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Abstract

Toll-like receptors (TLRs) play a fundamental role in the immune system by detecting pathogen associated molecular
patterns (PAMPs) to sense host infection. Ethanol at doses relevant for humans inhibits the pathogen induced cytokine
response mediated through TLRs. The current study was designed to investigate the mechanisms of this effect by
determining whether ethanol inhibits TLR3 and TLR4 mediated TNF-a secretion through inhibition of transcription factor
activation or post-transcriptional effects. In NF-kB reporter mice, activation of NF-kB in vivo by LPS was inhibited by ethanol
(LPS alone yielded 170,000635,300 arbitrary units of light emission; LPS plus ethanol yielded 56,120616880, p = 0.04).
Inhibition of protein synthesis by cycloheximide revealed that poly I:C- or LPS-induced secreted TNF-a is synthesized de
novo, not released from cellular stores. Using real time RT-PCR, we found inhibition of LPS and poly I:C induced TNF-a gene
transcription by ethanol. Using an inhibitor of tumor necrosis factor alpha converting enzyme (TACE), we found that
shedding caused by TACE is a prerequisite for TNF-a release after pathogen challenge. Flow cytometry was used to
investigate if ethanol decreases TNF-a secretion by inhibition of TACE. In cells treated with LPS, ethanol decreased both
TNF-a cell surface expression and secretion. For example, 4.6960.60% of untreated cells were positive for cell surface TNF-a,
LPS increased this to 25.1860.85%, which was inhibited by ethanol (86.8 mM) to 14.2960.39% and increased by a TACE
inhibitor to 57.8860.62%. In contrast, cells treated with poly I:C had decreased secretion of TNF-a but not cell surface
expression. There was some evidence for inhibition of TACE by ethanol in the case of LPS, but decreased TNF-a gene
expression seems to be the major mechanism of ethanol action in this system.
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Introduction

We and others have reported that ethanol, at concentrations

relevant to human exposure, inhibits signaling through toll-like

receptors [1], [2], [3], [4] and the resultant production of a wide

range of cytokines and chemokines [5]. However, it has also been

reported that ethanol administration suppresses soluble TNF-a
production at the level of translation or release of the protein [6,7].

This would imply that either TNF-a mRNA or TNF-a protein is

being stored in the cell, and available at the time of pathogen

challenge and that ethanol acts by inhibiting release rather than

production of the mRNA or protein. The release of TNF-a from

the cell membrane is dependent on TNF-a converting enzyme

TACE, and it has been reported that the function of this enzyme

at the cell surface is inhibited by ethanol [6,7]. It is known (and our

results confirm) that macrophages express TNF-a in the cell

membrane even when they are not activated, but it is not clear if

the amount is sufficient to account for a substantial portion of the

soluble TNF-a produced by these cells upon stimulation. This

laboratory has reported that ethanol inhibits TLR4 mediated

signaling and subsequent NF-kB activation and cytokine produc-

tion. Thus, there seems to be evidence supporting TACE as well as

TLR4 as targets of immunosuppressive effects of ethanol. The

study described here was designed to investigate the relative role of

these two mechanisms in the same experimental system.

The study described here focuses on TLR3 and TLR4. The

TLR4 molecule senses lipopolysaccarides (LPS) from the outer

membrane of gram-negative bacteria. The natural ligand for

TLR3 is double stranded RNA (dsRNA) of viral origin. It also

senses the synthetic dsRNA analog polyinosinic:polycytidylic acid

(poly I:C). All TLRs apart from TLR3 recruit the adapter protein

MyD88 (myeloid differentiation primary response gene 88) to the

TIR domain [8], [9], leading to signaling through NF-kB or

MAPK to induce transcription of inflammatory cytokine genes.

However, TLR3 signaling depends on the adapter protein TRIF

(TIR-containing adaptor inducing IFN-b), [10], [11], to activate a

pathway that results in activation of the transcription factor IRF-3

(IFN-regulatory factor 3) [12] to induce type I interferons. TLR3

can also activate NF-kB or the MAPK pathway by mechanisms

that are not fully understood. Because TLR4 can recruit both

adapter proteins, MyD88 and TRIF [10], there is a signaling

pathway that is common to TLR3 and TLR4.

Tumor necrosis factor alpha (TNF-a) is a proinflammatory

cytokine and a major player in the regulation of the immune
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response. It is mainly produced by macrophages and other cells of

the immune system upon pathogen challenge. Pro-TNF-a is a

homotrimeric type II transmembrane protein [13], that is

proteolytically cleaved from the cell surface by TACE [14],

[15]. TACE, also known as A Disintegrin And Metalloproteinase

17 (ADAM17), is a type I transmembrane protein that is

constitutively expressed. Its mRNA has been found in most tissues

[14]. Human TACE cleaves the protein bond of pro-TNF-a
between the amino acids Ala-76 and Val-77 [14]. Mouse TACE

cleaves between Thr-79 and Leu-80 of the mouse precursor

TNF-a cleavage site [16]. Catalytic activity of TACE is induced

by LPS [17], [18], and downregulated by IL-10 in an early stage,

and by Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in a

later stage. The mechanism of TACE activation is still poorly

understood. It has been reported, that phosphorylation of TACE

at Thr-735 leads to activation and protein trafficking [19], [20],

[21]. TACE is inhibited by a range of synthetic matrix

metalloproteinase (MMP) inhibitors. Its natural inhibitor is

TIMP-3 [22]. The synthetic metalloproteinase inhibitor, TNF-a
processing inhibitor-0 (TAPI-0) has been widely used in vitro

[23], [24].

