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Université de Versailles
Saint-Quentin-en-Yvelines, France

Reviewed by:
Jelena Stojsic,

University of Belgrade, Serbia
Loredana Urso,

University of Padua, Italy

*Correspondence:
Sarah Sayed Hassanein

sarah.hassanein@ejust.edu.eg;
ssara@sci.cu.edu.eg

†ORCID:
Sarah Sayed Hassanein
0000-0003-0545-4215

Ahmed L. Abdelmawgood
0000-0001-9784-1014

Sherif A. Ibrahim
0000-0001-6403-7345

‡These authors have contributed
equally to this work and share

senior authorship

Specialty section:
This article was submitted to

Thoracic Oncology,
a section of the journal
Frontiers in Oncology

Received: 29 August 2021
Accepted: 23 November 2021
Published: 15 December 2021

Citation:
Hassanein SS, Abdel-Mawgood AL

and Ibrahim SA (2021) EGFR-
Dependent Extracellular Matrix
Protein Interactions Might Light

a Candle in Cell Behavior of
Non-Small Cell Lung Cancer.

Front. Oncol. 11:766659.
doi: 10.3389/fonc.2021.766659

REVIEW
published: 15 December 2021

doi: 10.3389/fonc.2021.766659
EGFR-Dependent Extracellular Matrix
Protein Interactions Might Light a
Candle in Cell Behavior of
Non-Small Cell Lung Cancer
Sarah Sayed Hassanein1,2*‡, Ahmed Lotfy Abdel-Mawgood1†‡

and Sherif Abdelaziz Ibrahim2†‡

1 Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology
(E-JUST), Alexandria, Egypt, 2 Zoology Department, Faculty of Science, Cairo University, Giza, Egypt

Lung cancer remains the leading cause of cancer-related death and is associated with a
poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-
small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although
NSCLC progression depends on driver mutations, it is also affected by the extracellular
matrix (ECM) interactions that activate their corresponding signaling molecules in concert
with integrins and matrix metalloproteinases (MMPs). These signaling molecules include
cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases
(RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay
between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion,
migration, and metastasis. Furthermore, some tumor-promoting ECM components
(e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN.
On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit
EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the
molecular mechanisms underlying EGFR and ECM interactions might provide a better
understanding of disease pathobiology and aid in developing therapeutic strategies. This
review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of
NSCLC, as well as the involvement of ECM components in developing resistance to
EGFR inhibition.

Keywords: epidermal growth factor receptor (EGFR), extracellular matrix (ECM), non-small cell lung cancer
(NSCLC), integrin receptors, proteoglycans, glycoproteins, matrix metalloproteinases (MMPs), tyrosine kinase
inhibitors (TKIs).
1 INTRODUCTION

Globally, lung cancer is the foremost cause of cancer-related death, accounting for 2.09 million cases and
1.76 million deaths in 2018, according to GLOBOCAN (1). Two types of lung cancer are known: non-
small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), with an incidence rate of 85% and
14%, respectively. According to histological characteristics, NSCLC is divided into lung adenocarcinoma
(ADC), squamous cell carcinoma (SqCC), and large cell carcinoma (LCC) (2). Most likely, lung cancer is
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diagnosed at locally advanced or metastatic stages in 70% of
patients, leading to a low 5-year survival rate (15%) (3). Lung
cancer metastasis is the primary cause of death in most patients,
including metastasis to the brain (20–40%), bones (30–40%);
however, the mechanism has yet remained unclear (4, 5). The
latest advances in technology have helped determine genetic,
epigenetic, and proteomic alterations in different cancers (6). The
epidermal growth factor receptor (EGFR) signaling pathway plays a
crucial role in NSCLC progression (7, 8).

The EGFR is a transmembrane glycoprotein receptor that
belongs to the ErbB family of receptor tyrosine kinases (RTKs).
There are four types of EGF receptors (HER1/EGFR/ErbB1, HER2/
ErbB2, HER3/ErbB3, and HER4/ErbB4) that comprise a cysteine-
rich extracellular ligand-binding domain (LBD), an a-helix
transmembrane domain (single-pass), a C-terminal domain, and
except HER3, a cytoplasmic tyrosine kinase (TK) domain (8). The
EGFR signaling pathway is multifaceted, with more than 13
extracellular ligands. Upon ligand-receptor binding, the
dimerization of the receptor either with the same
(homodimerization) or another receptor (heterodimerization) of
the EGFR family takes place (9, 10). Upon EGFR dimerization, it
activates one or more downstream cascades, including the
phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT),
mitogen-activated protein kinase (MAPK), extracellular signal-
regulated kinase (MEK/ERK), mammalian target of rapamycin
(mTOR), and signal transducer and activator of transcription
(STAT) pathways through autophosphorylation of the receptor as
well as the cytoplasmic protein binding (11, 12). EGFR is normally
downregulated after receptor activation by an endocytic pathway,
resulting in receptor degradation or recycling. The uncontrolled
EGFR pathway induces aberrant signaling linked with many airway
illnesses, including extreme airway proliferation, hypersecretion,
mucus overproduction, and advanced distal lung fibrosis and
cancer (13, 14). Lung SqCC and ADC patients can harbor
abnormal EGFR pathway activation and conserved ErbB1 gene
mutations (15) that are approximately 90% in exons 18–21 of its
kinase domain, besides an additional 5% denoted to an in-frame
deletion in exons 2–7 (13). Tumor extracellular matrix (ECM)
composition can play a role in EGFR-dependent lung cancers.

ECM is a significant part of all tissues’ microenvironment. It
offers physical support for the neighboring cells, binds growth
factors, and controls cell behavior under physiological and
pathological conditions (16). ECM is composed of a non-cellular
network of proteins, proteoglycans, glycoproteins, and
polysaccharides that constitute the interstitial matrix (IM) and the
basement membrane (BM) (17). The latter is a well-structured
membrane, underlining epithelial and endothelial cells under
healthy conditions to separate them from the IM, which
constitutes the main stroma and plays a significant role in cell
adhesion, cell migration, tissue development, angiogenesis, and
repair (18). It is well-known that carcinogenesis is multistep
genetic and epigenetic variations, resulting in oncogenes
overexpression and downregulation of tumor suppressor genes
(19). These aberrations induce cancer cells to stimulate
adjacent stromal cells and augment the release of ECM proteins,
growth factors, cytokines, angiogenic factors, and proteolytic
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enzymes into tumor stroma to form a tumor-supportive
microenvironment (Figure 1) (20, 21). The development of
resistance to EGFR tyrosine kinase inhibitors (TKIs) is still a
critical problem in lung cancer, and the underlying mechanisms
remain fully unexplored (22). Although TKI-induced or –selected
genetic alterations are known to cause chemoresistance, other
poorly understood mechanisms in tumor cells can drive this
resistance. In the absence of genetic alterations, ECM components
are players in TKI resistance (23). In the following sections, we
highlight the different types of ECM proteins and their roles in
mediating EGFR signaling to pinpoint their significance in NSCLC
as biomarkers for diagnosis and prognosis and their potential as
druggable targets.

2 ECM-KEY STRUCTURAL AND
SIGNALING COMPONENTS MODULATE
EGFR ACTIVATION AND AFFECT CELL
BEHAVIOR OF NSCLC

2.1 Glycoproteins
2.1.1 Fibulins (FBLNs)
Emerging data have indicated that the fibulin (FBLN) family
comprising seven members (fibulin-1–7) of widely expressed
ECM proteins is associated with lung cancer invasion and
metastasis. FBLNs are ECM glycoproteins consisting of EGF-
like domain repeats crucial for normal organogenesis and
embryonic development (24). They are vital for these biological
processes as they regulate cell-to-matrix communication and
ECM structure stabilization through intermolecular bridges that
bind to several supramolecular structures (25, 26). Besides their
structural role, FBLNs are linked to many cellular signaling
events and complex biologic processes, including cellular
proliferation, adhesion, and migration (25, 27).

Fibulin-1 (FBLN1) expression levels are substantially
downregulated in NSCLC (28). The role of FBLNs in
regulating the EGFR function is shown in Figure 2.
Harikrishnan et al. used siRNA to knock down FBLN1C and
FBLN1D expression in NSCLC Calu-1 cells to examine if FBLN1
isoforms could play a role in controlling EGFR signaling and
function (28). Without affecting overall EGFR expression levels,
FBLN1C and FBLN1D expression loss significantly increases
basal (with serum) and EGF-mediated EGFR activation.
Conversely, overexpression of FBLN1D and FBLN1C inhibits
EGFR activation, indicating a regulatory crosstalk between the
two proteins.

