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O P T I C S

Anyonic-parity-time symmetry in  
complex-coupled lasers
Geva Arwas*†, Sagie Gadasi†, Igor Gershenzon, Asher Friesem, Nir Davidson, Oren Raz

Non-Hermitian Hamiltonians, and particularly parity-time (PT) and anti-PT symmetric Hamiltonians, play an 
important role in many branches of physics, from quantum mechanics to optical systems and acoustics. Both the 
PT and anti-PT symmetries are specific instances of a broader class known as anyonic-PT symmetry, where the 
Hamiltonian and the PT operator satisfy a generalized commutation relation. Here, we study theoretically these 
novel symmetries and demonstrate them experimentally in coupled lasers systems. We resort to complex coupling 
of mixed dispersive and dissipative nature, which allows unprecedented control on the location in parameter space 
where the symmetry and symmetry breaking occur. Moreover, tuning the coupling in the same physical system 
allows us to realize the special cases of PT and anti-PT symmetries. In a more general perspective, we present and 
experimentally validate a new relation between laser synchronization and the symmetry of the underlying 
non-Hermitian Hamiltonian.

INTRODUCTION
Hamiltonian quantum theory provides an excellent description of 
isolated and closed systems. The Hermiticity of the Hamiltonian 
operator assures that the probability flows only between the various 
states of the system. To model open systems, which can exchange 
probability and heat with their environment, non-Hermitian effec-
tive Hamiltonians are commonly used (1, 2). These non-Hermitian 
Hamiltonians can display complex spectra and nonorthogonal ei-
genmodes, leading to several unusual properties. A notable exam-
ple is the spectral degeneracy known as exceptional point (EP) 
(3, 4), where two or more eigenmodes coalesce. Additional im-
portant examples are several novel symmetries that can appear 
only in non-Hermitian Hamiltonians. In particular, parity-time (PT) 
symmetric systems (5) have gained much interest because of their 
unique and counterintuitive properties. These Hamiltonians can 
have a real valued spectrum even when non-Hermitian. This prop-
erty, which is often referred to as “pseudo-Hermiticity” (6), is not 
limited to PT symmetric systems and plays an important role in 
complex extensions of quantum theory (7, 8).

As many concepts that originated from non-Hermitian physics, 
the PT symmetry was first developed in the context of quantum me-
chanics but turned out to be a powerful tool in several other branches 
of physics, including electronic (9), acoustic (10, 11), and particularly 
optics and photonics (12–15). In optical systems, the parity operator 
spatially reflects the system, and the “time reversal” operation inter-
changes the gain with the loss. The PT symmetry then emerges 
from a gain-loss balance (16–19), which can keep the Hamiltonian 
invariant under the combined operation. This offers a novel control 
over the light’s spatial profile and the device’s transmission proper-
ties (20–22). A PT symmetric system can be in two different phases, 
with a sharp symmetry breaking (17, 23) transition between the two. 
In the vicinity of the symmetry breaking, the system shows extreme 
sensitivity to small perturbations, a highly promising feature for 
sensing applications (24–26). PT symmetric lasers have been extensively 

studied, where the symmetry breaking was used to generate a robust 
single-mode operation (27, 28), reversing the pump dependence 
(29) or loss-induced lasing (30). A closely related concept that was 
recently demonstrated in (31–33) is anti-PT symmetry. Optical 
anti-PT systems offer additional methods to control light that can 
be used, for example, to generate a refractionless propagation.

Here, we generalize the PT and anti-PT symmetries into an 
anyonic-PT. The general anyonic-PT and the two special cases of 
PT and anti-PT symmetries are all experimentally realized in a single 
physical system of two coupled lasers in a degenerate cavity. The 
specific type of anyonic-PT symmetry is tuned by controlling the 
phase of the complex coupling between the lasers (34). We both ex-
perimentally and theoretically show how the symmetry is manifested, 
and broken, along a line in the lasers’ relative loss and frequency 
parameter space. Furthermore, by taking into account the nonlinear-
ity of the laser system, we relate our results to the physics of syn-
chronization and show how the various non-Hermitian symmetries 
are manifested.