Inhibition of TACE and inhibition of signaling by ethanol could

both contribute to the inhibition of the release of soluble TNF-a.

The study described here was designed to evaluate both

mechanisms in the same experimental system. The major novel

finding of this study was that inhibition of TACE by ethanol was

not the major mechanism that decreased production of soluble

TNF-a. In particular, we found that ethanol decreased both cell

surface and released TNF-a, unlike a known TACE inhibitor,

which increased cell surface TNF-a but decreased the released

form. This suggest that inhibition of signaling and TNF-a gene

expression (which were confirmed here) was a more important

mechanism of action in this experimental system.

Results

New protein synthesis is required for maximum
production of secreted TNF-alpha

The protein synthesis inhibitor cycloheximide interferes with

the translocation step at the ribosome, thereby blocking transla-

tional elongation. To test if TNF-a is available from cellular stores,

synthesis of new protein was inhibited by cycloheximide. If TNF-a
protein were available in the cell, blocking protein synthesis would

not significantly affect the amount of TNF-a measured in cell

culture supernatants after challenge with a TLR ligand.

The effects of LPS or poly I:C alone and in combination with

cycloheximide were examined. Cycloheximinde was added to

cultures of RAW264.7 cells either at the same time point as LPS or

poly I:C, or 30 min after the addition of LPS or poly I:C to the cell

culture (Figure 1). Two hours after LPS or poly I:C addition, cell

culture supernatants were harvested, and ELISA was performed.

Added to the cell culture supernatant as long as 30 min after

LPS or poly I:C, cycloheximide caused a major decrease in TNF-

a, verified by ELISA. Cycloheximide almost completely abrogated

TNF-a synthesis after challenge with TLR ligands. As a control,

cycloheximide was also incubated with the TNF-a ELISA

standard, and it was shown not to interfere with the ELISA

system. From these findings it can be inferred that de novo

synthesis of TNF-a happens after pathogen challenge, and that the

TNF-a on the cell membrane does not represent a sufficient

‘‘storage’’ form of TNF-a, which is ready for secretion upon

stimulation. Therefore, the mechanism by which ethanol decreases

TNF-a secretion after pathogen challenge must include effects

other than or in addition to preventing its release from storage.

Ethanol could act at the transcriptional or post-transcriptional

level.

Inhibition of TNF-a secretion starts at the signaling
pathway

To investigate if ethanol suppresses NF-kB signaling in vivo, we

looked at the effect of LPS alone or in combination with ethanol in

transgenic mice. The NF-kB reporter mice carry the luciferase

gene driven by an NF- kB responsive promoter. Challenge with

TLR ligands activates the NF- kB dependent pathway causing

expression of luciferase in the reporter mice which is then detected

by injecting luciferin, resulting in light emission in tissues with high

NF-kB activation. One group of mice was gavaged with ethanol

5 min before LPS injection, and one group was only injected with

LPS. A control mouse did not receive either ethanol or LPS. After

LPS injection (1.5 hr, the time of near maximal luciferase activity),

light emission was measured with the IVIS imaging system

(Figure 2).

Mice treated with LPS show significantly more NF-kB

activation than mice treated with EtOH+LPS, measured by

overall light emission in each mouse (P,0.05). These findings

corroborate the hypothesis, that EtOH inhibition is effective at the

level of NF-kB dependent signaling, and is not limited to post-

transcriptional effects.

Ethanol inhibits LPS- and poly I:C induced TNF-a gene
transcription

A decrease in NF-kB activation by ethanol should be

reflected by decreased cytokine gene transcription. Therefore,

the effect of ethanol on the LPS- and poly I:C-induced TNF-a
mRNA expression was evaluated by real time RT-PCR in

RAW264.7 cells. Appropriate groups were incubated with

ethanol for 30 min, and then with LPS or poly I:C for further

Figure 1. Mouse TNF-a ELISA assay from cell culture superna-
tants. Each group contained 6 samples. Cells were treated with LPS/
poly I:C alone, with cycloheximide and LPS/poly I:C at the same time
point, or with LPS/poly I:C first and cycloheximide 30 min later. Naive,
untreated cells served as control. Bars with no shared letters are
significantly different (p,0.05).
doi:10.1371/journal.pone.0029890.g001

Mechanism of Inhibited TNF-a Secretion by Ethanol
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two hours. Untreated naive cells served as control. RNA was

isolated from cell lysates, and real time RT-PCR was preformed

(Figure 3).