FBLN3’s functions and signaling mechanisms in lung cancer
stem cells (CSCs) were investigated (29). Moreover, FBLN3 was
downregulated in the lung (30) and nasopharyngeal carcinomas
(31). Forced expression of FBLN3 reduces the expression of
epithelial-mesenchymal transition (EMT) activators, including
N-cadherin and Snail, which inhibit ADC cell invasion and
migration. FBLN3 inhibits the stemness activities of ADC cells,
as shown by a decline in spheroid formation and the levels of
stemness markers, including SRY-like HMG box (Sox2) and b-
catenin. FBLN3 effects are mediated by the glycogen synthase
December 2021 | Volume 11 | Article 766659
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kinase-3b (GSK3b)/b-catenin pathway and the upstream
regulators of GSK3b such as (PI3K)/AKT and insulin-like
growth factor receptor (IGF1R). Furthermore, IGF1R was
discovered to be a direct target of FBLN3, which inhibits the
action of IGF. Further, FBLN3 inhibits lung CSC and EMT by
modulating the IGF1R/PI3K/AKT/GSK3 pathway, and that
FBLN3 may be used as a CSC-centered therapeutic alternative
(29). FBLN3 could attenuate the invasion of NSCLC A549 cells
by inhibiting the transcription of matrix metalloproteinase-
(MMP)-7 and MMP-2 (32). Again, Chen et al. revealed the
function of FBLN3 and FBLN5 as suppressors of lung cancer
invasion and metastasis through the inhibition of Wnt/b-catenin
and ERK signaling pathways (33) that, in turn, downregulate
MMP-2 and MMP-7 expression (32) and inhibit lung cancer cell
survival, proliferation, and metastasis (34, 35). Moreover, FBLN3
overexpression notably decreased the activities of MMP-2 and
MMP-9 and repressed the invasion of NSCLC A549 cells; thus, it
could be used as a therapeutic strategy for NSCLC (36).

FBLN5 (DANCE), a vascular integrin receptor ligand, is a
distinct member of fibulins harboring the RGD (Arg-Gly-Asp)
motif associated with endothelial cell adhesion (37). FBLN5 can
also depend on RGD to attenuate angiogenesis (38). It interacts
directly with elastic fibers in vitro, and its amino-terminal
domain serves as a ligand for cell surface integrins avb3, a9b1,
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and avb5 (39–41). FBLN5 expression is induced under
pathological conditions, including pulmonary hypertension
and lung injury (42), and is controlled by transforming growth
factor-b (TGF-b) (43). FBLN5 was discovered to be a suppressor
of lung cancer invasion and metastasis via inhibiting MMP-7.
Indeed, FBLN5 knockdown induces cell invasion and MMP-7
expression. In lung tumors, the expression levels of FBLN5 and
MMP-7 are inversely associated. FBLN5 suppresses MMP-7
expression through the ERK pathway, which is mediated by an
integrin-binding RGD motif. FBLN5 overexpression in H460
lung cancer cells also prevents metastasis in mice. These findings
indicate that epigenetically silenced FBLN5 promotes lung cancer
invasion and metastasis by inducing MMP-7 expression through
the ERK pathway (44).

2.1.2 Mucins
Mucins (MUCs) are high M.wt glycoproteins synthesized by
many epithelial tissues (45). They are categorized into two major
groups: secretory mucins and membrane-bound mucins. There
are 11 membrane-bound mucins (MUC1, MUC3A, MUC3B,
MUC4, MUC12, MUC13, MUC15, MUC16, MUC17, MUC20,
and MUC21) and seven secreted mucins (MUC2, MUC5AC,
MUC5B, MUC6, MUC7, MUC8, and MUC19) (46). MUCs are
involved in the normal development of the lungs and are
FIGURE 1 | EGFR-mediated ECM remodeling during lung cancer progression. EGFR and ECM receptors, integrins, results in Akt, Erk, and Ras pathways’ activation
that participate in increasing cell migration, invasion, survival, and motility and repressing cell apoptosis; (A) Normal ECM in healthy tissue; (B) Neoplastic cells with
uncontrolled cell growth promote ECM remodeling during lung cancer progression; (C) Tumor migration and invasion are mediated by collagen alignment and ECM
stiffness. Blue arrows point to stimulation, upright-directed red arrows point to increase effect, and dashed red arrows point to cellular effect.
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expressed during the embryonic stages of lung development. The
cytoplasmic domain of MUC1-C contains i) a YEKV motif: a
substrate for EGFR phosphorylation and a SRC SH2 binding site
(47), ii) a YHPM motif: a binding site for PI3K and the AKT
pathway activation (48, 49), and iii) a YTNP motif: Upon
tyrosine phosphorylation, it interacts with Grb2, which binds
MUC1-C to son of sevenless (SOS) and thereby activating the
RAS!MEK!ERK pathway (49).

MUC1 is an oncogenic glycoprotein that binds to EGFR,
serving as a substrate, and that MUC1 expression can enhance
EGFR-dependent signaling. MUC1 expression can prevent
degradation of EGFR in breast epithelial cells using
overexpression constructs and RNAi-mediated knockdown of
MUC1, increasing total cellular pools of EGFR (50). The MAPS
(MUC1-associated proliferation signature) includes a
cytoplasmic domain of MUC1 (MUC1-CD)-dependent genes,
including cyclin B1 (CCNB1), cyclin-dependent kinase inhibitor
3 (CDKN3), cell division cycle protein (CDC2, CDC20), mitotic
arrest deficient 2-like protein 1 (MAD2L1), protein regulator of
cytokinesis 1 (PRC1), and ribonucleoside-diphosphate reductase
subunit M2 (RRM2), which are involved in cell cycle and
proliferation regulation and have been linked to poor
outcomes in patients with lung adenocarcinoma (51). MUC1 is
Frontiers in Oncology | www.frontiersin.org 4
expressed as MUC1-N and MUC1-C, a non-covalent
heterodimer of N-terminal and C-terminal subunits,
respectively (46). MUC1 overexpression, in association with
MUC1-C, contributes to activation of the nuclear factor
Kappa-activated B cells (NF-kB) (52), Wnt/b-catenin/TCF4
(transcription factor 4) (53), and STAT1/3 pathways in
NSCLC (54). In NSCLC, the heterodimeric protein MUC1 is
abnormally overexpressed, resulting in gene signatures linked to
poor patient survival (48). The cytoplasmic domain of MUC1-C
is associated with PI3K p85 in NSCLC cells.

Blocking the interaction of MUC1-C with PI3K p85 via cell-
penetrating peptides suppresses Akt phosphorylation and its
downstream effector mTOR. Treatment of NSCLC cells with
GO-203, a MUC1-C peptide inhibitor, results in downregulation
of PI3K-Akt signaling, growth inhibition, an increase in reactive
oxygen species (ROS), and necrosis induction via a ROS-
dependent mechanism. Furthermore, in H1975 (EGFR L858R/
T790M) mutant cells and A549 (K-Ras G12S) xenografts
developed in nude mice after treatment with GO-203, tumor
regressions were observed. These data suggest that MUC1-C is
needed for PI3K-Akt pathway activation and survival in NSCLC
cells (48). Galectin-3 is a b-galactoside binding protein that has
also been linked to human cancer development. Glycosylation of
FIGURE 2 | Fibulins-mediated EGFR signaling pathways and matrix metalloproteinases in lung cancer. Fibulin (FBLN) family includes many types such as
FBLN1,3&5 serve as tumor-suppressor proteoglycans. FBLN1 can inhibit EGFR activation and thus suppress cell proliferation. FBLN3 can compete with EGF and
IGF-1 binding to their receptors; it also can inhibit transcription of oncogenic matrix metalloproteinases (MMP2& MMP9). FBLN3/5 can inhibit MMP7 and Erk
pathway activation and thus inhibit cell invasion. Blue arrows for stimulation; dashed red arrows for cellular effect, and red “T” sign for inhibition.
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the C-terminal subunit of Asn-36 is necessary for galectin-3
upregulation. Two Sentences have been transferred to section no.
8. Galectin-3 binds to MUC1-C at the glycosylated Asn-36 site.
Galectin-3 acts as a bridge between EGFR and MUC1, besides
galectin-3 is needed for EGF-mediated interactions between
MUC1 and EGFR that support the importance of the MUC1-
C-galectin-3 interaction (55).

In EGFR mutant NSCLC, MUC5B-positive patients had
significantly longer overall survival and relapse-free survival
than MUC5B-negative patients. MUC5B appears to be a novel
prognostic biomarker in NSCLC patients with EGFR mutations
(56). Lung ADC subtypes, including invasive mucinous
adenocarc inoma ( IMA) and lep id i c predominant
adenocarcinoma (LPA) are associated with MUC expression.
In this regard, MUC1 is expressed in LPA, whereas MUC5B,
MUC5AC and MUC6 are expressed in IMA (57). Also, EGFR
and KRAS (Kirsten Rat Sarcoma viral oncogene homolog)
mutations and Hnf4a expression may participate in mucin
expression profiles in these lung ADC subtypes (57). The
overexpression of MUC21 proteins with a particular
glycosylation state is implicated in developing EGFR-mutated
lung ADCs associated with a high frequency of lymphatic vessels
invasion and lymph node metastasis (58). Additionally,
MUC5AC is linked to poor prognosis and would be a
prospective therapeutic target in lung ADC due to its role in
enhancing tumor heterogeneity with mucin production (59).
Therefore, developing treatment strategies targeting MUCs’
expression and functions to manage NSCLC progression are
under investigation (60).

