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Local neural‑network‑weighted 
models for occurrence and number 
of down wood in natural forest 
ecosystem
Yuman Sun1,2, Weiwei Jia  1,2*, Wancai Zhu1,2,3, Xiaoyong Zhang1,2, Subati Saidahemaiti1,2, 
Tao Hu1,2 & Haotian Guo1,2

The natural forest ecosystem has been affected by wind storms for years, which have caused several 
down wood (DW) and dramatically modified the fabric and size. Therefore, it is very important to 
explain the forest system by quantifying the spatial relationship between DW and environmental 
parameters. However, the spatial non-stationary characteristics caused by the terrain and stand 
environmental changes with distinct gradients may lead to an incomplete description of DW, the 
local neural-network-weighted models of geographically neural-network-weighted (GNNWR) models 
are introduced here. To verify the validity of models, our DW and environmental factors were applied 
to investigate of occurrence of DW and number of DW to establish the generalized linear (logistic 
and Poisson) models, geographically weighted regression (GWLR and GWPR) models and GNNWR 
(GNNWLR and GNNWPR) models. The results show that the GNNWR models show great advantages 
in the model-fitting performance, prediction performance, and the spatial Moran’s I of model 
residuals. In addition, GNNWR models can combine the geographic information system technology 
for accurately expressing the spatial distribution of DW relevant information to provide the key 
technology that can be used as the basis for human decision-making and management planning.

In the natural forest environment of northeast China, down wood (DW) is often caused by natural factors, which 
are generally divided into biological and abiotic factors1. Biological factors are caused by the age of trees, unbal-
anced growth, consumption of animals, diseases, etc2. The wind, fire, lightning, environmental stress (floods, 
droughts, and high temperatures), chemical pollution, and climate change are the main abiotic factors3,4. Liang-
shui National Nature Reserve is located in Xiaoxing’an mountains; the wind is considered the main reason for a 
mass of DW, which can cause the breakage or uprooting of living trees. The loss of living trees will have a serious 
impact on the economy5–7. In addition, the ecological significance of DW cannot be ignored8,9. DW plays key roles 
in resource cycling10, maintaining biodiversity11–13 and changing the micro-environment of stand7,14,15. Hence, it 
is distinctly indispensable to predict the spatial distribution of occurrence and number of DW in natural forests.

At present, many scholars have carried out a great deal of work on the DW16, among which, it shows more 
advantages of building theoretical models for the sake of researching spatial distribution of DW, geographi-
cal environment, stand characteristics, and other driving factors. Generalized linear (GL) models are widely 
applied in predicting the probability occurrence and mathematical statistics of events17,18. Among them, logistic 
regression19,20 is widely applied in predict the occurrence of DW (ODW), and Poisson regression21 is widely 
applied in predict the number of DW (NDW) caused by forest ecological environment attributes. However, GL 
models assume that the global space is stable, but it is difficult to find the data that satisfies this condition in 
forestry and the ecological environment. The space of Tobler says, “Distance is an important factor in whether 
or not things are related22,23.” This fact suggests that tree growth and stand development are highly likely to be 
influenced by spatial effects (spatial non-stationarity) of adjacent stands and that many ecological processes 
(such as DW) follow similar rules in space24. Therefore, British scholars Brunsdon and Fotheringham25 based 
on the spatial coefficient of variation, the geographically weighted regression (GWR) model is proposed25. This 
model method has been applied to various industries and has good results26,27. The fitting result of GWR model 
is related to the choice of bandwidth and weighting functions28,29.
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GWR can well support the analysis of spatial non-stationarity in a dynamic environment, but complex geo-
graphic processes are difficult to model30,31. First, GWR cannot select the most accurate kernel function and 
determine the correct kernel function through the cross-validation method, and it is unable to estimate the 
spatial non-stationarity in a complex geographical environment accurately32. Second, the form of GWR kernel 
function needs to satisfy the conditions of a priori hypothesis. Third, the relative simplicity of the kernel function 
can only solve simple nonlinear problems but cannot solve complex nonlinear interactions in the geographi-
cal environment33,34. For this reason, Du35 proposed the use of the spatially weighted neural network (SWNN) 
to replace the kernel matric for the spatial coefficient of variation construction to perform and put forward a 
GNNWR model to solve complex non-stationary and nonlinear problems in coastal environments. Further, the 
instability of the forest ecosystem in the process of the ecological environment poses a similar issue. In this paper, 
we study SWNN combined with logistic regression and Poisson regression models, respectively, a geographically 
neural-network-weighted logistic regression (GNNWLR) model and a geographically neural-network-weighted 
Poisson regression (GNNWPR) model are introduced.

We tend to think about the Liangshui National Nature Reserve as the study area and established the relation-
ship between a series of terrain and stand variables on the ODW (binary) and NDW (count). They include (1) 
logistic regression (GL, GWLR, and GNNWLR) models and Poisson regression (GL, GWPR, and GNNWPR) 
models to terrain and stand variables, respectively, in order to predict the ODW and NDW; (2) compare the per-
formance of different models fitting, predicting, and residual Moran’s I; (3) the spatial distribution law of model 
coefficients in different geographical locations was intuitively displayed and analyzed by the GIS technology.