A concentration of 43.4 mM EtOH and higher in the poly I:C

group, and 86.8 mM in the LPS group, significantly inhibited the

pathogen induced TNF-a mRNA expression in RAW264.7 cells

(P,0.01). It should be noted that the dosage of ethanol used in the

NF-kB reporter mice (6 g/kg) yields a peak blood ethanol

concentration of ,86 mM [25], so results from inhibition of

NF-kB activation in vivo and inhibition of TNF-a production in

vitro with ethanol at 86.8 mM reflect similar exposure. As noted in

our previous publications, 86.8 mM would represent the high end

of the concentration range that can be found in humans, but such

concentrations are not as rare as might be expected [26], [27]. In

addition, mice clear ethanol more rapidly than humans, so

obtaining similar area under the concentration vs. time curve in

mice as reported in humans requires a higher dosage and greater

peak blood ethanol concentration in mice. For example, in

humans with a mean blood ethanol concentration of 299 mg/dL,

the clearance rate was observed to be 20.4 mg/dL/hr [28]. Our

results with the mouse model used in the present study indicate

that mice with virtually the same initial blood ethanol concentra-

tion have a clearance rate of 37.18 mg/dL/hr [25] (using a dosage

of 5 g/kg). Finally, we have recently shown that TNF-a
production induced by Escherichia coli in mice is almost eliminated

by ethanol at both 4 g/kg and 6 g/kg in mice [5], and a dosage of

4 g/kg in our model yields a peak blood ethanol concentration of

,43 mM (200 mg/dL) [25], a concentration frequently observed

in binge drinkers. In the poly I:C group, the concentration of

173.6 mM EtOH was added to show the direction of the EtOH

effect, although this concentration is not relevant in humans. The

greater induction of TNF-a mRNA by LPS than poly I:C

(Figure 3) is consistent with the greater induction of TNF-a protein

by LPS than poly I:C (Figure 1). These results support the idea

that ethanol affects transcription of TNF-a in activated macro-

phages.

Figure 2. Comparison of NF-kB expression in reporter mice treated with LPS alone or ethanol and LPS. A For the naive mouse,
luminescence was 1.6276104 CCD camera counts. B In the group treated with LPS only, 2.4066105 counts were measured for mouse one, 1.3476105

counts for mouse two, and 8.4856104 counts for mouse three. C In the group treated with LPS+86.8 mM EtOH, 4.7546104 counts were measured for
mouse one, 3.2136104 for mouse two, and 8.8696104 for mouse three. D Mice treated with 6 g/kg ethanol before LPS showed significant reduction
of luminescence (* = LPS plus EtOH vs. LPS only: P,0.05).
doi:10.1371/journal.pone.0029890.g002

Mechanism of Inhibited TNF-a Secretion by Ethanol
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Secretion of TNF-a is dependent on TACE in cells
activated with LPS or poly I:C

Tumor necrosis factor alpha converting enzyme (TACE/

ADAM17), a metalloprotease, is located in the cell membrane

and cleaves pro-TNF-a from the cell surface. TAPI-0 (TNF-a
processing inhibitor-0) is an inhibitor of metalloproteases. In this

experiment, the extent of TACE contribution to the level of TNF-

a shed into the cell culture supernatant was evaluated (Figure 4).

In the LPS experiment, RAW264.7 cells were treated with 10 ng/

ml LPS alone, LPS plus 25 mg/ml TAPI-0, LPS plus 5 ml DMSO

(control for the DMSO used to dissolve TAPI-0), or TAPI-0 alone.

In the poly I:C experiment, RAW264.7 cells were treated with

50 mg/ml poly I:C alone, 25 mg/ml TAPI-0 plus poly I:C,

86.8 mM EtOH plus poly I:C, TAPI-0 plus 86.8 mM EtOH plus

poly I:C, or 5 ml DMSO. In both experiments, naive untreated

cells served as control. TAPI-0 was dissolved in DMSO. A control

group was included to account for any inhibition of TNF-a caused

by DMSO. First, TNF-a secretion was compared between cells

treated with TAPI-0 plus LPS, LPS alone, or DMSO plus LPS

(Figure 4A). It was obvious, that DMSO itself caused a significant

decrease in TNF-a (LPS only vs. DMSO plus LPS: P,0.001).

However, when the groups TAPI-0 plus LPS and DMSO plus

LPS were compared, a highly significant decrease in TNF-a due to

TACE inhibition was seen (P,0.001). In the naive group and the

group treated only with TAPI-0, no TNF-a could be detected by

ELISA. Next, the effect of TAPI-0 on cells activated with poly I:C

was examined. Poly I:C alone and DMSO plus poly I:C were

compared to TAPI-0 plus poly I:C, 86.8 mM EtOH plus poly I:C,

or TAPI-0 plus 86.8 mM EtOH plus poly I:C. Naive, untreated

cells served as control (Figure 4B). Ethanol significantly inhibited

the poly I:C induced TNF-a response (P,0.001). Compared to

DMSO plus poly I:C, TAPI-0 significantly reduced TNF-a in the

cell culture supernatant (P,0.001). In the group treated with

EtOH before adding TAPI-0 and poly I:C, no TNF-a was

detected by ELISA. In the naive group, TNF-a level was below the

limit of detection. These results indicate that secreted TNF-a
measured by ELISA in cell culture supernatants is mainly, if not

entirely, due to cleavage by TACE.