2.1.3 Fibronectin
Fibronectin (FN) is present in multiple isoforms through
alternative splicing, where 20 isoforms in humans have been
discovered (61) and are involved in mediating many cellular
interactions with the ECM (62). It is primarily synthesized by
CAFs and polymerized into ECM fibrils that act as scaffolds for
ECM binding molecules such as growth factors and cell surface
receptors (63). FN is overexpressed in the stroma of NSCLC and
can promote cancer cell adhesion, growth, differentiation,
migration, invasion, survival, and resistance to chemotherapy
(64). FN-dependent molecular pathways can control the tumor
cell response to the stromal matrix and represent potential
targets for managing chemo-resistant tumors (65). FNIII-1c, a
peptide mimetic, can activate Toll-like receptors (TLRs) to
promote NF-kB activation and release inflammatory cytokine
in fibroblasts (Figure 3) (66, 67). Notably, the PI3K/Akt pathway
is the main pathway by which most cytokines and growth factors
activate mTOR and its downstream targets. In NSCLC H1838
and H1792 cells, FN induces phosphorylation of eukaryotic
initiation factor 4E–binding protein 1 (4E-BP1) and p70S6K1
(two downstream targets of mTOR), and Akt phosphorylation
(an upstream inducer of mTOR), whereas it inhibits the tumor
suppressor protein phosphatase that antagonizes the PI3K/Akt
signal (68). Furthermore, FN inhibits liver kinase B1 (LKB1)
mRNA and protein expression, as well as the phosphorylation of
AMP-activated protein kinase (AMPK), both of which are
known to inhibit mTOR. These data indicate that NSCLC cell
Frontiers in Oncology | www.frontiersin.org 5
proliferation induced by FN is mediated by Akt/mTOR/p70S6K
pathway activation and LKB1/AMPK signaling inhibition (68).

2.1.4 Laminin
Laminins (Lns) are heterotrimeric extracellular glycoproteins
found in all BMs. So far, more than 17 Ln isoforms have been
identified with a cross-shaped and specific arrangement of a, b,
and g subunits (69). Ln-332 and Ln5 consist of heterogeneous
a3, b3, and g2 chains and serve as BMs’ essential structural
constituent. Ln5 plays a crucial role in cellular migration and
tumor invasion (70, 71). NSCLC patients with positive Ln5
expression had a slightly lower survival rate than Ln5-negative
expression counterparts. Besides, positive Ln5 expression
combined with the loss of PTEN, positive active EGFR
expression, or positive active Akt expression has a significantly
different overall survival. According to Cox regression analysis,
the co-expression of Ln5, PTEN, and p-Akt are the three most
independent prognostic markers in NSCLC patients. The
findings illustrate the intricate tumorigenesis relationship
between key signaling pathway molecules and ECM proteins
(71) (Figure 3). A Ln receptor, namely integrin a6b4, triggers
carcinoma progression through cooperation with various GFRs
to facilitate invasion and metastasis (72). Using a lung cancer
tissue microarray and immunohistochemistry (IHC), Stewart
et al. discovered that SqCC has a higher integrin b4 (ITGB4)
expression than ADC, and these data were verified in external
gene expression data sets. Overexpression of ITGB4 is also linked
to venous invasion and a lower overall patient survival rate. The
most highly 50 altered genes related to ITGB4 identified in SqCC
were Lns, CD151, collagens, PI3K, and EGFR-associated pathway
genes, other recognized signaling partners using cBioPortal.
Finally, they show that ITGB4 is overexpressed in NSCLC and
is an unfavorable prognostic factor (72). Overall, these data
suggest a potential correlation between Lns and EGFR in lung
cancer prognosis; however, further studies are still required to
profile expression patterns of different Ln types in NSCLC to
underscore their clinical relevance.

2.1.5 Fibrinogen
Fibrinogen is a 350 kDa glycoprotein synthesizedmainly by the liver
epithelium (73). It comprises two similar sets of three polypeptide
chains, including Aa, Bb, and g, linked by five symmetrical disulfide
bridges (74). Many proteins and cytokines such as vascular
endothelial growth factor (VEGF) and fibroblast growth factor-2
(FGF-2) bind to fibrinogen affecting its biological behavior (75, 76).
Lungs produce fibrinogen by inflammatory stimuli (77). Fibrinogen
changed into insoluble fibrin via activated thrombin considerably
affects blood clotting, inflammatory response, wound healing,
fibrinolysis and neoplasia. Increased fibrinogen activity
considerably affects cancer cell growth, progression, and
metastasis (78).

Accumulating evidence indicates a correlation between
fibrinogen and EGFR in lung cancer (79–81). A study by
Shang et al. discovered a novel serum protein, fibrinogen alpha
chain isoform 2 (FGA2), in lung ADC patients with mutated
EGFR using microarray data analysis of 41,472 antibodies
coupled with mass spectrometry analysis (79). Further, plasma
December 2021 | Volume 11 | Article 766659

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hassanein et al. ECM and EGFR Crosstalk in NSCLC
FGA2 levels were remarkably downregulated in EGFR-mutated
patients relative to those with the wild-type EGFR (81). In the
same study, hyperfibrinogenemia was linked to distant
metastasis and lymphatic tissue metastasis. A multivariate
model based on fibrinogen and smoking history was also used
to predict EGFR mutation status in NSCLC patients (81).
Furthermore, Fibrinogen-like protein 1 (FGL1) is significantly
overexpressed in the gefitinib-resistant NSCLC cell line PC9/GR
more than in the gefitinib-sensitive NSCLC cell line PC9 with an
EGFR mutation. However, FGL1 knockdown reduces cell
viability, decreases gefitinib IC50, and increases apoptosis in
PC9/GR and PC9 cells after gefitinib therapy. FGL1 knockdown
in PC9/GR tumor cells increases gefitinib’s inhibitory and
apoptosis-inducing effects in a mouse xenograft model.
Gefitinib’s possible mechanism for inducing apoptosis in PC9/
GR cells includes suppressing FGL1 and activating Poly (ADP-
Ribose) Polymerase 1 (PARP1) and caspase 3 pathways. By
regulating the PARP1/caspase 3 pathway, FGL1 promotes
acquired resistance to gefitinib in the PC9/GR NSCLC cell line.
As a result, FGL1 may be a possible therapeutic option for
NSCLC patients who have developed resistance to gefitinib (80).
Frontiers in Oncology | www.frontiersin.org 6
2.1.6 Other ECM Glycoproteins
Tenascin-C (TN-C) is a glycoprotein composed of 4 distinct
domains interacting with matrix constituents, cell surface
proteins, soluble factors, and pathogenic components. TN-C
affects pulmonic blood vessel invasions by decreasing apoptosis
and promoting cancer cell plasticity, thus, increasing lung
metastasis (82). TN-C also binds to more than 25 different
molecules, including EGF-L repeats (a low-affinity ligand for
the EGFR, MAPK, and phospholipase-C gamma (PLC)-g
signaling). Besides, TN-C binds to FNIII, aggrecan, integrins,
and perlecan, along with growth factors such as FGF, platelet-
derived growth factor (PDGF), and TGF-b families (83). Again,
receptor-type tyrosine-protein phosphatase zeta (PTPRz1),
fibrinogen-like globe (FBG) that can bind to integrins, and
TLR4 are TN-C-related molecules (83). These diverse
interactions render TN-C a significant driver for many
processes such as cell attachment, cell migration, cell
spreading, cell survival, focal adhesion, neurite outgrowth,
protease, and matrix assembly, and pro-inflammatory cytokine
synthesis (83). However, a correlation between TN-C and EGFR
has not yet been elucidated in NSCLC.
FIGURE 3 | Dual effect of ECM glycoproteins and proteoglycans in lung cancer. Tumor-promoting glycoproteins (e.g., laminin 5 and fibronectin); laminin expression
enhances phospho-EGFR or phospho-Akt expression and loss of PTEN; fibronectin activates toll-like receptors (TLRs) to promote NF-kB activation as well as EGFR-
dependent Akt/mTOR/p70S6K signaling pathway; and thus, it stimulates cell proliferation and differentiation in lung cancer. Tumor-promoting proteoglycans (e.g.,
GPC5) prompted cell migration and metastasis. Tumor-suppressing glycoproteins (e.g., fibulins1,3, and 5) compete with EGF and inhibit EGFR activation. Tumor-
suppressing proteoglycans (e.g., GPC3 and SDC‐1) can regulate EGF and many intracellular signaling pathways inhibiting cell invasion and migration. Blue arrows for
stimulation; dashed red arrows for cellular effect; and red “T” sign for inhibition.
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Periostin (Postn, PN, or osteoblast-specific factor OSF-2) is a
vital ECM protein known for its complex role in tumorigenesis
(84). It can directly bind to many ECM proteins, including TN-
C, FN, collagen, and Postn itself (85). Also, it acts as a ligand for
numerous integrins such as avb3, avb5, and a6b4 to participate in
cell adhesion, survival, and migration (85, 86). Postn affects
tumor progression by regulating cellular survival, angiogenesis,
invasion, and metastasis in epithelial tumors (85). Periostin is
overexpressed and enhances metastatic growth in colon cancer
by inhibiting stress-induced apoptosis in cancer cells and
increasing endothelial cell survival to boost angiogenesis.
Although there is no direct association between Postn and
EGFR in lung cancer, Postn can regulate EGFR interacting
partners or its downstream signaling. Periostin increases
cellular survival at the molecular level by activating the Akt/
PKB signaling pathway through avb3 integrins (87). In lung
cancer, high Postn expression is positively associated with the
EMT markers Snail and Twist and lung cancer stage, according
to IHC results. Further, recombinant Postn causes EMT in lung
cancer cells through the p38/ERK pathway, and that
pretreatment with chemical inhibitors prevents Postn-induced
EMT (88). Moreover, the increased Postn expression in the
NSCLC A549 cells is one form of cellular response to
chemical-mimic hypoxia stress, and this effect can be
controlled by hypoxia-inducible growth factors like TGF-a and
bFGF, which trigger the RTK/PI3-K pathway leading to
upregulation of Postn, and in turn, facilitating the survival of
A549 cells in a hypoxic microenvironment via the Akt/PKB
pathway (89). Collectively, these data indicate that Postn may
serve as a therapeutic target in NSCLC.