Anyonic-PT symmetric Hamiltonians satisfy

	​ PTℋ = ​e​​ −2i​ ℋPT​	 (1)

where P and T are the parity and time reversal operators, and  is a 
real constant. The specific cases  = 0 and  =  correspond to the 
standard PT symmetry, where the Hamiltonian satisfy [PT, H] = 0. 
The cases  = ± /2 correspond to the anti-PT symmetry, where the 
Hamiltonian anticommutes with the PT operation, {PT, H} = 0. The 
(anti-)PT commutation relations resemble the famous (fermionic) 
bosonic commutation relations. In this spirit, the general case was 
recently named anyonic-PT symmetry (35, 36). It should be clear 
that this terminology does not suggest the existence of anyonic qua-
siparticles in the system but rather a formal analogy with the com-
mutation relation Eq. 1.

The anyonic-PT symmetry is a novel way to manipulate light. For 
example, we demonstrate how it can be used to control the phases 
and the intensities of two coupled lasers, which can have arbitrary 
losses or frequencies. Furthermore, our methods enable to manipu-
late the location of the EPs in parameter space. In this way, the sys-
tem can be tuned to the vicinity of an EP, without having to modify 
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the frequencies or the losses, as required in the case of PT symmet-
ric systems.

Non-Hermitian physics also suggests a new perspective on syn-
chronization. A common wisdom (37) states that a stable unique 
synchronized state for two-phase oscillators with different frequen-
cies can be obtained only through a dissipative coupling mechanism 
(38, 39) and that their frequency detuning must not exceed the 
strength of this coupling. Contrary to the expectation, we show how, 
by controlling the lasers’ loss, synchronization is possible for larger 
detuning and even when the coupling is purely dispersive. The allowed 
frequency range follows a universal relation that we validate experi-
mentally. We show that, for all coupling types, the desynchroniza-
tion generally results from a pseudo-Hermiticity symmetry.

RESULTS
Although our analysis can be straightforwardly generalized to many 
other systems, here, we focus on the specific experimental system 
used in what follows. It is composed of two coupled lasers with 
complex electric fields E1 and E2, relative loss  = (1 − 2)/2 and 
frequency detuning  = (1 − 2)/2 (see Fig. 1). In each cavity 
round trip, part of the light from each laser is coupled, in a symmetric 
manner, into the other laser (see Fig. 2 and Materials and Methods, 
“Experimental setup” section). The evolution of the coupled laser 
fields is given by the laser rate equations (see Materials and 
Methods, “Laser rate equations” section) (40), which we write in a 
vectorial form

	​ i ​ dE ─ dt ​  =  [iG(E, t ) + ​​ 0​​ − i ​​ 0​​ + ℋ ] E​	 (2)

where E = [E1, E2]T, G(E, t) is a diagonal matrix that represents the 
nonlinear gain, and 0 = (1 + 2)/2 and 0 = (1 + 2)/2 are scalar con-
stants representing the lasers’ average loss and frequency, respectively. 
H is an effective traceless Hamiltonian matrix, parametrized by

	​​ ℋ  = ​ (​​​  z​   ​e​​ i​​ 
 ​e​​ i​

​ 
− z

  ​​)​​​​	 (3)

where z =  − i. The frequency and the loss of each laser (rela-
tive to their average values) are the real and imaginary parts of the 
Hamiltonian’s diagonal, while the off-diagonal terms describe the 
complex coupling between the lasers, obtained by calculating a spa-
tial overlap between the two laser fields (see Materials and Methods). 
Because the coupling in our system is symmetric, the two coeffi-
cients are identical. The magnitude of the coupling is given by  
and its phase by . This type of coupling, unless purely real, breaks 
Hermiticity and generically leads to a nonconservative dynamic, 
even in the absence of gain or loss in the system. We therefore refer 
to real coupling ( = 0, ) as dispersive and to imaginary coupling 
( = ± /2) as dissipative. For complex coupling, the ratio between 
the dispersive and dissipative parts is set by .

For simplicity, we begin the analysis with an approximated linear 
description of the dynamics, where we replace G(E, t) by a constant 
value G and therefore neglect the spatial and temporal dependence 
of the gain medium. Under this approximation, the steady-state 
(dE/dt = 0) solutions of Eq. 2 are given by the eigenmodes of H. We 
address the full nonlinear dynamics in a later section.

