A B

DE

F G

C

FIGURE 5 | Enrichment analysis of common genes from AVC with MS and the identification of node genes from PPI network. (A) Venn diagram shows that 50
common genes are identified from the intersection of genes in AVC using Limma and MS using WGCNA. (B) PPI network reveals that 26 genes interact with each
other, and the most significant module is visualized using MCODE plug-in. (C) The column shows the gene nodes of 26 genes in PPI network. (D) KEGG analysis of
50 common genes. (E–G) GO analysis (biological process, cellular component, and molecular function) of 50 common genes. AVC, aortic valve calcification; MS,
metabolic syndrome; PPI, protein-protein interaction network; WGCNA, weighted gene co-expression network analysis; MCODE, molecular complex detection.
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tyrosine kinase signaling. By inhibiting FGFR2-induced ERK
phosphorylation, Xu et al. (51) found that SPRY2 was associated
with a favorable prognosis for intrahepatic cholangiocarcinoma.
Mortality Factor 4 Like 2 (MORF4L2) is a component of the
NuA4 histone acetyltransferase complex, which is involved in
transcriptional activation of select genes primarily by acetylating
nucleosomal histone H4 and H2A (52).

Subsequently, we explored the interrelation among the five
identified immune-associated genes. As depicted in
Supplementary Figure S1, Intercellular Adhesion Molecule 1
(ICAM1) acts as a bridge by binding CXCL16 and ITGAL
directly. Additionally, previous research has clarified the role of
the CXCL16/ICAM1/ITGAL pathway in the regulation of
inflammation and immunological diseases. First, ICAM1 is the
ligand for ITGAL, and stabilizing the ITGAL/ICAM1 complex is
Frontiers in Immunology | www.frontiersin.org 9
crucial for the regulation of the adaptive immunological process
(53). Second, it has been confirmed that the regulation of
CXCL16 is closely related to ICAM1 in numerous diseases.
Abu et al. (54) reported that treatment of human retinal
microvascular endothelial cells (HRMECs) with CXCL16 led to
increased production of ICAM-1 and increased leukocyte
adherence to HRMECs, which led to an inflammatory
response. Zhao et al. (55) discovered that CXCL16 could
impact the establishment of atherosclerotic lesions by targeting
ICAM1. Taking into account the network and prior findings,
CXCL16 may regulate many immunological and inflammatory
processes via indirect interactions with ITGAL. The relationship
between MORF4L2 and SPRY2 is not as close as the relationship
between CXCL16 and ITGAL. Based on the shortest link path,
the bridge is composed of Lysine Acetyltransferase 5 (KAT5),
A B

D

E

C

FIGURE 6 | Machine learning in screening candidate diagnostic biomarkers for AVC with MS. (A, B) Biomarkers screening in the Lasso model. The number of
genes (n = 6) corresponding to the lowest point of the curve is the most suitable for AVC with MS diagnosis. (C, D) The random forest algorithm shows the error in
AVC; control group and genes are ranked based on the importance score. (E) Venn diagram shows that five candidate diagnostic genes are identified via the above
two algorithms. AVC, aortic valve calcification; MS, metabolic syndrome.
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Tumor Protein P53 (TP53), and Erb-B2 Receptor Tyrosine
Kinase 3 (ERBB3). KAT5 is a histone acetylase that is
crucial for regulating apoptosis, autophagy, RNA transcription,
and circadian rhythms (56) and for activating TP53 in relation
to tumor DNA repair (57). ERBB3 is a receptor tyrosine kinase
of the epidermal growth factor receptor (EGFR) family. Zhang
et al. (58) discovered that activating ERBB3 could mitigate
myocardial ischemia/reperfusion damage. Due to the lengthy
pathway, the association between MORF4L2 and SPRY2 is
inconclusive; further research is required to determine whether
the two genes regulate the immunological process in a
comparable pattern.

Previous studies have demonstrated that immunological
modulation and inflammatory modulation appear in all stages
Frontiers in Immunology | www.frontiersin.org 10
of AVC. Abdelbaky et al. (59) discovered that early AV
inflammation may predispose patients to AV sclerosis based
on 111 participants. Coté et al. (60) performed a histological
analysis in 285 patients with AVC undergoing AV replacement
and analyzed the presence of chronic inflammatory infiltrates.
They found that dense inflammatory infiltrates within AVC are
associated with the severity of aortic stenosis. Additionally,
Mazzone et al. (61) found that neo-angiogenesis, T-lymphocyte
infiltration, and heat shock protein-60 are biological hallmarks of
an immune-mediated inflammatory process in end-stage AVC.
According to our results, AVC patients had a higher level of
CD8+ T cells, plasma cells, CD4 memory activated T cells, and
M0 macrophages and a lower level of naive B cells, CD4 resting T
cells, activated NK cells, and M2 macrophages, which are
A

B D

E F G

C

FIGURE 7 | Nomogram construction and the diagnostic value evaluation. (A) The visible nomogram for diagnosing AVC with MS. (B–G) The ROC curve of each
candidate gene (BEX2, SPRY2, CXCL16, ITGAL, and MORF4L2) and nomogram show the significant AVC with MS diagnostic value. AVC, aortic valve calcification;
MS, metabolic syndrome; BEX2, brain expressed X-linked 2; SPRY2, sprouty RTK signaling antagonist 2; CXCL16, C-X-C motif chemokine ligand 16; ITGAL,
integrin subunit alpha L; MORF4L2, mortality factor 4 like 2; AUC, area under the curve.
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consistent with the previous studies. Above all, understanding
inflammatory signaling mechanisms can pave the way for the
development of diagnosis and targeted therapeutics of AVC.
5. LIMITATION

Our study had several limitations. First, although we pooled
three AVC datasets, the samples still remained few, and the
diagnostic value of the nomogram was rather high due to the
limited sample size. Also, we aimed to choose another dataset for
validating the diagnostic value. However, only one dataset with
only six samples was available. Thus we were unable to validate
the findings. The results should be subsequently confirmed in a
more large-scale study with a large sample size. Second, although
the five candidate hub genes were mainly enriched in regulating
immune pathways, the interaction between candidate hub genes
and dysregulated immune cells was still worth investigating.
Frontiers in Immunology | www.frontiersin.org 11
6. CONCLUSION

Our study systematically discovered five immune-associated
candidate hub genes (ITGAL, CXCL16, MORF4L2, SPRY2, and
BEX2) and provided the nomogram for diagnosing AVC with
MS by various bioinformatics analysis and machine learning
algorithms. We also point out the dysregulated immune cell
proportion in AVC with MS. Our study could provide potential
peripheral blood diagnostic candidate genes for AVC in
MS patients.
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