Vitronectin (VTN) is a multifunctional glycoprotein found in
blood and ECM. It binds collagen, glycosaminoglycans, the
urokinase-receptor, and plasminogen and stabilizes plasminogen
activation inhibitor-1 (PAI-1)’s inhibitory conformation. VTN can
potentially control the ECM proteolytic degradation through its
localization in the ECM and binding to PAI-1. VTN also binds to
complement, heparin, and thrombin-antithrombin III complexes,
suggesting an immune response role and clot formation control
(90). VTN is mostly overexpressed in smaller and well-differentiated
tumors (91). EGF promotes carcinoma cell metastasis by
phosphorylating p130 CAS in an Src-dependent manner,
activating Ras-related protein 1 (Rap1), a small GTPase
implicated in integrin activation. Src activity induced by EGFR
causes phosphorylation of the CAS substrate, required for Rap1 and
avb5 activation (92). EGFR activation of Src initiates avb5-
mediated migration in FG (express stably mutational active
Y527F (SrcA) pancreatic carcinoma cells. EGF causes cell
metastasis and avb5-mediated Rap1 activation. Rac1 and Rap1
activity are increased in FG cells plated on anti-b5, but not anti-b1,
integrin antibodies after EGF therapy. Rap1 knockdown on
vitronectin but not fibronectin prevents EGF-induced cell
migration. In the chick CAM model, knocking down integrin b5
expression prevents EGF-induced pulmonary metastasis but not
primary tumor weight (92).

Nidogen (NID1 and NID2) are present in the BM and help
maintain its stability by connecting COLIV and Ln networks in
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the ECM (93, 94). The determination of NID2 methylation
represents a biomarker for NSCLC diagnosis (95). The lung
metastasis of NID1– or 2–deficient mice were studied after being
intravenously injected with B16 murine melanoma cells. The
authors demonstrated that the depletion of NID2, but not NID1,
facilitates melanoma cell lung metastasis. According to
histological and ultrastructural examination, the morphology
and ultrastructure of BMs, including vessel BMs, are not
different in NID1– and 2–deficient lungs. Furthermore, there is
no difference in the deposition and distribution of the main BM
components between the two mouse strains. These findings
indicate that the absence of NID2 can cause subtle changes in
endothelial BMs in the lung, allowing tumor cells to move
through these BMs more quickly, resulting in a higher risk of
metastasis and larger tumors (96). Further, NID2 inhibits liver
metastasis in a significant way. NID2 suppresses the EGFR/Akt
and integrin/focal adhesion kinase (FAK)/PLC metastasis-
related pathways; these data shed light on NID2’s critical
tumor metastasis-suppression functions in cancer (97). The
roles of NID1 and NID2 in NSCLC have not yet been
fully characterized.

2.2 Proteoglycans
Proteoglycans, keymolecular effectors of cell surface and pericellular
microenvironments, perform multiple roles in health and diseases
because of their polyhedric structure and ability to interact with
ligands and receptors that control neoplastic growth and
neovascularization (98, 99). Some proteoglycans, like perlecan,
have pro- and anti-angiogenic properties, while others, like
syndecans and glypicans, can directly influence cancer growth by
modulating key signaling pathways. Several groups of enzymes in
the tumor microenvironment further regulate the bioactivity of
these proteoglycans: (i) various proteinases, which cleave the protein
core of pericellular proteoglycans, (ii) endosulfatases and
heparanases which change the structure and bioactivity of various
heparan sulfate proteoglycans and their bound growth factors, and
(iii) sheddases, which cleave transmembrane or cell-associated
syndecans and glypicans. On the other hand, small leucine-rich
proteoglycans like lumican and decorin serve as tumor suppressors
by physically antagonizing RTK such as EGFR and c-Met (receptor
for HGF), evoking antisurvival and proapoptotic pathways (98).

Proteoglycans, including serglycin (100), perlecan (101),
versican (102), aggrecans (103), decorin (104), lumican (105),
syndecans (106), testicans (107), endocan (108), and glypicans
(109) are involved in EGFR signaling pathways in lung cancer
(108). For example, endocan is known to be a RTK ligand
enhancer in tumorigenesis. Higher endocan levels are observed
in lung tumors relative to non-neoplastic tissues, and these levels
are associated with a poor prognosis in NSCLC patients with
mutant EGFR. Circulating endocan levels are also significantly
higher in patients with mutant EGFR than those with wild-type
EGFR. Endocan enhances tumor growth driven by mutated
EGFR by facilitating EGFR signaling through direct binding
and enhancing the EGF-EGFR interaction. Through the Janus
kinase (JAK)/STAT3 and ERK/ELK cascades, activated EGFR
upregulates endocan expression, creating a positive regulatory
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loop of endocan-EGFR signaling. These results point to a novel
relationship between EGFR and endocan and new strategies to
target the endocan-EGFR regulatory axis in NSCLC patients with
TKI-resistant (108). Another example is decorin, small leucine-
rich proteoglycans (SLRP) that control cell growth and migration
in several tumor cell lines (104). Up-regulation of decorin
inhibits proliferation, arrests the cell cycle at G1, and reduces
invasive activity in the NSCLC A549 cells. Further, upregulating
decorin substantially reduces EGFR phosphorylation, cyclin D1,
TGF-1 expression and increases p53 and P21 expression;
whereas, decorin downregulation could reverse the effects
(104). In the following section, we discuss the available data
for syndecans and glypicans as examples for proteoglycans.