The Hamiltonian in Eq. 3 is anyonic-PT symmetric, i.e., it satis-
fies Eq. 1, provided that (see Materials and Methods)

	​ tan   = ​   ─ 


 ​​	 (4)

For a fixed , this corresponds to a tilted straight line in the (, 
) parameter space, as schematically shown in Fig. 1A. We refer 
to this line as the anyonic-PT symmetry line. To show how the sym-
metry is manifested in the spectrum of the system, the eigenvalues 
and (non-normalized) eigenmodes of H are written as

	​​ ​ ±​​  =  ± i ​√ 
___________

 − ​​​ 2​ ​e​​ 2i​ − ​z​​ 2​ ​, ​V​ ±​​  = ​​ [​​ ​ z + ​​ ±​​ ─ 
 ​e​​ i​

 ​ , 1​]​​​​ 
T
​​	 (5)

The real and imaginary parts of ± correspond (up to a constant) to 
the frequency and the loss of the eigenmodes. + and V+ represent 
the less lossy eigenmode. In Fig. 1C, we plot theoretical regime dia-
grams for the relative phase  = 1 − 2 and intensity ​​I​ r​​  =  (​A​1​ 

2​ − ​A​2​ 2​ ) /  
(​A​1​ 2​ + ​A​2​ 2​)​ of the two laser fields Ei = Aieii, when the system is in the 
V+ mode. In each image,  is fixed, and a (, ) regime diagram 
(both in units of the coupling magnitude ) is plotted. The different 
values of  correspond to a dispersive, complex, or dissipative coupling.

First, we consider the symmetry line that is visible for all values 
of  (see Fig. 1A). In the dispersive case ( = ; Fig. 1C, left) the well-
known PT symmetry line (13) is located at  = 0. Along this line, 
in the so-called “unbroken” or “exact” regime ∣∣ < , the two 
lasers maintain equal intensity, while only their relative phase is changed. 
In the “broken” regime ∣∣ > , one laser becomes stronger, while 
their relative phase is fixed at ±/2. Here, the Hamiltonian and the 
PT operator do not share the same eigenmodes, although the oper-
ators commute. At the symmetry breaking points, ∣∣ = ± , the 
eigenvalues ±, as well as the eigenmodes V±, coalesce. This type of 
non-Hermitian degeneracy is known as the EP.

In the dissipative case ( = − /2; Fig. 1C, right), the anti-PT 
symmetry line is located at  = 0, where ∣ ∣ <  and ∣∣ >  
correspond to the unbroken and broken phases. Here, the EPs are 
located at  = ± .

The new anyonic-PT symmetry is presented in the middle panel of 
Fig. 1C. In this case, the coupling is complex-valued with  = −0.88, 
and the anyonic-PT symmetry line is -rotated. As in the PT 
symmetric case, the two lasers have equal amplitudes along the 
anyonic-PT symmetry line in the unbroken phase, and the symmetry 
breaking occurs at the EPs, located at (, ) = ± (cos , sin ).

Beyond the symmetry lines, all phase diagrams reveal a rich struc-
ture. In particular, they show a discontinuity jump in the phase and/
or intensity of the lasers across the dashed lines, which we address 
later on. Although the anyonic-PT symmetry line is tilted by an angle  
from the PT symmetric case, the full regime diagram is not rotated 
in a trivial way, manifesting the different physical roles of  and . 
When the coupling is complex, there is no symmetry associated with 
reflections around the  = 0 axis. Notably,  > 0 does not always 
result in Ir > 0, i.e., the more lossy laser might have a stronger intensity.

The experimental measurements are performed for two coupled 
lasers in a degenerate cavity. To control , we adjust the distance 
between the center of the two laser spots (see Fig. 1B and Materials 
and Methods). Note that, by doing so, we also change , as the mag-
nitude and phase of the coupling are not independent. Once  is 
fixed, we use an intracavity digital mirror to apply a phase and am-
plitude mask, which allows us to control the loss and the frequency 
of each laser individually and to scan  and  values. Last, we 
measure the intensity of the two lasers and their relative phase by 
interfering the two beams (see Materials and Methods).
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In Fig.  1D, we show the experimental results of the relative 
phase and intensity of the two coupled lasers. The symmetry line 
can be easily identified in each case by its unbroken phase of equal 
intensities, as well as the sharp symmetry breaking—a signature 
of an EP. We find a remarkable agreement with the theoretical 

predictions of the V+ mode in Fig. 1C. As opposed to a coherently 
driven system, where different eigenmodes can be resonantly excit-
ed, for our coupled lasers, the lasing state is the winner of a mode 
competition (41), well approximated by the lower-loss eigenmode 
(42, 43).