Inhibition of TACE increases, and ethanol decreases, cell
surface expression of TNF-a in LPS treated macrophage-
like cells

The previous experiments suggest that ethanol decreases

signaling through NF-kB and TNF-a synthesis, and therefore it

should decrease surface TNF-a. If ethanol also decreases TACE

activation, an increase in surface TNF-alpha could be expected

because of a diminished rate of shedding. As an indirect approach

to evaluate the effect of ethanol on TACE activity, and to

quantitate surface TNF-a with and without ethanol, the expression

of surface TNF-a was measured by flow cytometry. TACE was

inhibited by TAPI-0 to examine the effect of ethanol on TNF-a
surface expression before shedding. For all flow cytometry

experiments, TAPI-0 was dissolved in RPMI to avoid the cytotoxic

effect of DMSO. As noted in Materials and Methods, DMSO was

used at the recommendation on the manufacturer, but at the

relatively low concentrations of TAPI-0 needed for this study, the

compound was soluble in an aqueous solution without DMSO.

The RAW264.7 cells were transferred into microcentrifuge tubes

Figure 3. Real time RT-PCR with mRNA isolated from RAW264.7
cells treated with ethanol and LPS or poly I:C. Naive groups
received no treatment. A Appropriate groups were treated with ethanol
for 30 min, then with LPS for further two hours. The average of two
experiments, each with three replicates, were pooled. Each sample
replicate was doubled in the PCR plate. 86.8 mM ethanol significantly
reduced the LPS induced TNF-a mRNA expression (P,0.001). Treatment
with ethanol only was not significantly different from naive. B
Appropriate groups were treated with different concentrations of
ethanol for 30 min, then with poly I:C for further two hours. The
average of two experiments, one with three replicates, and one with
two replicates, is shown. Each sample replicate was doubled in the PCR
plate. A concentration of 43.4 mM EtOH and higher significantly
reduced the poly I:C induced TNF-a mRNA expression (P,0.01). Ethanol

without poly I:C was not significantly different from naive. Results were
normalized to 18S and analyzed using the DDCt method. Bars with no
shared letters are significantly different (p,0.05).
doi:10.1371/journal.pone.0029890.g003

Mechanism of Inhibited TNF-a Secretion by Ethanol
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at 2.56106/ml. Appropriate groups were treated with 43.4 and

86.8 mM ethanol for 30 min, and then with 100 ng/ml LPS and/

or 20 mg/ml TAPI-0 for further 2 h. Supernatants were collected

and subjected to ELISA (Figure 5 B and D). Cells were labeled

with monoclonal rat anti mouse TNF-a FITC conjugate and flow

cytometry was performed (Figure 5A and C). Naive unlabeled cells

showed very low fluorescence. Labeling with isotype control was

performed with LPS treated cells in each experiment, and

fluorescence was similar to naive unlabeled cells (data not shown).

The results are shown as % gated (Figure 5A and C). The gate was

set to exclude ,99% of the cells in isotype or unlabeled controls

and to exclude forward scatter values indicating that cell clusters

rather than single cells were being assessed. Results for mean

fluorescence intensity were also calculated, but the pattern of

effects was very similar to that for % gated, so only the results for

% gated are shown here. In the LPS treated group, TNF-a surface

expression was significantly above naive (P,0.001 for % gated in

both experiments). Analysis by ELISA showed a significant

increase in TNF-a in the supernatant versus naive (P,0.001 in

both experiments). Whilst high surface expression of TNF-a
reflects an increase in gene transcription and/or decreased TACE

activity, high TNF-a in the cell culture supernatant is due to

TACE activity in the activated macrophage. Treatment with

86.8 mM ethanol significantly inhibited LPS induced TNF-a
surface expression versus LPS only in both experiments (P,0.001

for % gated). TNF-a in cell culture supernatants measured by

ELISA was decreased accordingly (P,0.001), reflecting a decrease

in TNF-a synthesis. A decrease in TACE activity could have

potentially contributed to a decreased TNF-a release by

macrophages. However, a decrease in surface TNF-a caused by

86.8 mM ethanol indicates that decreased TNF-a release is not

caused solely by a decrease in TACE activity, which would yield

an increase in surface TNF-a.

Ethanol decreases TNF-a secretion, but not TNF-a cell
surface expression in poly I:C treated macrophage-like
cells

The above described experiments were repeated with the TLR3

activator poly I:C. Inhibition of poly I:C induced TNF-a gene

expression by ethanol, as suggested by the real time RT-PCR

results, should be reflected by a decrease in TNF-a surface

expression similar to the results with LPS. The RAW264.7 cells

were treated and labeled as in the above experiments, with the

exception that 50 mg/ml poly I:C was used instead of LPS. The

fluorescence for naive unlabeled cells and isotype control with poly

I:C treated cells were similar and with a mean fluorescence

intensity less than 10 (data not shown). Two independent

experiments were conducted (experiment 1 shown in 6 A and B;

experiment 2 shown in 6 C and D). Surface TNF-a expression is

indicated as % gated (Figures 6 A and C). An ELISA was

performed from cell culture supernatants of the cells used for flow

cytometry (Figures 6 B and D). Similar to the previous

experiments, TACE inhibition caused a significant increase in

surface TNF-a in naive cells (P,0.001 for % gated both

experiments), and a significant decrease in TNF-a in the culture

supernatant (P,0.001 for both experiments). In contrast results

obtained with LPS, treatment with poly I:C did not cause a change

in the amount of surface TNF-a in either experiment. However, as

with LPS, the increase in secreted TNF-a detected by ELISA was

significant (P,0.001 vs. naive for both experiments). If TNF-a
surface expression is determined by rate of synthesis and insertion