2.2.1 Glypicans
Glypicans (GPCs), a heparan sulfate proteoglycan (HSPG)
family, consist of core proteins (60- to 70-kDa), heparan
sulfate (HS) chains, and a glycosylphosphatidylinositol linkage
(110). There are six known GPCs (GPC1-GPC6) in humans.
GPCs participate in cell growth by regulating Wnt (111),
development by modifying morphogen gradient formation
(112), and other multiple signaling pathways. GPCs are
abnormally expressed in multiple types of cancer and are
crucial for cancer cell growth and progression. The expression
of GPC5 is regulated to control cell growth and differentiation
throughout mammalian development (113). Also, genetic
variations of GPC5 may share in the increased risk of never-
smokers (114). GPC5 mRNA and protein levels are
overexpressed in A549 and H3255 cells. Using shRNA-
mediated knockdown or overexpression of GPC5, the
migration rates of A549 and H3255 cells transfected with
pRNAT-shRNA-GPC5 are lower than controls employing
scratch and transwell assays. Using immunohistochemical
staining, the high GPC5 expression level in NSCLC is linked to
respiratory symptoms of lung cancer, regional lymph node
metastasis, poor differentiation, vascular invasion, and a higher
TNM stage. According to the Kaplan-Meier analysis, NSCLC
patients with high levels of GPC5 expression have a shorter
overall survival time relative to those with low levels of GPC5
expression (115). Conflicting data indicated that GPC5 is
downregulated and linked to a poor prognosis in lung ADC
tissues. Further, the loss of GPC5 expression is controlled by its
hypermethylation, according to de-methylation experiments.
GPC5 overexpression inhibits lung cancer cell proliferation,
migration, and invasion in vitro and slows tumor growth in
vivo, whereas GPC5 knockdown reverses these effects. Moreover,
via binding Wnt3a on the cell surface, GPC5 inhibits Wnt/b-
catenin signaling, thereby mediating tumor suppressor action
(113). Therefore, targeting particular GPCs in the tumor
microenvironment that acts as ligands for inducing oncogenic
pathways represents an effective cancer therapy strategy (100).
Although the functions of GPCs have been assigned in different
tumors, including lung (116), colon (117), and breast (118)
cancers, esophageal squamous cell (119) carcinoma, and
pancreatic ductal adenocarcinoma (120), their interaction with
EGFR in NSCLC remains yet to be explored.
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2.2.2 Syndecans
The syndecan (SDC) family is a transmembrane protein that
possesses HS chains on their extracellular domains (121) and
consists of four members (SDC1-SDC4). SDC-1 is frequently
misexpressed in cancer and associated with invasion, metastasis,
angiogenesis, and dedifferentiation (122–128). SDC-1 acts as a
coreceptor for a wide range of growth factors (129), including
bFGF and HB-EGF (130). A recent study reported that lung
cancer has noticeable SDC-1, yet its expression does not associate
with lung cancer patients’ survival rate (121). However, a study
by Shah et al. revealed that the expression of either NSCLC
subtype classifiers EGFR and SDC-1 determined by tissue
microarray is correlated with a 30% reduction in the risk of
death. Loss of expression of these histologic classifiers is linked to
aggressiveness in lung tumors and a poor prognosis (106).
Besides, Zhu and colleagues interestingly reported that NSCLC
patients with both a SDC4-ROS1 rearrangement and an
activating EGFR mutation might acquire resistance to EGFR-
TKIs. Although the coexistence of two driver gene mutations in
NSCLC is uncommon, triggering alterations of EGFR, ROS1,
ALK, and KRAS have recently been recorded (131, 132).

2.3 Non-proteoglycan Polysaccharides
2.3.1 Hyaluronan (HA)
HA is a plentiful constitute of the pericellular matrix that plays a
vital role in regulating tissue homeostasis and cancer progression
through its interaction with the cell surface receptor CD44 (133).
HA synthesis is controlled by growth factors (e.g., EGF) and
cytokines such as IL-1b (133). Three hyaluronan synthases
(HAS) isoforms, including HAS1, HAS2, and HAS3, are
known. CD44-HA interaction can modulate a variety of
intracellular signaling by forming coreceptor complexes with
many RTKs (e.g., EGFR) (134) that induce oncogenic pathways
involved in cancer cell invasion, migration, and metastasis in the
human MCF7 and TamR breast cancer cells (135). HA and
CD44 are overexpressed in NHLFs/LCAFs (normal human lung
fibroblasts vs. lung cancer-associated fibroblasts), followed by
NSCLC cells. In NSCLC cells, exogenous HA somehow rescues
the fault in cell proliferation and survival. Further, simultaneous
silencing of HAS2 and HAS3 or CD44 suppresses the EGFR/
AKT/ERK signaling pathway, cell proliferation, and survival
(136, 137). Of note, dual targeting CD44/EGFR by HA-based
nanoparticles along with systemic administration of plasmid
DNA expressing wild-type (wt-) p53 and microRNA-125b
(miR-125b) in a genetically engineered mouse model of lung
cancer led to an increase of wild-type p53 and miR-125b gene up
to 20-fold associated with elevated caspase-3 and APAF-1
expression-induced apoptosis; thus it may represent an
effective gene therapy for NSCLC (138).

Interestingly, treatment with EGF and IL-1b, either alone or
combined with TGF-b in ADC, can stimulate HA production in
A549 cell line, where treatment with TGF-b/IL-1b changed cell
morphology, induced EMT with altered vimentin and E-
cadherin gene expression. Also, HAS3 overexpression induces
HA synthesis, MMP9 expression, EMT phenotype, and MMP2
activities and increases invasion of epithelial ADC cell line H358
December 2021 | Volume 11 | Article 766659

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hassanein et al. ECM and EGFR Crosstalk in NSCLC
(133). Induction of HA in H358 cells and adding exogenous HA
in A549 cells significantly improved resistance to EGFR inhibitor
Iressa. These results propose that increased HA production can
promote EMT and Iressa resistance in NSCLC (133). Thus,
regulating HA expression in NSCLC can be a new therapeutic
strategy (133). Again, HA is implicated in EMT through EGF or
TGF-b1 signaling in lung cancer cell line A549, where TGF-b1
upregulates HAS1, HAS2, and HAS3 expressions and augments
CD44 expression interacts with EGFR, leading to the activation
of the downstream signaling AKT and ERK pathways (139). On
the contrary, pretreatment with HAS inhibitors such as 4-
methylumbelliferone (4-MU) can suppress TGF-b1’s impact
on the expression of CD44 and EGFR and inhibit the CD44-
EGFR interaction. Collectively, these data indicate that HA/
CD44 interaction mediated by TGF-b1 transactivates EGFR
signaling, resulting in EMT induction in NSCLC cells (139).

2.4 Fibrous ECM Proteins
2.4.1 Collagens
Collagens (COLs) are the major ECM proteins (up to 30% of the
total protein mass) in the human body. They are arranged in a
relaxedmeshwork and possess elasticity to extreme tensile strength
owing to their surrounding proteins like elastin and glycoproteins
(140). The individual structure of COLs can also create an intricate
network that enables them to interact with each other and the
surroundings (141). There are 28 known COL types and divided
into specific subgroups according to their supramolecular
assemblies, including a) fibrillar-forming COLs: the IM
significant components such as COL type I, II, III, V, XI, XXVI,
XXVII; b) the network-forming COLs: the main components of
basement membrane such as type IV, VIII, X, and XVIII COLs
(142). Of note, COLI, COLIII, and COLV are predominantly
fibroblasts-derived COLs, while COLIV is mainly expressed by
epithelial and endothelial cells (143); c) fibril-associated COLs with
interrupted triple helices (FACITs) (e.g., IX, XII, XIV, XVI, XIX,
XX, XXI, XXII, XXIV); and d) MACITs (membrane-anchored
collagens with interrupted triple helices) such as type XIII, XVII,
XXIII, andXXVCOLs (144–146).COLIV is upregulated inNSCLC
stroma, promoting the in vitro impairment of cell apoptosis and
multidrug resistance. For example, NSCLC cells expressing COLIV
are resistant to cis-platinum (DDP), which is mechanistically
attributed to the PI3K pathway (147).

Notably, many studies addressed the significant effect of CAFs
in tumorigenesis (148, 149). CAFs are the key players in COL
dysregulation and turnover, resulting in desmoplasia (tumor
fibrosis), where COLs deposit excessively in the tumor
surroundings, crosslink, and linearize, thus increasing tissue
stiffness (150). This influences the behavior of the nearby
tumor cells and controls cell differentiation, proliferation,
migration, gene expression, invasion, metastasis, and survival;
thereby, directly affecting the cancer hallmarks (151). Tumor
tissue with considerable fibroblast-derived COLs is correlated
with poor outcomes (152–154). A study by Li et al. reported that
the regulation of autocrine COLI expression for sustaining lung
cancer cell growth in 3D cultures with fibroblasts provides a new
insight for lung cancer targeted therapy (155). CAFs and other
molecules can regulate COLs’ expression in cancer cells, such as
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transcription factors, mutated genes, receptors, and signaling
pathways; these molecules can also affect tumor cell behavior by
integrins, RTKs (e.g., EGFR), and discoidin domain
receptors (156).