Materials
Study area.  Liangshui National Nature Reserve is affiliated with the Northeast Forestry University, and 
the study area is located in Yichun City of northeast China (Fig. 1). It belongs to the southeast section of the 
Xiaoxing’an mountains range, the eastern slope of the Daridailing branch, with a gross area is 12,133 ha, the 
core area of 6394 ha is the study area. There are many primitive Pinus koraiensis preserved in China and second-
ary birch and broad-leaved forests covering different succession stages of mixed broad-leaved primitive Pinus 
koraiensis forests. Other major tree species includes Spruce, Fir, Juglans mandshurica, Betula platyphylla, etc.

The data comes from the 2019–2020 Forest Resources Planning and Design Survey. There are 32 compart-
ments and 464 sub-compartments; 31 compartments and 443 sub-compartments belong to the arbor forest 
land. We have also carried out down deadwood volume (including down wood, standing deadwood, and others) 
surveys on the plots36. In order to further manage the area, according to the actual situation, we investigated 
the occurrence and number of valuable down wood through corner gauge points to sub-compartments in this 
research. Meanwhile, the tree species, number of living trees (NLT), forest stand mean height (H), and diameter 
at breast height (DBH) in sub-compartments were summarized by using an angle gauge. Moreover, terrain fac-
tors, such as DEM (m), slope (°), aspect and stand factors, mean age of living trees (years), canopy, vegetation 
coverage (%), etc., are also recorded here.

Figure 1.   Study area (Liangshui National Nature Reserve). ArcGIS10.4 was used to draw the maps.
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Variable selection.  This study aims to utilize terrain and stand variables to introduce independent and 
dependent variable models. The independent variables are ODW (binary) and the NDW (count). The final reten-
tion was determined by using stepwise regression (significance level α = 0.05)37,38 and following five dependent 
variables: the number of living trees (NLT), canopy, forest stand mean height (H), slope, and forest stand mean 
DBH (DBH). Table 1 describes statistical variables related to statistical techniques.

In order to study the non-stationarity in each direction, the variation of each variable along the longitude 
and latitude is calculated in Fig. 2. Considering the NDW, the incidence of the DW under different longitudes, 
latitudes, and the affect DW variables under any latitudes and longitudes, the following results are observed: the 
probability of more than half, the NDW is observed commonly in 0–25 n/ha, with an increase in the longitude 
the phenomenon of the DW appears for more than 50 n/ha, and DW more frequently in middle latitudes in the 
region, but cannot clear the trend of change. Moreover, it can be seen from the figure that the variation trends of 
the longitude and latitude of the other five independent variables are also inconsistent. Further, the longitude of 
the slope gradually increases and along the latitude of slope gradually decreases and then increases, its value is 
the lowest in the mid-latitude region. In conclusion, the variation of each variable significantly changes along the 
longitude and latitude, which further indicates that the stand environment shows high spatial non-stationarity.

Table 1.   Description of the basic statistics of dependent variables and independent variables.

Dependent variables and independent variables Num Min Mean Std Max

Number of down wood NDW (n/ha) 443 0 12.56 19.49 120

Occurrence of down wood ODW 443 0 0.54 0.50 1

Number of living trees NLT (n/ha) 443 191 968.24 483.23 3006

Canopy 443 0.40 0.66 0.10 0.90

Forest stand mean height H (m) 443 1.30 18.69 3.75 29.20

Slope (°) 443 2 10.75 4.66 25

Forest stand mean DBH DBH (cm) 443 3.00 25.12 11.19 48.00

Figure 2.   The trend of each variable along the longitude and latitude.
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Methods
GL models.  In many practical cases, the response variable is essentially binary39,40. That is, there are two pos-
sibilities in the result, namely, which are assigned a value of 0 (does not happen) or 1 (does happen). Here, we 
set ODW (y = 1) as P, and no ODW (y = 0) as 1−P. Logistic regression between the occurrence probability of the 
DW and their respective variables was established as shown in Eq. (1)20,41:

where P represents the probability of the ODW and β0 ∼ βk represents the regression coefficient of the model. 
k is the number of independent variables.

The Poisson model is usually attributed to count data. Here, the Poisson model can be utilized to pre-
dict the NDW, in line with the Poisson variable Y  and the Poisson probability density distribution function 
f (Y ,µ) = e−µµY/Y ! , where � is the mathematical expectation and variance of the random variable Y  , namely, 
E(Y) = � and Var(Y) = � ; a monotonous average link function of response variables as a linear model is 
obtained by inducing some changes as shown in Eq. (2)21:

It is assumed that the observed values are independent of each other, where µ represents the NDW and 
β0 ∼ βk represents the regression coefficient of the model. k is the number of independent variables. All models 
estimate β0 ∼ βk by the maximum likelihood method.

GWR models.  However, the above GL (logistic and Poisson) models are global in nature. The data col-
lected in different geographical locations shows completely different results in the actual forestry survey due 
to the interference of different geographical environments and stand factors42. In the GL models analysis, it is 
often assumed that the estimated value of model coefficients are independent of the geographic location of the 
collected data, which leads to the estimated results tending to an average value. Thus, it can be inferred that all 
sample locations are based on unbiased estimates43. Therefore, the GL models show certain limitations in their 
application35. At present, GWR models are commonly used for improving the non-stationarity of space44,45.

Among them, we use the geographically weighted logistic regression (GWLR) model46,47 to forecast the ODW. 
Eq. (3) is expressed as follows:

where β0(ui , vi) ∼ βk(ui , vi) represents the coefficient of GWLR at the position i.
The geographically weighted Poisson regression (GWPR) model48 to forecast the NDW. Eq. (4) is expressed 

as follows:

where β0(ui , vi) ∼ βk(ui , vi) represents the coefficient of GWPR at the position i . All models estimate β0 ∼ βk 
by the maximum likelihood method.