of TNF-a minus the rate of cleavage by TACE, the results

reported here seem to indicate that increased TNF-a membrane

insertion in poly I:C treated cells is precisely balanced by increased

cleavage by TACE. As expected, TNF-a surface expression was

significantly higher in the poly I:C plus TAPI-0 group than in the

poly I:C only group (P,0.001 for % gated both experiments), and

TNF-a detection in the supernatants was significantly lower

(P,0.001 in both experiments). Treatment with 43.4 mM ethanol

before poly I:C did not change the amount of TNF-a surface

expression in either experiment, but it decreased TNF-a in cell

culture supernatants (P,0.01 for both experiments). Treatment

with 86.8 mM ethanol before poly I:C decreased TNF-a surface

expression only in the second experiment (P,0.01 for % gated),

but TNF-a in cell culture supernatants was significantly decreased

in both experiments (P,0.001). The effect of ethanol on total

TNF-a membrane insertion was revealed by inhibition of

Figure 4. Effect of TACE inhibition on the LPS and poly I:C
induced TNF-a response in RAW264.7 cells. TNF-a levels were
measured by ELISA from cell culture medium immediately after
collection. Each group contained 6 samples. Naive groups received
no treatment. A Cells were treated with 25 mg/ml TAPI-0, 5 ml/ml DMSO,
and/or 100 ng/ml LPS. Treatments were given at the same time point
and cells were incubated 2 h. B Appropriate groups were treated with
86.8 mM EtOH and incubated 30 min. Cells were treated with 25 mg/ml
TAPI-0, 5 ml DMSO, and/or 50 mg/ml poly I:C, and incubated further 2 h.
Bars with no shared letters are significantly different (p,0.05; nd = not
detectable).
doi:10.1371/journal.pone.0029890.g004

Mechanism of Inhibited TNF-a Secretion by Ethanol
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Figure 5. Surface expression of TNF-a on RAW264.7 cells measured by flow cytometry, and TNF-a ELISA from cell culture
supernatants of the same experiments. Results shown in A and B were obtained in one experiment and results shown in C and D were
obtained in an independent experiment. In some groups, no TNF-a was detected (nd). Each group contained 5 samples. Two repeat experiments are
shown. Cells were treated with ethanol (either 43.4 mM or 86.8 mM), 100 ng/ml LPS or 20 mg/ml TAPI-0, or a combination of these treatments. ELISA
was performed from cell culture supernatants of each group. The percentage of gated cells (positive for TNF-a surface expression by flow cytometry)
for each group is shown in A & C. The ELISA results from cell culture supernatants of the cells used for flow cytometry are depicted in B and D. Bars
designated by the same letter are not significantly different (p.0.05); bars with no shared letters are significantly different (p,0.05). Histograms for
representative samples from key groups for the experiment shown in A are shown below panels C and D.
doi:10.1371/journal.pone.0029890.g005

Mechanism of Inhibited TNF-a Secretion by Ethanol
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shedding. Groups treated with 43.4 mM or 86.8 mM ethanol

before poly I:C and TAPI-0 showed a significant decrease in

surface TNF-a versus poly I:C plus TAPI-0 (P,0.001 for %

gated). It seems likely that this was due to a decrease in TNF-a
production, because TAPI-0 almost completely blocked release of

TNF-a, thus almost completely inhibited TACE. This left only

alterning TNF-a production and eliminated alteration of TACE

activity as the mechanism of this action of ethanol.

Discussion

It has been widely accepted that excessive ethanol consumption

increases susceptibility to infections, especially pneumonia.

However, the mechanisms underlying the effects of alcohol on

host defense are not fully understood. Studies in mouse models

show that TNF-a plays a key role in host defense [29], [30], [31].

The mechanism of action of ethanol on TLR4 (LPS)-induced

macrophage responses (including TNF-alpha production) is very

similar in human and mouse cells [32].

A major reason for conducting this study were reports

indicating that TNF-alpha production was inhibited by ethanol

primarily at the post-transcriptional level [6,7]. Our previous

studies indicated inhibition at the level of transcription [2], but

we had not previously evaluated the role of TACE and whether it

could be a major molecular target of ethanol. In the study

described here, we investigated whether the inhibition of LPS- or

poly I:C-induced TNF-a production by concentrations of ethanol

relevant in human binge drinking reflects inhibition of transcrip-

tion or post-transcriptional events. The results support an

important role for decreased transcription, but not for decreased

TACE activity in the inhibition of TNF-alpha production by

ethanol.