In healthy tissues, the biosynthesis of COLs is highly
controlled by a great counterbalance of many enzymes,
including MMPs and their inhibitors and lysyl oxidases (LOX)
(157, 158). In lung tumors, the stroma comprises a stiffer matrix
than normal lung tissues due to more collagen modifications
(159) mediated by lysyl hydroxylase-2 or procollagen-lysine, 2-
oxoglutarate 5-dioxygenase 2 (PLOD2) enzyme enhancing cell
invasion and metastasis (160). Fibrotic collagen is primarily
modified by PLOD2. PLOD2 was elevated in NSCLC
specimens and was linked to a poor prognosis in NSCLC
patients. PLOD2 directly enhances NSCLC metastasis by
promoting migration and indirectly by inducing COL
reorganization, evident by gain- and loss-of-function
experiments and an orthotopic implantation metastasis model.
In addition, PLOD2 regulation is achieved by PI3K/AKT-
FOXA1 axis. The transcription factor FOXA1 directly binds to
the PLOD2 promoter for the transcription of PLOD2. These
findings indicated that the NSCLC metastasis mechanism could
be regulated by EGFR-PI3K/AKT-FOXA1-PLOD2 pathway and
PLOD2 can be a therapeutic target for NSCLC treatment (161).
3 INTEGRINS -ECM-INTERACTING CELL
MEMBRANE RECEPTORS

In tumorigenesis, a complex relationship is established between
ECM proteins and key signaling pathway molecules (71). Cell–
ECM interactions are implicated in the intracellular signals that
control gene expression, cell cycle progression, survival,
movement, and physical support (162). Notably, these
processes are governed by cell surface receptors that bind to
ECM proteins called integrins. They are a,b heterodimeric
transmembrane proteins implicated in many physiological and
pathological processes such as adhesion to ECM, proliferation,
survival, differentiation, and migration (163). Some integrins
bind to the RGD motif on the ECM proteins, and the specificity
of integrin binding to various ECM proteins is determined,
partially through other amino acids neighboring the RGD
sequence (164). Integrin cytoplasmic tails do not possess a
kinase activity but activate specific intracellular non-receptor
tyrosine kinases, such as FAK; thus, they recruit the Src kinase
(165). Src phosphorylates several FAK-associated proteins,
including tensin, paxillin, and the adaptor p130Cas (Crk-
Associated Substrate). To some extent, FAK activation results
in the recruitment of other SH2-containing proteins, including
PLC-g, PI3K, and the adapter proteins Grb2 and Grb7, mediate
ERK activation (165). The FAK/Src complex modulates small
GTPase activity, leading to actin cytoskeleton remodeling
required for cell adhesion and migration (166).

Upon integrins-ECM binding, numerous signaling molecules
are activated, including cytoplasmic kinases, small GTPases,
adapter proteins, and growth factor-RTKs (167). The ECM-
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and EGFR-activated signaling pathways have a high degree of
functional interdependence. When EGFR interacts with ECM
proteins, autophosphorylation increases in various cell types,
including fibroblasts, smooth muscle, and kidney epithelial cells
(168, 169)., This type of overlapping signaling is thought to help
or improve a variety of ECM and RTK-controlled cell functions,
such as proliferation and survival (170). ECM interaction has
been discovered to be essential for many EGF-mediated
biological responses besides modulating EGFR signaling. EGF,
for example, controls integrin-mediated cell migration, an actin-
based mechanism that relies entirely on ECM component co-
presentation (171).

Numerous studies have suggested that integrin-RTK
cooperation exists and plays an important role in cancer
progression by controlling proliferation, invasion, and survival
(172). Various mechanisms could control the crosstalk between
integrins and RTKs, regardless of a or b subunit catalytic
activity. The integrins’ ability to induce EGFR activation led to
the regulation of Erk and Akt activation, which permitted
adhesion-dependent induction of p21, cyclin D1 and Rb
phosphorylation, and cdk4 activation in epithelial cells in the
absence of exogenous growth factors. Epithelial cell adhesion to
the ECM fails to efficiently induce p27 degradation, cdk2 activity,
or cyclin A and Myc synthesis, and as a result, cells do not
progress into the S phase. Treatment of ECM-adherent cells with
EGF (to induce EMT), or overexpression of EGFR or Myc,
resulted in restoring late-G1 cell cycle events and progression
into the S phase. These findings suggest that integrin receptor-
mediated partial activation of EGFR is significant in mediating
events triggered by epithelial cell attachment to ECM (173).
There are three major categories of integrin/RTK interactions
(174) (Figure 4): (1) Integrins can physically bind to RTKs; (2)
integrins clustering upon ECM binding can enhance signaling
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pathways triggered after ligand-dependent RTK activation, and
(3) integrins and RTKs regulate their surface expression in a
reciprocal manner (174). EGFR can interact with many integrins
in different cancers, such as a6b4 (175), b1 (170), and avb3
(176), probably by forming a multimeric complex that also
includes Src and the adaptor protein p130Cas (176). This type
of interaction is ligand-independent activation of the EGFR,
leading to signaling involved in cell survival and proliferation in
response to ECM (170) (Figure 4).

Emerging data indicate integrins’ importance as essential
EGFR signaling regulators in NSCLC (72, 177–179). For
example, b1 integrin silencing in human NSCLC A549 cells
showed a defective activation of the EGFR signaling cascade,
resulting in enhanced sensitivity to Gefitinib and cisplatin,
reduced migration, and invasive behavior, and decreased in vitro
proliferation and in vivo tumor growth. This silencing also
increases the amount of cell surface EGFR, implying that b1
integrin is required for efficient constitutive EGFR turnover at
the cell membrane. Despite having no effect on the EGF
internalization rate and recycling in silenced cells, EGFR
signaling is recovered only by the Rab-coupling protein (RCP)
expression, suggesting that b1 integrin maintains the endocytic
machinery required for EGFR signaling (177). Also, Integrin b4
(ITGB4) expression is overexpressed in SCC compared with
adenocarcinoma and associated with the presence of venous
invasion, low overall patient survival. Using cBioPortal, a
network map demonstrates the 50 most highly altered genes
neighboring ITGB4 in SCC, which included genes in the EGFR
and PI3K pathways and other known signaling partners as well as
laminins, collagens, and CD151 (72). Moreover, CD151 drives
cancer progression depending on integrin a3b1 through EGFR
signaling in NSCLC. In detail, a high CD151 mRNA expression
level is detected in NSCLC tissues and cell lines, and its high
FIGURE 4 | ECM proteins and integrins regulate EGFR signaling pathways in lung cancer. The crosstalk between EGFR and integrins includes many signaling
pathways: (A) ligand-independent pathway, where integrins can biochemically bind to EGFR leading to its activation. EGFR can interact with integrins via forming a
multimeric complex (Src, FAK, and the adaptor protein p130Cas), leading to cell survival and proliferation, (B) ligand-dependent pathway, where integrin clustering
enhances EGFR signaling cascades upon EGFR ligand binding, resulting in enhancing Akt, ERK, and Ras signaling pathways, and (C) integrin trafficking controls the
membrane expression of EGFR. Blue arrows for stimulation; dashed red arrows for cellular effect, and red “T” sign for inhibition.
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expression was substantially related to the poor prognosis of
NSCLC patients. Also, CD151 knockdown in vitro suppressed
tumor proliferation, migration, and invasion. Further,
overexpression of CD151 enhanced NSCLC growth in a mice
model. NSCLC cells overexpressing CD151 exhibit migratory and
invasive phenotype via interacting with integrins and regulating
the downstream signaling pathways of EGFR/ErbB2 (179).
Interestingly, the inhibition of EGFR in NSCLC cell lines
reduces tyrosine phosphorylation of neural precursor cell
expressed, developmentally down-regulated 9 (NEDD9), an
integrin signaling adaptor protein that consists of multiple
domains serving as substrate for various tyrosine kinases.
Overexpression of constitutively active EGFR, in the absence
of integrin stimulation, leads to tyrosine phosphorylation
of NEDD9, which plays a pivotal role in the in vitro cell
migration and invasion of NSCLC cells. Moreover, NEDD9
overexpression promoted lung metastasis of an NSCLC cell
line in NOD/Shi-scid, IL-2Rg(null) mice (NOG) mice (178).
Overall, these data show that integrins-dependent EGFR
interactions might represent a prognostic marker and potential
therapeutic targets in NSCLC.
4 KEY ECM REMODELING ENZYMES

Matrix degradation is a finely regulated process that occurs
simultaneously with the formation of new ECM molecules.
Tissue integrity is achieved through the actions of matrix-
degrading enzymes such as matrix metalloproteinases (MMPs)
and their endogenous inhibitors (TIMPs), adamalysin group
(ADAMs and ADAMTS), cathepsins, plasminogen activation
system components, and glycolytic enzymes such as heparanase
(HPSE) and hyaluronidases (HYALs) that cleave heparan sulfate
(HS)/heparin chains on hyaluronan (HA) and proteoglycans
(PGs) (180, 181). Elastase, dipeptidyl peptidase IV (DPPIV),
and tissue kallikrein are ECM serine proteases that play distinct
functions in matrix proteolysis and have been linked to cancer
progression (182–184). MMPs are the major catabolic matrix
endopeptidases linked to a number of normal processes such as
wound healing, immunological response, differentiation,
tissue homeostasis, and diseases such as osteoarthritis
neuroinflammation, atherosclerosis, and cancer (185). The
human genome contains 24 MMP members, which are
classified into secreted and membrane-bound MMPs. MMPs
are categorized as matrilysins, gelatinases, furin-activated
collagenases, stromelysins, and other MMPs based on substrate
specificity (186, 187). MMPs are mediators of the tumor
microenvironment alternations during cancer growth because
they enhance EMT, cancer cell signaling, migration, invasion,
autophagy, and angiogenesis, which aid tumor progression and
metastasis (188). We focus on the functional interplay between
MMPs and EGFR in NSCLC in the next sections.