GNNWR models.  However, the kernel function of GWR models is relatively simple, and it is not easy to 
accurately model the complex stand geographical environment. For this reason, we propose a geographically 
neural-network-weighted regression (GNNWR) model, which is similar to the GWR models and uses the form 
of neural networks for defining the spatial non-stationary relationship35. Here, we integrate GWR into GL mod-
els, and the GNNWLR and GNNWPR models are shown in Eqs. (5) and (6):

where w0(ui , vi) ∼ wk(ui , vi) are the weight estimated at β0 ∼ βk by using the corresponding logistic  regression 
by the maximum likelihood method.

where w0(ui , vi) ∼ wk(ui , vi) are the weight estimated at β0 ∼ βk by using the corresponding Poisson regression 
by the maximum likelihood method.

The spatial weight w(ui , vi) is expressed as shown in Eq. (7):

(1)Log it(P) = ln(P/(1−P)) = β0 +
∑5

k=1
βkxik

(2)Log(E(Y)) = Logµ = β0 +
∑5

k=1
βkxik

(3)Log it(P(ui , vi)) = ln(P(ui , vi)/(1−P(ui , vi))) = β0(ui , vi)+
∑5

k=1
βk(ui , vi)Xik

(4)Log(E(Y(ui , vi))) = Logµ(ui , vi) = β0(ui , vi)+
∑5

k=1
βk(ui , vi)Xik

(5)
Log it(P × w(ui , vi)) = ln(P × w(ui , vi)/(1−P × w(ui , vi)))

= β0 × w0(ui , vi)+
∑5

k=1
βk × wk(ui , vi)Xik

(6)
Log(E(Y × w(ui , vi))) = Log(µ× w(ui , vi))

= β0 × w0(ui , vi)+
∑5

k=1
βk × wk(ui , vi)Xik

(7)w(ui , vi) =







w0(ui , vi) 0 0 0

0 w1(ui , vi) 0 0

0 0 ... 0

0 0 0 w5(ui , vi)






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In the GWR models, the spatial weights include the Gaussian function, double square function, etc., but their 
structure is relatively simple, so it is difficult to capture the complex relationship between the spatial distance and 
the non-stationary weight. Here, the calculation of the SWNN can be deemed to a complex nonlinear problem 
between the spatial distance and the weight33,34. The SWNN is utilized to develop the non-stationary weight 
matrix, and kernel weight is determined as expressed in Eq. (8):

where 
[

dSi1, d
S
i2, · · · , d

S
in

]

 is the distance between point i and other samples.
The neural network is designed using the Keras deep learning framework, also known as the deep neural 

network49,50. By setting the initial learning rate, the information between adjacent layers is considered fully 
connected (FC) and passed to the hidden layers51–53 and the dropout algorithm is required to be used in the 
iterative process of the training models54. Here, we also set the batch size as the sample number of each training, 
defined as LeakyReLU55 a nonlinear activation function for each network layer. The expressions for each layer 
are as expressed in Eq. (9).

where l  is the number of all the layers in the training, xl are features of input layers, wt
l  is the weight matrix, b1 is 

the offset parameter vector, yl are features of output layers, and σ is the activation function.
When the training process encounters the triggering condition of early stop or the time of epoch reaches 

the set maximum, the training is stopped. Once the training process is completed, the prescient capacity of the 
model is estimated by utilizing a validation set. In this paper, Huber56 was used as the training loss function of 
the model, and the mean absolute error (MAE) of the validation set was used as the over-fitting evaluation index. 
By setting the maximum epoch, the trend of the MAE of the training set and the validation set was analyzed 
to find the optimal model parameters under the optimal number of iterations. To this end, its overall design 
framework of GNNWR (GNNWLR and GNNWPR) is shown in Fig. 3. Hyper-parameter settings of GNNWLR 
and GNNWPR models are shown in Table 2.

Model assessment.  The model’s performance is assessed by utilizing the coefficient of determination (R2), 
which is utilized to assess the variability of the estimates, the standard deviation of the root-mean-square error 
(RMSE), and MAE estimates of the prediction error. The accuracy (acc) of 0 and 1 prediction under different 

(8)w(ui , vi) = SWNN
(

[

dSi1, d
S
i2, · · · , d

S
in

]T
)

(9)yl = σ(wt
l xl + bl)

Figure 3.   GNNWR (GNNWLR and GNNWPR) with the estimation of the design framework (a) MAE of 
epoch for GNNWLR (b) and GNNWPR (c).

Table 2.   Hyper-parameter settings of GNNWLR and GNNWPR.

Models Input Hidden1 Hidden2 Hidden3 Hidden4 Hidden5
Drop
out

Learning
Rate

Batch
size

Max
epoch

Stop
epoch

GNNWLR 443 512 512 256 128 64 0.2 0.0005 10 20,000 850

GNNWPR 443 512 128 64 32 – 0.2 0.0008 20 20,000 2290
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logistic models was also analyzed. Moreover, the revised Akaike information criterion (AICc) is utilized to select 
the best bandwidth of the GWR models. The residual of the model is defined as the difference between the 
observed values and the predicted values, and the spatial autocorrelation of each model residuals was analyzed 
by using correlation graphs of global Moran’s I coefficients across a lag distance36,57–59.