Figure 6. Surface expression of TNF-a in RAW264.7 cells measured by flow cytometry, and TNF-a ELISA from cell culture
supernatants of the same experiments. Results shown in A and B were from one experiment and results shown in C and D are from an
independent experiment. Each group contained 5 samples. Cells were treated with ethanol (either 43.4 mM or 86.8 mM, as indicated in the Figure),
50 mg/ml poly I:C, 20 mg/ml TAPI-0 (with no DMSO), or a combination of these treatments. ELISA was performed from cell culture supernatants of
each group. The percentage of gated cells for each group is shown in A and C. Results for TNF-a ELISA from cell culture supernatants of the cells used
for flow cytometry are depicted in B and D. Values for bars designated by the same letter are not significantly different (p.0.05); values for bars with
no shared letters are significantly different (p,0.05).
doi:10.1371/journal.pone.0029890.g006

Mechanism of Inhibited TNF-a Secretion by Ethanol
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Zhang and colleagues [6] reported that acute ethanol exposure

of a human and a murine cell line (Mono Mac 6 and DRM)

decreased activation of TACE and release of TNF-a. Our results

did not seem to fully coincide with theirs, but it should be noted

that it remains possible that there was a decrease in TACE activity

caused by ethanol in our experimental system, even though the

evidence as a whole indicates inhibition of TACE function is not

the major mechanism of ethanol action. These investigators also

did not find decreased expression of TNF-a mRNA, suggesting

that the overall experimental system differs from ours, possibly

because of differences among the cell lines used.

To better understand the dynamics of TNF-a production and

release of the soluble form of TNF-a, we inhibited protein

synthesis with cycloheximide after challenge with TLR ligand. It

was shown that TNF-a is primarily synthesized de novo after

activation with LPS or poly I:C. Even though the cycloheximide

experiment does not exclude that TNF-a protein is stored in the

cells (in excess of the small amount found in the membrane), it is

unlikely, because TNF-a synthesis was abrogated even when

protein synthesis was inhibited 30 min after TLR activation.

Ethanol has been shown by western blot and electrophoretic

mobility shift assay (EMSA) to inhibit LPS induced NF-kB

activation in human monocytes [33]. In an experiment with NF-

kB reporter mice we tested, if ethanol inhibition of LPS induced

TNF-a secretion starts at the signaling pathway, and if total NF-

kB activation in vivo was inhibited by ethanol. Through in vivo

imaging of NF-kB activity, we could show, that ethanol

significantly inhibited LPS-induced activation of NF-kB induced

gene transcription. This is consistent with our previous studies

indicating that ethanol inhibits TNF-a production in response to

LPS by inhibiting the formation of a fully functional TLR4

receptor complex and inhibiting TLR4-induced signaling at early,

intermediate, and late (NF-kB) stages [34], [35]. However, it is

unclear whether most of the NF-kB activation in this system was

mediated by the primary stimulus (LPS or poly I:C), or by a

secondary stimulus (such as TNF-a). In addition, it would be useful

to know, in which organs and cell types ethanol suppresses NF-kB

activation. It is known that Kupffer cells of the liver represent the

largest concentration of macrophages in any single anatomical

location, and it is noted, that this region is among the most

inhibited by ethanol. Additional evidence would be needed to

confirm, that the liver is a major location of cytokine production

and that it is inhibited by ethanol.

In real time RT-PCR studies we evaluated if NF-kB inhibition

by ethanol leads to a decrease in TNF-a mRNA. We found that

the upregulation of TNF-a mRNA by LPS and poly I:C was

consistently decreased by ethanol. This is consistent with our

recent results indicating suppression by ethanol of TLR signaling

and the production of a wide range of inflammation-related

cytokines and chemokines [1], [5].

TACE releases TNF-a from the cell surface by shedding [14].

To evaluate if secretion of TNF-a is entirely dependent on TACE

in cells activated with LPS or poly I:C, we used the metallopro-

tease inhibitor TAPI-0. Our results show that TNF-a secretion is

almost completely abrogated if TACE is inhibited. This indicates,

that shedding through TACE is required for release of the vast

majority of TNF-a from the cells used in these studies. The

metalloprotease inhibitor TAPI-0 is widely used to study protein

shedding from the cell surface. In studies reviewed, the solvent for

TAPI-0 was not mentioned, and there was no description of

vehicle controls, e.g. [36], [37]. According to the manufacturer’s

instructions, TAPI-0 can be reconstituted in DMSO, EtOH, and

10% acetyl hydroxide in EtOH. To decrease the cytotoxic effect of

DMSO, we used only 10% of the recommended volume, resulting

in a final concentration of 0.5% in cell culture. Even at this

concentration, we saw a significant decrease in ELISA detection of

TNF-a, and a decrease in TNF-a cell surface expression in flow

cytometry due to DMSO alone. Even at a concentration of

0.005%, DMSO significantly inhibited cell surface expression of

TNF-a measured by flow cytometry (data not shown). In an in

vivo study with rats it has been observed, that using DMSO as a

vehicle for a drug may exert effects due to DMSO alone [38].

Therefore, we used TAPI-0 in a solution in RPMI for further

experiments.