Fig. 1. Non-Hermitian symmetries and complex coupling. (A) Schematic diagram of the anyonic-PT symmetry line. The coupling type—from dispersive to dissipative—
given by  rotates the symmetry line in the (, ) plane. The dots represent the location of the EPs, on a circle of radius , where the symmetry breaks in each case. 
(B) The experimentally controllable parameters. The background shows a single shot of the two coupled lasers. The interference fringes are used to extract the 
relative phase in each measurement. (C) Theoretical plots of the relative intensity Ir (top row) and phase difference of the lasers  (bottom row), as given by the V+ eigen-
vector of the effective Hamiltonian. In each panel, the coupling is fixed and a (, ) regime diagram is plotted. The different columns are for  = , − 0.88, and − /2, 
corresponding to purely dispersive, complex, and purely dissipative couplings, respectively. The dots mark the location of the EP. The dashed lines represent the condi-
tion for pseudo-Hermiticity of the Hamiltonian. (D) Experimental measurements of the relative intensity 2Ir (top row) and phase difference of the lasers  (bottom row). 
The different columns correspond to  ≈ 10.9,6.7, and 2.2 MHz, respectively, with approximately the same  values of (C). The phase difference values are shaded in accor-
dance to their measured phase coherence C = ∣ < ei > ∣, where black regions correspond to poor coherence and lack of synchronization. Gray areas are experimentally 
inaccessible.

Fig. 2. Degenerate cavity laser arrangement. It is composed of two lenses (L1 and L2) that form a 4f telescope configuration, reflective spatial light modulator (SLM) for 
forming two lasers, an output coupler, and an Nd–yttrium-aluminum-garnet gain medium that is pumped by a xenon flash lamp. Coupling between the two lasers is 
achieved by displacing the output coupler a distance z. The SLM is used to apply frequency detuning and relative loss between the lasers.
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However, the laser system is inherently nonlinear. The diagrams 
in Fig. 1D contain regions of low coherence, where the black color 
indicates that the relative phase between the lasers is not well de-
fined. In these regions, the lasers do not synchronize because of the 
coexistence of degenerate modes, as we confirm by nonlinear simu-
lations (see the Supplementary Materials). The lack of phase coher-
ence cannot be captured by a linear analysis but, as we show below, 
results from a pseudo-Hermiticity symmetry of ℋ (along the dashed 
lines in Fig. 1C). We note that, at the vicinity of the EPs, linewidth 
broadening (44, 45) can also affect the phase coherence of the la-
sers (46).

We now explore the behavior along the anyonic-PT symmetry 
line in more detail. Figure 3A shows the amplitude ratio along the 
line for various values of , as a function of the frequency detuning. 
The unbroken phase is bounded by  = ± sin , which also marks 
the location of the two EPs, with a sharp symmetry breaking. A clear 
plateau of equal amplitudes in the unbroken phase is shown, in per-
fect agreement with the theory. In fact, as long as the anyonic-PT 
symmetry is not broken, the linear modes are also exact solutions 
of the full nonlinear laser rate equations, as explained below. The 
different place of symmetry breaking for each  demonstrates our 
ability to control the location of the EPs in the (, ) parameter 
space. Operating at the vicinity of the EPs enhances the sensitivity 
of the system to perturbations, which may be advantageous for 
sensing applications (24–26).

Along the symmetry line, from Eq. 5, it follows that

	​   =  − sin sin ​	 (6)

such that  varies in the unbroken phase, between the two EPs, from 
/2 to −/2 and then remains constant in the broken phase, beyond 
the EPs. In Fig. 3B, we plot the measured phases as a function of , 
scaled by a factor of sin . The measured , plotted here for differ-
ent , shows a similar trend upon this scaling, in agreement with 
Eq. 6. The large error bars at the vicinity of the symmetry breaking 
indicates the marked enhancement of the noise at the EPs.