Results
Model assessment.  A total of 355 samples were randomly selected from 443 samples of the study area for 
model fitting and 88 samples for model validation. The standardized independent variables are NLT, canopy, H, 
slope, and DBH. The accuracy results are shown in Table 3. It can be seen that for both the training set and the 
validation set, the GNNWR (GNNWLR and GNNWPR) models are superior than GWR (GWLR and GWPR) 
models, and the GWR models are better than GL (Logistic and Poisson) models.

In order to verify that the spatial effects of GNNWR models include spatial non-stationarity, comparing 
spatial effect processes of different models can reduce the ability to misleading significance testing and predic-
tion models. Moran’s I and Z-value are calculated in Table 4. In order to better compare the spatial relationship 
of residuals of different models, spatial correlation graphs of residuals of different models are drawn with an 
interval of 300 m. Their average distance is about 300 m. Its neighbor pairs are 302, 1318, 2150, 2631, 3293 and 
3751, respectively (Fig. 4).

From Table 4, it can be seen that GL and GWPR models (Z-value > Z α/2 = 1.96) indicate that the independ-
ent assumption of model residuals is contrary to these two types of models, and these results indicate a similar 
clustering pattern. In general, the ability to eliminate the autocorrelation of spatial residuals can be gleaned from 
the absolute value of Z-value, and it follows the order: GNNWR models > GWR models > GL models. It indicates 
that GNNWR models can effectively eliminate spatial non-stationarity. Moran’s I of GNNWR models are also 

Table 3.   Model accuracy verification statistics.

Models Training set Validation set

R2 RMSE MAE 0 (Acc) 1 (Acc) R2 RMSE MAE 0 (Acc) 1 (Acc)

GL
Logistic 0.08 0.48 0.45 0.41 0.73 0.02 0.49 0.47 0.43 0.72

Poisson 0.02 18.84 12.82 – – 0.01 22.30 14.90 – –

GWR​
GWLR 0.49 0.35 0.29 0.73 0.92 0.26 0.43 0.35 0.67 0.72

GWPR 0.62 11.71 7.03 – – 0.29 17.73 9.55 – –

GNNWR
GNNWLR 0.76 0.24 0.12 0.94 0.98 0.30 0.42 0.25 0.83 0.74

GNNWPR 0.90 6.17 2.93 – – 0.54 14.36 7.02 – –

Table 4.   Moran’s I and Z-value for predicting ODW and NDW model residuals.

Models

GL GWR​ GNNWR

Logistic Poisson GWLR GWPR GNNWLR GNNWPR

Moran’s I 0.12 0.44 0.06 − 0.14 − 0.05 − 0.03

Z-value 2.21 7.71 1.10 − 2.39 − 0.09 − 0.43

Figure 4.   The spatial correlation between the residuals of ODW (a) and NDW (b) models.
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relatively stable at any step size and close to 0, which indicates that GNNWR models demonstrate a good ability 
to maintain spatial stability.

Model parameter analysis.  According to the geographical location, the two types of models, GWR and 
GNNWR models, belong to local models and produce different geographical model coefficients. The descriptive 
statistics of the GWR and GNNWR model coefficients are summarized in Table 5. The distribution of GWR 
and GNNWR coefficients can be used to the non-stationary relationship between dependent and independent 
variables of stand environmental parameters33,34. The GWR and GNNWR models’ coefficients show positive and 
negative fluctuations, indicating that the influence of the stand environment on DW may show opposite effects 
in different locations. Furthermore, the variation of the GNNWR coefficient is more dramatic than that of the 
response GWR coefficients, which may be the reason why the fitting and prediction performance of GNNWR 
has dropped significantly.

Visualized analysis of model parameters.  The visual distribution analysis of five predictive variables 
(NLT, canopy, H, slope, and DBH) is shown in Fig. 5a–e and according to the compartments. For further study 
the spatial correlation between ODW and NDW, the distribution diagrams of the model coefficients of the five 
predictor variables of the GNNWLR (Fig. 5f–j) and GNNWPR (Fig. 5k–o) models are presented. For the con-
venience of analysis, we divided the study area into nine orientations ((Fig. 5p). In terms of the NLT (Fig. 5a), 
there are fewer NLT in the N and S areas and more in the M area. Canopy (> 0.7) (Fig. 5b) is mainly distributed in 
the S and N areas; H (Fig. 5c) is higher in the N and SE. There are many rivers and roads in M area of Liangshui 
Nature Reserve. The slope in this area is slow (< 11°) (Fig. 5d). The DBH (Fig. 5e) of big living trees is > 35 cm 
and mainly clustered in N, W, and E areas. Therefore, it can be seen that in the N and SE areas, there are trees 
with less NLT and big DBH. The M area has medium-sized trees with a gentle slope. In the S area, there are more 
small trees with more NLT. Their slope is steep in the N, NE, E, and SE areas. The coefficients vary significantly 
in space and show several directional patterns, and the two symbols and sizes are often heterogeneous, which 
also explains the significant spatial non-stationarity of the DW space.