4.1 Metalloproteinases (MMPs)
MMPs are a group of 24 proteinases, also known as matrix
MMPs, matrixins, and zinc-dependent endopeptidases (189).
Transcription of most matrixins is regulated by growth factors,
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hormones, cytokines, and cellular transformation. MMPs’
proteolytic activities are tightly controlled during their
activation from their precursors and inhibition by the
endogenous inhibitors TIMPs and a-macroglobulins (190).
Aberrant expression of MMPs is associated with many
diseases, including lung cancer (191). MMPs perform their
proteolytic activity autonomously in the alveolar space for any
changes in the cleaved protein properties (192). Cancer cells
secrete many MMPs that remodel and degrade the BM in lung
cancer tissue, creating a dynamic flow of pro- and antitumor
signals (190, 191). The regulation of MMPs expression occurs by
triggering inflammatory molecules and hormones and
intercellular and matrix interactions (190). MMPs are present
in low levels in normal adult tissues, yet the MMPs expression is
upregulated during wound healing, tissue repair, or remodeling
under pathogenic conditions (192).

When the ECM collagen becomes abundant, large amounts of
MMPs are secreted in tumor tissues, and BM remodeling occurs
(193, 194), leading to complex chaos of pro-and antitumor
signals originating from BM degradation products and
enhancing the invasive phenotype of malignant cells (195). In
both mouse and human NSCLC, MMP14 is significantly
upregulated in intratumoral myeloid compartments and tumor
epithelial cells. In an orthotopic (K-RasG12D/+p53-/-) mouse
model of lung cancer, overexpression of a soluble dominant-
negative MMP14 (DN-MMP14) or pharmacological inhibition
of MMP14 blocks the invasion of lung cancer cells in collagen I
matrix in vitro and reduces tumor incidence. MMP14 activity
also triggers the proteolytic processing and activation of
Heparin-Binding EGF-like growth factor (HB-EGF), which
stimulates the EGFR signaling pathway and increases tumor
proliferation and growth. These data pinpoint the potential for
developing therapeutic strategies that target MMP14 in NSCLC,
specifically targeting the MMP14-HB-EGF axis (191). Increased
expression of MMP-9 in vitro and in vivo has been linked to
tumor progression. Cox et al. linked the EGFR expression with
MMP-9 upregulation in tumor cells in vitro in NSCLC patients.
MMP-9 expression strongly correlated with EGFR expression
and EGFR membranous expression, but not with cytoplasmic
EGFR expression. MMP-9 and EGFR co-expression is associated
with a poorer prognosis in NSCLC patients. Also, MMP-9 and
EGFR are expressed in a large proportion of NSCLC tumors. The
presence of these markers together indicates a poor prognosis.
These findings suggest that the EGFR signaling pathway, via
specific up-regulation of MMP-9, can play a key role in NSCLC
invasion (196).
5 EFFECT OF ECM COMPONENTS’
EXPRESSION AND INTERACTIONS ON
SENSITIVITY TO TKI THERAPY

The biological features of the tumormicroenvironment are affected
by cancer cells, non-cancerous cells, and ECM (197). The
interactions between different cell types within the tumor
microenvironment play a key role in developing resistance to the
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anticancer drugs (198). The most abundant matrix protein in the
cancer stroma, COLI, promotes tumor progression by facilitating
cancer cell growth, invasion, and metastasis (199, 200). Also, COLI
supports anticancer drug resistance through the integrin signaling
pathway (201). Besides, COLI induces EGFR-TKI resistance in
EGFR-mutated cancer cells (202).Moreover, the results ofWang et
al. reported that COLI drives EGFR-TKI resistance through
integrin-b (23). Knockdown of integrin-b1 significantly
suppresses the resistance driven by both COLI and de-cellularized
ECM, indicating that COLI and integrin-b1 could mediate the
resistance-driving function of ECM and might be useful
interventional therapeutic strategies. Further, a collagen synthesis
inhibitor, CHP (cis-4-Hydroxy-L-proline), efficiently inhibiting
collagen production and synergizing with osimertinib, leads to
growth suppression of GFP-labeled H1975 cells co-cultured with
parental H1975 cells or fibroblasts (23). Interleukin-6 (IL-6) plays a
vital role in developing interstitial fibroblastic proliferation induced
by EGFR-TKI. In lung cancer, A549 cell lines treated with EGFR-
TKIA reduce cell viability via increment of IL-6mRNAandprotein
expression. IL-6 treatment increases a-actin and collagen
expression, fibrosis markers, in lung fibroblast cells using a co-
culture model. These findings indicate that IL-6 plays a role in
EGFR-TKI-induced interstitial fibroblastic proliferation.
Therefore, inhibiting IL-6 could be helpful to cancer patients
receiving EGFR-TKI treatment to reduce the risk of side effects
(203). Further, in EGFR mutated lung ADC patients, FG2A level
was related to EGFR-TKI response, and FGA2 represented a
predictor of targeted therapy for EGFR-mutated lung (79).
Furthermore, integrin b1 promotes Src-Akt pathway activation
and induces erlotinib resistance (201). COLI is dysregulated in the
bone, and other solid tumors influence tumor cell behavior
inducing EMT, including the lung (204) and breast (205). The
sensitivity of EGFR-TKI in EGFR-mutated cancer cells cultured
with COLI was investigated when COLI activated mTOR via Akt
and ERK1/2-independent pathway in NSCLC, leading to EGFR-
TKI resistance. Combining EGFR-TKI and mTOR inhibitors may
be a viable option for combating such resistance (206). ECM
components are internalized and used as nutrients by cells
through several mechanisms. For example, the degradation of
ECM proteins into peptides by MMPs and internalization of the
degraded peptide fragments by cells. Another mechanism involves
endocytosis of ECM macromolecules (207, 208). Rac1 inhibition
reduces COLI uptake in mutated lung cancer cells (PC-9) and
restores their sensitivity to EGFR-TKI. Rac1 is needed for
micropinocytosis and reduction of COLI uptake. Thus, EGFR-
TKI resistance can evolve in EGFR-mutated lung cancer cells via
COLI uptake mediated by micropinocytosis (202).

EMT is characterized by the downregulation of epithelial
markers, especially E-cadherin, and upregulation of
mesenchymal markers such as vimentin, N-cadherin, and
fibronectin (209). EMT is essential in the primary resistance of
erlotinib in the EGFR-TKI responsive EGFR-mutant lung cancer
cell line (210, 211). The expression of EGFR and EMT-related
proteins are noticeably modulated in the peripheral leading edge
of NSCLCs associated with poor prognosis (212). In NSCLC,
EMT is a key player in controlling sensitivity or resistance to
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EGFR inhibition. NSCLC lines expressing E-cadherin showed
higher sensitivity to EGFR inhibition in vitro and xenografted
models, whereas NSCLC lines expressing vimentin and/or
fibronectin showed resistance to the growth inhibitory effects
of EGFR kinase inhibition (210).

FBLN1 isoforms regulate EGFR signaling and function in
NSCLC. FBLN1 loss, using siRNA mediated knockdown of
FBLN1C and FBLN1D, in NSCLC Calu-1 cells significantly
increased EGF mediated EGFR activation, inhibited EGFR
activation, promoted EGFR-dependent cell migration that
inhibited upon Erlotinib treatment. Notably, FBLN1C and
FBLN1D knockdown cells show a substantial increase in EGF-
mediated EGFR activation, which promotes cell adhesion reduced
byErlotinib treatment.Thesedatapoint out thatFBLN1C/1D, as an
ECM protein, can bind and regulate EGFR function and activation
in NSCLC Calu-1 cells, highlighting tumor ECM role in affecting
EGFR dependent lung cancers (6). In H1975/EGFR (L858R/
T790M) cells, stable silencing of MUC1-C downregulates AKT
signaling and inhibits colony formation, growth, and
tumorigenicity. Similar results were found during MUC1-C
silencing in gefitinib-resistant PC9GR cells that express EGFR
(delE746_A750/T790M). Further, inhibition of MUC1-C
suppresses the activation of EGFR (T790M), AKT, ERK, and
MEK activation, colony formation, and tumorigenicity.
Treatment of PC9GR and H1975 cells with GO-203 inhibits
MUC1-C homodimerization, results in EGFR, AKT, and MEK/
ERK signaling inhibition, as well as loss of survival. The
combination of GO-203 and the irreversible EGFR inhibitor
afatinib acts in synergism to inhibit the growth of NSCLC cells
harboring activating EGFR (T790M) or EGFR (delE746-A750)
mutants (213).