We showed by flow cytometry that treatment with LPS, but

not treatment with poly I:C significantly increased cell surface

TNF-a. Corresponding ELISA, however, showed increased free

TNF-a after treatment with both, LPS and poly I:C, possibly due

to an increase in TACE activity as well as upregulation of

production of TNF-a. An upregulation of TACE mRNA with a

peak after 2 h, and increased TACE surface expression measured

by flow cytometry in human alveolar macrophages by LPS and

IFN-c after 20 h was reported by Armstrong et al. This LPS-

induced TACE expression was found to be downregulated by IL-

10 [39]. Our results show that poly I:C does not increase TNF-a
synthesis to the same extent as LPS (Figure 3). Consequently,

TACE activity may be sufficient to prevent the increase in surface

TNF-a in poly I:C-treated cells. Inhibition of TACE by TAPI-0

increased surface TNF-a in both LPS and poly I:C treated cells as

well as in naive cells through inhibition of shedding. It has been

suggested that ethanol decreases TNF-a by inhibition of TACE

[40], [31], or by physically preventing protein –protein

interaction between TNF-a and TACE [41]. If ethanol acts

primarily as a TACE inhibitor, we would expect surface TNF-a
to be increased (as shown in cells treated with TAPI-0 in Figures 5

and 6). Possible explanations for the inconsistency between our

results and those of another group are discussed in a previous

paragraph.

Our results indicate that inhibition of NF-kB signaling and

decreased TNF-a mRNA expression by ethanol occurred and

acted to decrease surface TNF-a. The ethanol effect on TNF-a
surface expression was more prominent in LPS treated cells. The

free TNF-a in corresponding cell culture supernatants was

significantly decreased by 43.4 mM ethanol in both LPS and

poly I:C treated cells, which may be partly due to some inhibition

of TACE activity. The effect of ethanol on TNF-a surface

expression in the absence (or near absence) of TACE activity was

revealed when shedding was inhibited by TAPI-0. In LPS and

poly I:C treated cells. Ethanol at only 43.4 mM significantly

decreased TNF-a surface expression, supporting the PCR results

showing decreased TNF-a synthesis. Although we cannot exclude

TACE inhibition caused by ethanol, our results indicate that

decreased TNF-a production has more effect than any decrease in

TACE activity that ethanol may cause.

Taken together, in this study we have shown, that new

protein synthesis is required for maximum production of

secreted TNF-a, and that TNF-a is not stored in the cell in a

form ready for secretion. Our results indicate that inhibition of

LPS- or poly I:C-induced TNF-a production by ethanol starts at

the signaling pathway and is not limited to post-transcriptional

effects (such as cleavage by TACE). Decreased transcription, not

just TACE inhibition, is involved in decreased TNF-a
production, as indicated by comparing the changes of surface

and secreted TNF-a in ethanol and TAPI-0 treated cultures.

The above findings give new insights into the mechanisms of

ethanol inhibition of TLR signaling. However, it is possible, that

ethanol interferes with other proteins in the TLR signaling

cascade.
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Materials and Methods

Cell culture assays
The RAW264.7 macrophage like cell line was purchased from

American Type Culture Collection (ATCC). The RAW264.7 cells

were cultured in RPMI 1640 with L-glutamine (# 61870-036,

Invitrogen, Carlsbad, CA, USA) supplemented with 10% FBS (#
10437-028, Invitrogen) and penicillin-streptomycin (# P4333,

Sigma-Aldrich, Saint Louis, MO, USA). They were used before

the 10th passage. Cells were grown in 75 cm2 tissue culture flasks

(Sarstedt INC, Newton, NC 28658-0468, USA) at 37u C and 5%

CO2.

Poly I:C (# tlrl-pic-5) was purchased from Invivogen (San

Diego, CA). Ultra Pure lipopolysaccharide (LPS) from E. coli

serotype O111:B4 was obtained from List Biological Laboratories

(# 421, List Biological Laboratories, INC., Campbell, CA, USA).

The protein synthesis inhibitor cycloheximide was purchased from

Sigma Aldrich (# C1988, Sigma Aldrich, St. Louis, MO). The

TACE inhibitor TAPI-0 was purchased from Peptides Interna-

tional (# INH-3850-PI, Peptides International, Inc., Louisville,

KY, USA). For all cell culture assays, cells were seeded into

NUNC 24-well plates (# 142475, Thermo Fisher, Rochester, NY,

USA) at 16106/ml, 1 ml/well, and grown for 24 h before the

experiment. Appropriate wells were treated with 86.8 mM ethanol

and incubated 30 min. Then, 100 ng/ml LPS or 50 mg/ml poly

I:C were added to appropriate wells, and incubated further 2 h.

Supernatants were collected or cells harvested for further

procedures that were performed within 30 min after harvesting.

For the protein synthesis inhibitor experiment, cells were cultured

as described above, and appropriate wells (6 samples per group)

were treated with 5 mg/ml cycloheximide.

Quantitation of cytokines in cell culture supernatants by
ELISA

A mouse cytokine ELISA kit was obtained from BD Biosciences

(San Jose, CA, USA; BD OptEIA Mouse TNF-a Mono/Mono #
555268). The assay was carried out according to the manufactur-

er’s specifications. NUNC maxisorp 96 well ELISA plates were

used (# 439454, Thermo Fisher, Rochester, NY, USA).