Discussion
As the study area of Liangshui National Nature Reserve, there is a large DW affected by the wind storms, espe-
cially most of the trees are old primitive mixed broadleaf-conifer forest. The trees that have passed the mature 
stage become more and more vulnerable in the face of wind as the H taller, and the canopy grows larger, the 
physiological aging and the ability to resist diseases and insect pests decrease, and most of them end their life 
cycle in the state of breakage or uprooting60,61 and such disaster changed its native forest stand structure62, which 

Table 5.   Basic statistic parameters of GWR and GNNWR models.

Models Coefficient Mean Min Q1 Median Q3 Max

GWLR

Intercept 0.08 − 2.77 − 0.13 0.31 0.91 2.15

NLT − 0.51 − 2.65 − 0.96 − 0.51 − 0.09 2.22

Canopy 0.61 − 0.79 0.32 0.72 0.92 1.90

H − 0.41 − 2.96 − 1.35 − 0.57 0.33 3.67

Slope 0.14 − 1.15 − 0.04 0.11 0.39 1.14

DBH 0.44 − 0.52 0.11 0.45 0.73 1.51

GWPR

Intercept 1.65 − 13.04 1.40 2.28 2.78 3.54

NLT − 0.27 − 4.01 − 0.69 − 0.31 0.19 2.86

Canopy 0.20 − 1.45 − 0.25 0.02 0.46 6.17

H − 0.01 − 1.90 − 0.82 − 0.35 0.14 14.90

Slope − 0.03 − 4. 41 − 0.20 0.04 0.19 1.72

DBH 0.29 − 0.71 − 0.05 0.16 0.59 3.14

GNNWLR

Intercept − 3.82 − 32.94 − 5.46 0.03 1. 87 11.55

NLT 0.47 − 26.21 − 0.50 0.21 1. 55 9.08

Canopy − 0.54 − 25.55 − 2.00 − 0.11 1. 31 16.75

H 1. 63 − 53.05 − 1.42 0.63 3. 38 44.85

Slope 0.22 − 4.95 − 0.35 0.03 0.58 7.82

DBH − 0.52 − 25.87 − 2.45 − 0.47 0.77 22.91

GNNWPR

Intercept 0.47 − 6.90 − 1.45 1. 60 2. 82 3.95

NLT − 0.56 − 6.42 − 0.90 − 0.15 0.16 0.95

Canopy 0.65 − 0.69 − 0.19 0.02 1.32 5.83

H − 0.52 − 5.36 − 0.90 − 0.24 0.25 1.39

Slope − 0.06 − 1.31 − 0.24 − 0.01 0.13 1.58

DBH 0.96 − 1.59 0.02 0.41 1.43 5.55
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is associated with the hardwood species changing into the broad-leaved mixed forest and shows the positive 
pioneer trees, such as oak, birch, and aspen63. This indicates the formation of the secondary forest. Not only that, 
but it also leads to the loss of a lot of valuable timber in this area64. Therefore, it shows the economic value to 
the region (not rotten wood), and buck and forest investigate the environmental factors by using the data of the 
ODW (binary)19,20 and the NDW (count)21 to establish the GL, GWR, and GNNWR models, respectively. To 
better understand spatial non-stationarity caused by DW, the terrain with obvious gradient change and stand 
environment are used in the study area.

Figure 5.   Spatial distribution of the 5 predictive variables NLT, canopy, H, slope, and DBH (a–e). Coefficient 
estimation of 5 predictive variables in GNNWLR (f–j) and GNNWPR (k–o) models. (p) is the divide the study 
area into 9 orientations. ArcGIS10.4 was used to draw the maps.
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Here, we compare the three methods and find that the non-stationary matrix constructed by the SWNN can 
well solve the complex nonlinear problem between the weight space distance and the weight space and thus can 
better predict the spatial change of the DW33,34. This method also has good results to solve complex non-station-
ary and nonlinear problems in coastal environments33–35. It is found that the GNNWR model shows absolute 
advantages in both the training set and the validation set 35. At the same time, we utilized Moran’s I and Z-value 
to check the non-stationarity of model space and observed that GL and GWR models would have independent 
assumptions and inefficient model coefficient estimates. In addition, according to the spatial residual correlation 
graph drawn at every 300 m, the Moran’s I of GNNWR models at any step size is relatively stable and close to 0, 
which indicates that GNNWR models show a very good ability to maintain spatial stability65. At this moment, 
drop lines (logistic regression) and point plot (Poisson regression) with the ground survey data, respectively, and 
draw its 1:1 linear fitting diagram. The results of GNNWR models are closest to the ground-truth data (Fig. 6).

The distribution of ODW and NDW are easily affected by the climate, stand, terrain, and tree factors61. For 
the investigation, variables in the Liangshui Nature Reserve, four stand variables (NLT, canopy, H, and DBH), 
and one terrain variable (slope)66 were selected by stepwise regression. NLT represents the density of the stand, 
and the canopy represents the size of the canopy structure. The DBH and H represent the tree size67–69; the slope 
represents the geographical characteristics of stands66.

In GNNWR models, the symbols and sizes of the model coefficients are often heterogeneous; that is, different 
stand environments show different or even opposite effects on the distribution of the DW33,34. Here, we analyze 
the 5 variables of GNNWLR and GNNWPR models and the 9 orientations of model coefficients(ODW and 
NDW), and we can judge whether they are positively or negatively correlated with the corresponding dependent 
variables from the positive and negative mean values of variable model coefficients. However, we can see from 
the range of the box that these are not the only relations (Fig. 7), which will vary according to different regions, 
which also shows the existence of non-stationarity in the spatial model35. In the E and W orientations, the ODW 
is high and the NDW is large64. In the N, NE and NW orientations, the ODW is high, but NDW not large. In the 
region of N and NE, NLT is less, but the trees size and the tree canopy are large and the slope is steep. However, 
in the NW area, trees are of medium size and more NLT. However, SE, S and SW orientations are not easy to 
have DW, and the NDW is small. The tree size is small, the canopy is big, NLT is medium, the slope is gentle. In 
the M orientation, there are certain ODW and NDW63.