The activation of many signaling pathways imperils the clinical
efficacy of EGFR-TKIs in EGFR-mutated NSCLC (214–218). The
interactions between tumor cells and the extracellular environment
are regulated by an integrin-linked kinase (ILK) to promote cell
proliferation, migration, and EMT. Src homology 2 domain-
containing phosphatase 2 (SHP2) is essential for MAPK pathway
and RTK signaling activation. In baseline tumor specimens, highly
expressed ILKmRNA is associated with poor prognostic factors for
patient-free survival in the univariate and multivariate Cox
regression models (214). Integrin b3 was significantly and
consistently overexpressed in acquired osimertinib- or gefitinib-
resistant lung cancer in vitro and in vivo and involved in the
progression of lung ADC. Antagonizing integrin b3 improved the
TKI sensitivity in vitro and in vivo, inhibiting anoikis resistance,
proliferation, and EMT phenotype in lung cancer cells. Integrin b3
overexpression was also linked to the enhanced cancer stemness
implicated in resistance development. Mechanistically, integrin b3
is induced by increased levels of TGFb1 in acquired TKI-resistant
lung cancer, which indicates the TGFb1/integrin b3 axis as a
potential target for combination therapy in EGFR-mutant lung
cancer to overcome acquired resistance to EGFR TKIs (215).
Furthermore, azurin, an anticancer therapeutic protein, controls
integrin b1 levels, and its appropriate membrane localization
suppressed the intracellular downstream signaling cascades of
integrins and the invasiveness of NSCLC A549 cells. Further,
December 2021 | Volume 11 | Article 766659
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azurin combined with erlotinib and gefitinib enhances the
sensitivity of NSCLC A549 cells to azurin. The stiffness of A549
lung cancer cells decreased with exposure to azurin and gefitinib
using Young’s module (E), suggesting that the changes in the
membrane properties are the principal of the broad anticancer
activity of azurin, and it may be relevant as an adjuvant to enhance
the effects of other clinical anticancer agents (216). The expression
levels of EGFR and integrin a2 and b1 subunits were significantly
elevated in Ionizing radiation (IR) cells. Importantly, functional
blockadeof integrina2b1or treatmentwithEGFR-TKI,PD168393,
resulted in a roundmorphology of cells and revoked their invasion
in the collagenmatrix. Further, higher activation of Erk1/2 andAkt
signaling molecules in IR cells. Inhibition of Akt activation by
treating with PI3K inhibitor LY294002 decreased IR cell invasion,
yet MEK inhibitor U0126 did not inhibit Erk1/2 activation, which
indicates integrin a2b1 and EGFR mutually promote higher
invasiveness mediated by the PI3K/Akt signaling pathway in IR-
survived lung cancer cells and might provide alternative targets
along with radiotherapy (217). Recently, EGFR inhibitors’
resistance was delayed by co-delivering EGFR and integrin avb3
inhibitors with nanoparticles in NSCLC. The enhanced expression
of integrinavb3 is observed in tumor tissues of patients resistant to
EGFR inhibitors. Further, integrin avb3-positive NSCLC cells
unveiled significant EGFR inhibitor resistance, leading to
activating Galectin-3/KRAS/RalB/TBK1/NF-kB signaling
pathway. Interestingly, co-encapsulating erlotinib and cilengitide
by MPEG-PLA (Erlo+Cilen/PP) nanoparticles enhanced the drug
delivery system, leading to reduced systemic toxicity and superior
anti-cancer effects (218).
6 CONCLUSION AND FUTURE
PERSPECTIVES

ECM components, along with integrin and MMPs, regulate
many cellular processes relevant to lung cancer progression,
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including cell proliferation, adhesion, and migration through
their direct or indirect interactions with EGFR. ECM proteins
associated with poor NSCLC prognosis via crosstalk with EGFR,
including COLs, MMP-9, MUC1, MUC5AC, Ln 5, and GPC5.
Many ECM proteins can be used as therapeutic targets, such as
COLs, PLOD2, FBLN3, MUC5AC, FN, FAG2, FG, GPC3, and
HA by modulating their interaction with EGFR. ECM proteins
can be tumor-suppressing or -promoting depending on their
signaling context with EGFR and many signaling molecules.
Despite the emerging data revealing the role of ECM
components or/and EGFR in NSCLC, many gaps still exist in
EGFR-ECM interactions. The correlation between EGFR and
many ECM proteins, including COLI, COLIV, FBLN1, FBLN3,
FBLN5 MUC1, MUC5, MUC6, and Ln5 was revealed, yet EGFR
interactions with other types of COLs, MUC and Ln, FG, TN,
Postn, VTN, NID, TSP, and versican in NSCLC still need further
investigations. A future better understanding of the interactions
between ECM components and EGFR-TKI might provide new
insights for developing new therapeutic strategies for
NSCLC patients.
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ADC Adenocarcinoma
AKT Protein Kinase B
ALK Anaplastic Lymphoma Kinase
AMPK 5’ Adenosine Monophosphate-activated Protein Kinase
APAF-1 Apoptotic Peptidase Activating Factor 1
BM Basement Membrane
CAFs Cancer-Associated Fibroblasts
CCNB1 Cyclin B1
CD151 Cluster of Differentiation 151
CDC cell division cycle protein
CDKN3 Cyclin-dependent kinase inhibitor 3
COLs Collagens
CSCs Cancer Stem Cells
Cdk4 cyclin-dependent kinase 4
ECM Extra Cellular Matrix
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
EMT Epithelial-Mesenchymal Transition
ERK Extracellular Signal-regulated Kinase
FACITs Fibril-Associated COLs with Interrupted Triple helices
FAK Focal Adhesion Kinase
FBG Fibrinogen-like Globe
FBLN Fibulin
FGA2 Fibrinogen Alpha chain isoform 2
FGF Fibroblast Growth Factor
FN Fibronectin
FOXA1 Fork-head box protein A1
GFRs Growth Factor Receptors
GPC Glypican
Grb2 Growth factor Receptor-Bound protein 2
HA Hyaluronan
HAS Hyaluronan Synthases
HB-EGF Heparin-Binding EGF-like growth factor
Hnf4a Hepatocyte Nuclear Factor 4a
HSPG Heparan Sulfate Proteoglycan
IGF1R Insulin-like Growth Factor 1 Receptor
IL-1b Interleukin-1b
IL-6 Interleukin 6
IM Interstitial Matrix
IMA Invasive Mucinous Adenocarcinoma
ITGB4 Integrin Subunit Beta 4
JAK Janus kinaes
KRAS Ki-ras2 Kirsten Rat Sarcoma viral oncogene homolog
LPA Lepidic Predominant Adenocarcinoma
LCC Large Cell Carcinoma
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LKB1 Liver Kinase B1
lncRNA Long noncoding RNA
Ln Laminins
LOX Lysyl Oxidases
MACITs Membrane-Anchored Collagens with Interrupted Triple helices
MAD2L1 Mitotic Arrest Deficient 2-Like Protein 1
MEK MAPK Kinase
MMPs Matrix Metalloproteinases
mTOR Mammalian Target of Rapamycin
MUCs Mucins
NF-kB Nuclear Factor Kappa-light-chain-enhancer of activated B cells
NID Nidogen
NSCLC Non-small Cell Lung Cancer
OSF-2 Osteoblast-Specific Factor-2
PARP1 Poly(ADP-Ribose) Polymerase 1
PDGF Platelet-Derived Growth Factor
PI3K Phosphatidylinositol-3-Kinase
PKB Protein kinase B
PLC-g Phospholipase C-gamma
PLOD2 Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2
Postn Periostin
PRC1 Protein Regulator of cytokinesis 1
PTEN Phosphatase and Tensin homolog
PTPRz1 Receptor-type Tyrosine-Protein phosphatase Zeta
p130Cas p130 Crk-Associated Substrate
p70S6K 70 kDa ribosomal protein S6 kinase
Rac1 Ras-related C3 botulinum toxin substrate 1
Rap1 Ras-related protein 1
ROBO2 Roundabout homolog 2
ROS1 ROS proto-oncogene 1
RRM2 Ribonucleoside-Diphosphate Reductase Subunit M2
RTKs Receptor Tyrosine Kinases
SCLC Small Cell Lung Cancer
SDC Syndecan
SLRP Small Leucine-Rich Proteoglycans
Sox2 SRY-like HMG box
SOS Son of Sevenless
Src Sarcoma viral oncogene
STAT Signal Transducer and Activator of Transcription
SqCC Squamous Cell Carcinoma
TCF4 Transcription factor 4
TGF-b Transforming Growth Factor-b
TKIs Tyrosine Kinase Inhibitors
TN-C Tenascin-C
TLRs Toll-like receptors
TSP Thrombospondin
VTN Vitronectin
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