NF-kB reporter mice
Transgenic mice of C57BL/6J X CBA/J genetic background

carrying the luciferase gene driven by an NF- kB response

element, as described by Carlsen et al. [42], were obtained from

Xenogen (Alameda, CA). D-Luciferin was purchased from Caliper

(# 122796, Hopkinton, MA, USA). Mice were treated with

ethanol by gavage at 6 g/kg as a 32% solution in water 5 min

before NF-kB activation. LPS was administered via tail vein

injection at 60 mg per mouse. One and a half hr later, mice were

anesthetized with isoflurane by inhalation, and 150 mg/kg

luciferin was injected intraperitoneally. Mice were oriented

similarly and the ventral surface was imaged for all mice. Imaging

was performed 5–10 min later with an IVIS imager (Xenogen,

Alameda, CA). Mice were maintained and used in accord with the

NIH Guide for Care and Use of Animals and the Guidelines of

Mississippi State University. The animal care system at Mississippi

State University is accredited by the American Association for

Accreditation of Laboratory Animal Care, and the work described

here adhered to the guidelines of that organization as well. The

work was approved by the Mississippi State University Animal

Care and Use Committee and animal care (protocol #07-066) was

supervised by Dr. Lucy Senter, a board certified Laboratory

Animal Veterinarian.

Real time RT-PCR
Samples of RAW264.7 cells were lysed, RNA was purified with

the RNeasy Plus Mini Kit 50 (# 74134, Qiagen, Valencia, CA).

Cell lysates were homogenized with QiaShredders (# 79654,

Qiagen). Samples were prepared with the SuperScript III

Platinum SYBR Green One-Step qRT-PCR Kit with ROX

reference dye (#11746-100, Invitrogen, Carsbad, CA). Real time

RT-PCR was performed with the Stratagene Mx3005P QPCR

System (Agilent Technologies, Cedar Creek, TX). Primers were

designed with the Roche primer design software (Universal Probe

Library, Primer 3 settings, Roche Applied Sciences, Indianapolis,

IN, USA).

Mouse TNF-a:

forward: 59-TGCCTATGTCTCAGCCTCTTC-39

reverse: 59-GAGGCCATTTGGGAACTTCT-39

Mouse 18S:

forward: 59-AAATCAGTTATGGTTCCTTTGGTC-39

reverse: 59-GCTCTAGAATTACCACAGTTATCCAA-39

All samples were normalized to 18S. Data were analyzed using

the DDCt method.

TACE inhibitor experiment
Cultures of RAW264.7 cells were treated with ethanol, LPS or

poly I:C as described above. In the initial experiments with TACE

inhibition, 1 mg TAPI-0 was reconstituted in 20 ml DMSO to a

final concentration of 5 mg/ml, as recommended. Appropriate

wells were treated with 25 mg/ml TAPI-0 or 5 ml/ml DMSO right

before addition of LPS or poly I:C. Supernatants were harvested

and further analyzed by mouse TNF-a ELISA. In later

experiments, TAPI-0 was dissolved directly in complete medium

to double the final concentration needed and added to each

culture to dilute it to the final concentration, 20 mg/ml.

Analysis of cell surface TNF-a by flow cytometry
FACS buffer at pH 7.2–7.4 was prepared with sterile phosphate

buffered saline (Sigma Chemical Co., St. Louis, MO), 0.5%

sodium azide, and 2% fetal bovine serum. In some cultures TAPI-

0 was added, as noted above. The RAW264.7 cells were grown in

75 cm2 tissue culture flasks and transferred into sterile, endotoxin

free Eppendorf tubes at 2.56106/ml. Appropriate tubes were

treated with 86.8 mM EtOH for 30 min, and with 20 mg/ml

TAPI-0, 100 ng/ml LPS, or 50 mg/ml poly I:C for another 2 h.

The caps were left open and loosely covered with sterile lids to

ensure air supply to the cells. Then, cells were pelleted at

1500 rpm at 4uC for 4 min and re-suspended in 200 ml FACS

buffer. Cells were then transferred into a 96 well V-bottom plate,

pelleted and resuspended in 200 ml FACS buffer. Appropriate

wells were labeled with 1 ml fluorochrome conjugated primary

antibody and incubated for 20 min on ice. Antibodies were

obtained from Invitrogen: Monoclonal rat anti mouse TNF-a
FITC conjugate (# RM9011), and rat IgG FITC isotype control

(# R101). Samples were washed twice and resuspended in 200 ml

FACS buffer after final wash. Experiments were carried out on a

BD FACS Calibur flow cytometry system (BD Biosciences, San

Jose, CA, USA).

Statistical analysis
Real time RT-PCR results were analyzed with the delta delta

CT method, using Microsoft Excel 2004 for Mac, version 11.0

(Microsoft Corporation, Redmond, Wa, USA). For the NF-kB

reporter study, the unpaired t-test was used to compare the LPS-

treated group and the group treated with LPS plus ethanol.

Although one untreated control animal was included, this was not
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included in the statistical analysis, because it was included only to

confirm that the instrument settings were appropriate and were

not yielding substantial emissions in the absence of treatment. For

all experiments with more than two groups, results were analyzed

by one way analysis of variance with the Newman-Keuls multiple

comparison test to compare the significance of the difference of

each mean value to every other mean value. A P value,0.05 was

considered significant. Prism 4.0 software (GraphPad Software,

INC, La Jolla, CA, USA) was used for analysis.
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