Finally, the predicted ODW and NDW on the visualization distribution maps of GNNWR closest to the 
ground-truth results, combined with statistical graphics and GIS mapping ability70, can provide inverted wooden 
key visual information, and forest managers can distinguish areas that are affected by disaster in order to help the 
administrator to provide timber and forest terrain variables and the relationship between the detailed informa-
tion. Therefore, GNNWLR models are used to evaluate the ODW in a given area or small class, and GNNWPR 
models are used to predict the NDW. In order to prevent wind damage in the future, stand density, structure, 
and species composition can be changed in local areas63, which can assist in decision making and management 
planning for rational afforestation and management activities in the natural forest ecosystem.

Conclusion
Logistic regression (GL, GWLR, and GNNWLR) models and Poisson regression (GL, GWPR, and GNNWPR) 
models were used to model terrain variables and stand variables, respectively, for predicting the ODW and NDW. 
The analysis indicated that GNNWR models offer greater advantages than GWR and GL models in model-fitting 

Figure 6.   Correlation logistic and Poisson (GL models (a, d), GWR models (b, e), and GNNWR models (c, f)) 
and ground-truth data of comparative analysis.
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and validation performance and also produced ideal residuals to validate spatial correlation. In addition, the 
GIS technology provides much useful information in the study area about different ODW and NDW caused by 
spatial non-stationarity to stand and terrain factors. For a given area, the spatial distribution information of the 
DW can be clearly identified, which can be considered a good approach to assess the damage caused by natural 
disasters, provide key information for forest resources, assist in decision making and management schemes, and 
avoid and reduce the disturbance and loss caused by natural disasters.

Data availability
If the manuscript is accepted, some data can be published.

Received: 28 October 2021; Accepted: 10 March 2022

References
	 1.	 Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).
	 2.	 Harmon, M. E. et al. Ecology of coarse woody debris in temperate ecosystems. In Advances in Ecological Research (eds MacFadyen, 

A. & Ford, E. D.) 133–302 (Academic Press, 1986).
	 3.	 Harmon, M. E. & Bell, D. M. Mortality in forested ecosystems: suggested conceptual advances. Forests 11, 572 (2020).
	 4.	 van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the Western United States. Science 323, 521–524 (2009).
	 5.	 Kinnucan, H. W. Timber price dynamics after a natural disaster: Hurricane Hugo revisited. J. For. Econ. 25, 115–129 (2016).
	 6.	 Marsinko, A. P., Straka, T. J. & Haight, R. G. The effect of a large-scale natural disaster on regional timber supply. J. World For. 

Resour. Manag. 8, 75–85 (1997).
	 7.	 Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecol. 33, 368–398 

(2008).

Figure 7.   The statistical analysis of 5 normalized variables and coefficients of ODW and NDW in 9 orientations 
under GNNWR models.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6375  | https://doi.org/10.1038/s41598-022-10312-x

www.nature.com/scientificreports/

	 8.	 Shifley, S. R., Brookshire, B. L., Larsen, D. R. & Herbeck, L. A. Snags and down wood in missouri old-growth and mature second-
growth forests. North. J. Appl. For. 14, 165–172 (1997).

	 9.	 Bobiec, A. Living stands and dead wood in the Białowieża forest: suggestions for restoration management. For. Ecol. Manag. 165, 
125–140 (2002).

	10.	 Spetich, M. A., Shifley, S. R. & Parker, G. R. Regional distribution and dynamics of coarse woody debris in midwestern old-growth 
forests. For. Sci. 45, 302–313 (1999).

	11.	 Rimle, A., Heiri, C. & Bugmann, H. Deadwood in Norway spruce dominated mountain forest reserves is characterized by large 
dimensions and advanced decomposition stages. For. Ecol. Manag. 404, 174–183 (2017).

	12.	 Ruokolainen, A., Shorohova, E., Penttilä, R., Kotkova, V. & Kushnevskaya, H. A continuum of dead wood with various habitat 
elements maintains the diversity of wood-inhabiting fungi in an old-growth boreal forest. Eur. J. For. Res. 137, 707–718 (2018).

	13.	 Ranius, T. & Kindvall, O. Modelling the amount of coarse woody debris produced by the new biodiversity-oriented silvicultural 
practices in Sweden. Biol. Conserv. 119, 51–59 (2004).

	14.	 Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Conserv. 118, 281–299 
(2004).

	15.	 Svensson, M. et al. The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. 
Fungal Ecol. 20, 166–174 (2016).

	16.	 Bahuguna, D., Mitchell, S. J. & Nishio, G. R. Post-harvest windthrow and recruitment of large woody debris in riparian buffers on 
Vancouver Island. Eur. J. For. Res. 131, 249–260 (2012).

	17.	 Fortin, M. & DeBlois, J. Modeling tree recruitment with zero-inflated models: the example of hardwood stands in southern Quebec 
Canada. For. Sci. 53, 529–539 (2007).

	18.	 Herrero, C., Pando, V. & Bravo, F. Modelling coarse woody debris in Pinus spp. Plantations. A case study in Northern Spain. Ann. 
For. Sci. 67, 708–708 (2010).

	19.	 Arekhi, S. Modeling spatial pattern of deforestation using GIS and logistic regression: a case study of northern Ilam forests, Ilam 
province Iran. Afr. J. Biotechnol. 10, 16236–16249 (2011).

	20.	 Kumar, R., Nandy, S., Agarwal, R. & Kushwaha, S. P. S. Forest cover dynamics analysis and prediction modeling using logistic 
regression model. Ecol. Indic. 45, 444–455 (2014).

	21.	 Podur, J. J., Martell, D. L. & Stanford, D. A compound poisson model for the annual area burned by forest fires in the province of 
Ontario. Environmetrics 21, 457–469 (2010).

	22.	 Tobler, W. R. A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46, 234–240 (1970).
	23.	 Griffith, D. & Chun, Y. Spatial autocorrelation and spatial filtering. In Handbook of regional science 1477–1507 (eds Fischer, M. M. 

& Nijkamp, P.) (Springer, 2014). https://​doi.​org/​10.​1007/​978-3-​642-​23430-9_​72.
	24.	 Li, T. & Meng, Q. Forest dynamics in relation to meteorology and soil in the Gulf Coast of Mexico. Sci. Total Environ. 702, 134913 

(2019).
	25.	 Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: a method for exploring spatial nonsta-

tionarity. Geogr. Anal. 28, 281–298 (1996).
	26.	 Fotheringham, A. S., Charlton, M. E. & Brunsdon, C. Geographically weighted regression: a natural evolution of the expansion 

method for spatial data analysis. Environ. Plan. A 30, 1905–1927 (1998).
	27.	 Yang, C., Fu, M., Feng, D., Sun, Y. & Zhai, G. Spatiotemporal changes in vegetation cover and its influencing factors in the loess 

Plateau of China based on the geographically weighted regression model. Forests 12, 673 (2021).
	28.	 Monjarás-Vega, N. et al. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. 

Sci. Total Environ. 718, 137313 (2020).
	29.	 Peng, X., Wu, H. & Ma, L. A study on geographically weighted spatial autoregression models with spatial autoregressive distur-

bances. Commun. Stat. Theor. Methods 49, 5235–5251 (2020).
	30.	 Harris, P. & Brunsdon, C. Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set 

for Great Britain using geographically weighted summary statistics. Comput. Geosci. 36, 54–70 (2010).
	31.	 Li, J., Jin, M. & Li, H. Exploring spatial influence of remotely sensed PM2.5 concentration using a developed deep convolutional 

neural network model. Int. J. Environ. Res. Public Health 16, 454 (2019).
	32.	 Peng, C., Wang, M. & Chen, W. Spatial analysis of PAHs in soils along an urban-suburban-rural gradient: scale effect, distribution 

patterns, diffusion and influencing factors. Sci. Rep. 6, 37185 (2016).
	33.	 Wu, S. et al. Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary 

relationships. Int. J. Geogr. Inf. Sci. 35, 582–608 (2021).
	34.	 Wu, S. et al. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically 

neural network weighted regression. Sci. Total Environ. 709, 136097 (2020).
	35.	 Du, Z., Wang, Z., Wu, S., Zhang, F. & Liu, R. Geographically neural network weighted regression for the accurate estimation of 

spatial non-stationarity. Int. J. Geogr. Inf. Sci. 34, 1353–1377 (2020).
	36.	 Sun, Y., Ao, Z., Jia, W., Chen, Y. & Xu, K. A geographically weighted deep neural network model for research on the spatial distri-

bution of the down dead wood volume in liangshui national nature reserve (China). IForest 14, 353–361 (2021).
	37.	 Wilkinson, L. Tests of significance in stepwise regression. Psychol. Bull. 86, 168–174 (1979).
	38.	 Henderson, D. A. & Denison, D. R. Stepwise regression in social and psychological research. Psychol. Rep. 64, 251–257 (1989).
	39.	 Carl, G. & Kühn, I. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol. Model. 207, 

159–170 (2007).
	40.	 Wu, W. & Zhang, L. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover 

in north-eastern Puerto Rico. Appl. Geogr. 37, 52–62 (2013).
	41.	 Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in 

the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 405, 123–136 (2011).
	42.	 Pineda Jaimes, N. B., Bosque Sendra, J., Gómez Delgado, M. & Franco, Plata R. Exploring the driving forces behind deforestation 

in the state of Mexico (Mexico) using geographically weighted regression. Appl. Geogr. 30, 576–591 (2010).
	43.	 Tutmez, B., Kaymak, U., Erhan Tercan, A. & Lloyd, C. D. Evaluating geo-environmental variables using a clustering based areal 

model. Comput. Geosci. 43, 34–41 (2012).
	44.	 Li, X., Wu, P., Guo, F.-T. & Hu, X. A geographically weighted regression approach to detect divergent changes in the vegetation 

activity along the elevation gradients over the last 20 years. For. Ecol. Manag. 490, 119089 (2021).
	45.	 Que, X., Ma, C., Ma, X. & Chen, Q. Parallel computing for fast spatiotemporal weighted regression. Comput. Geosci. 150, 104723 

(2021).
	46.	 Wu, L. et al. Spatial analysis of severe fever with thrombocytopenia syndrome virus in China using a geographically weighted 

logistic regression model. Int. J. Environ. Res. Public Health 13, 1125 (2016).
	47.	 Liu, Y. et al. Geographical variations in maternal lifestyles during pregnancy associated with congenital heart defects among live 

births in Shaanxi province Northwestern China. Sci. Rep. 10, 12958 (2020).
	48.	 Saefuddin, A., Saepudin, D. & Kusumaningrum, D. Geographically weighted poisson regression (GWPR) for analyzing the malnutri-

tion data in java-Indonesia (European Regional Science Association (ERSA), 2013).
	49.	 Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

https://doi.org/10.1007/978-3-642-23430-9_72


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6375  | https://doi.org/10.1038/s41598-022-10312-x

www.nature.com/scientificreports/

	50.	 Ketkar, N. Introduction to Keras. In Deep learning with python: a hands-on introduction (ed. Ketkar, N.) 97–111 (Apress, 2017). 
https://​doi.​org/​10.​1007/​978-1-​4842-​2766-4_7.

	51.	 Tsomokos, D. I., Ashhab, S. & Nori, F. Fully connected network of superconducting qubits in a cavity. New J. Phys. 10, 113020 
(2008).

	52.	 Hu, T. et al. Study on the estimation of forest volume based on multi-source data. Sensors 21, 7796 (2021).
	53.	 Chen, L., Ren, C., Zhang, B., Wang, Z. & Xi, Y. Estimation of forest above-ground biomass by geographically weighted regression 

and machine learning with sentinel imagery. Forests 9, 582 (2018).
	54.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks 

from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
	55.	 Mastromichalakis, S. ALReLU: A different approach on Leaky ReLU activation function to improve neural networks performance. 

arXiv:2012.07564 [Cs] arXiv:​2012.​07564 (2021).
	56.	 Chen, C., Li, Y., Yan, C., Dai, H. & Liu, G. A robust algorithm of multiquadric method based on an improved huber loss function 

for interpolating remote-sensing-derived elevation data sets. Remote Sens. 7, 3347–3371 (2015).
	57.	 de Jong, P., Sprenger, C. & Veen, F. On extreme values of Moran’s I and Geary’s c ( spatial autocorrelation). Geogr. Anal. 16, 17–24 

(1984).
	58.	 Fu, W. J., Jiang, P. K., Zhou, G. M. & Zhao, K. L. Using Moran’s i and GIS to study the spatial pattern of forest litter carbon density 

in a subtropical region of southeastern China. Biogeosciences 11, 2401–2409 (2014).
	59.	 Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B. & Simmons, C. T. Normalized difference vegetation index as the dominant predicting 

factor of groundwater recharge in phreatic aquifers: case studies across Iran. Sci. Rep. 10, 17473 (2020).
	60.	 Moore, J. R. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. For. Ecol. 

Manag. 135, 63–71 (2000).
	61.	 Lanquaye-Opoku, N. & Mitchell, S. J. Portability of stand-level empirical windthrow risk models. For. Ecol. Manag. 216, 134–148 

(2005).
	62.	 Li, X. et al. Response of species and stand types to snow/wind damage in a temperate secondary forest Northeast China. J. For. 

Res. 29, 395–404 (2018).
	63.	 Zhen, Z. et al. Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Appl. Geogr. 

37, 114–126 (2013).
	64.	 Vozmishcheva, A. et al. Strong disturbance impact of tropical cyclone Lionrock (2016) on Korean pine-broadleaved forest in the 

Middle Sikhote-Alin Mountain range Russian Far East. Forests 10, 15 (2019).
	65.	 Bivand, R., Müller, W. G. & Reder, M. Power calculations for global and local Moran’s I. Comput. Stat. Data Anal. 53, 2859–2872 

(2009).
	66.	 Yuan, J. et al. Dynamics of coarse woody debris characteristics in the Qinling mountain forests in China. Forests 8, 403–403 (2017).
	67.	 Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 61, 246–253 (1997).
	68.	 Næsset, E. Determination of mean tree height of forest stands by digital photogrammetry. Scand. J. For. Res. 17, 446–459 (2002).
	69.	 Rich, R. L., Frelich, L. E. & Reich, P. B. Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand 

age. J. Ecol. 95, 1261–1273 (2007).
	70.	 Odhiambo, B. O., Kenduiywo, B. K. & Were, K. Spatial prediction and mapping of soil pH across a tropical afro-montane landscape. 

Appl. Geogr. 114, 102129 (2020).

Author contributions
Y.S. and W.J. designed this paper flow. Y.S. X.Z. and H.G. built the diagram and performed the experiments. 
Y.S. and S.S. conducted the analysis and wrote the paper. Y.S and T.H modified the figures. W.J and W.Z made 
language and logic modifications.

Funding
This research was funded by the National Natural Science Foundation of China, grant number is 31870622 and 
the Special Fund Project for Basic Research in Central Universities, grant number is 2572019CP08.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1007/978-1-4842-2766-4_7
http://arxiv.org/abs/2012.07564
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Local neural-network-weighted models for occurrence and number of down wood in natural forest ecosystem
	Materials
	Study area. 
	Variable selection. 

	Methods
	GL models. 
	GWR models. 
	GNNWR models. 
	Model assessment. 

	Results
	Model assessment. 
	Model parameter analysis. 
	Visualized analysis of model parameters. 

	Discussion
	Conclusion
	References