We now turn to address the general structure of the regime dia-
grams. The low coherence in the relative phase shown in Fig. 1D 
indicates that the lasers fail to synchronize. We next show that this 
is a manifestation of pseudo-Hermiticity. This notion refers to 
operators that are non-Hermitian but, nevertheless, have a pure real 
spectrum (6). Here, the condition for H to be pseudo-Hermitian, i.e., 
Im[−] = Im [+] = 0, is shown by dashed lines in Fig. 1C, given by

	​   = ​  ​​​ 2​ sin 2 ─ 2 ​​	  (7)

with 2 cos 2 − 2 + 2 > 0. For the purely dispersive and pure-
ly dissipative cases, this becomes trivial straight lines, overlapping 
with the unbroken PT and the broken anti-PT phases, where the 
eigenvalues are real. The complex coupling is different in this re-
gard: Here, Eq. 7 does not overlap with the anyonic-PT symmetry 
line, where the spectrum is always complex.

For all coupling types, we see a sharp discontinuity jump in the 
phase and/or intensity in the theoretical diagrams of Fig. 1C across 
the pseudo-Hermiticity lines. Mathematically, the discontinuity can 
be attributed to a branch cut of the complex ± and V± functions. In 
the experimental results in Fig. 1D, the nonlinearity and the noise in 
the system broaden this discontinuity and generate low-coherence 

regions around the pseudo-Hermiticity lines. Pseudo-Hermiticity 
implies that all modes have the same loss resulting in poor phase 
coherence due to the coexistence of different lasing modes. For 
purely dispersive coupling Fig. 1D (left), this results in a unique 
“+” shape. Here, in addition to the pseudo-Hermiticity in the hori-
zontal unbroken-PT symmetry line, along the vertical  = 0 line, 
the Hamiltonian is truly Hermitian, trivially having real eigen-
values. This + shape is extremely fragile—a slight change of  
from  changes the regime diagram markedly (see the Supplemen-
tary Materials).

So far, we showed how the breakdown of synchronization is 
linked to the symmetry of the underlying effective linear Hamiltonian. 
We now extend the analysis to include the nonlinear effects in the 
system. With these, we can quantify the conditions for synchronization 

Fig. 3. The anyonic-PT symmetry line. (A) Experimental measurements of the 
amplitude ratio of the lasers A1/A2 along the anyonic-PT symmetry line, as a function 
of the detuning . Each panel corresponds to a different value of , as indicated 
in the figure. The anyonic-PT unbroken regime is identified by the equal-amplitude 
plateau, while in the anyonic-PT broken regime (shaded), one laser has a larger 
amplitude. The EPs, located at  = ± sin , mark the place of symmetry breaking 
for each . (B) Experimental measurements of the relative phase of the two lasers 
along the symmetry line. Here, the detuning is given in units of sin . Upon this 
scaling, the location of the EPs and the onset of the symmetry breaking are the 
same for all . The different colors correspond to the same  values of (A).
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and understand how the nonlinearity affects the non-Hermitian 
symmetries of the Hamiltonian.

The nonlinearity in the coupled laser system results from the 
term G(E, t) in Eq. 2, which describes the dynamics of the gain me-
dium. In a steady state, if one exists, then the gain of each laser takes 
a constant value of Gi = P/(1 + ∣Ei∣2), where P is the pump strength 
and ∣Ei∣2 is the laser intensity, normalized to its saturation value 
(see Materials and Methods). In the anyonic-PT unbroken phase, 
both lasers have the same amplitude, yielding G1 = G2. Hence, the 
solutions of Eq. 2 are exact eigenmodes of H (47, 48), and the 
anyonic-PT unbroken phase is not affected by the nonlinearity. 
The pseudo-Hermiticity symmetry line, however, is not robust in this 
sense and is expected to vary with different strengths of nonlinearity 
in the system.

In the broken symmetry phase, or away from the symmetry line, 
the lasers do not necessary synchronize or even lase at all. The con-
dition for a synchronized steady state is that the system converges to 
a stable fixed point of Eq. 2, namely, that the two laser fields have 
fixed intensities and oscillate in synchrony, with a “locked” relative 
phase. The dynamic of the phase difference between the lasers is 
given by (see Materials and Methods)

	​​​  d ─ dt ​  =  − 2 + ​[​​ ​ ​A​ 1​​ ─ ​A​ 2​​ ​ cos ( +  ) − ​ ​A​ 2​​ ─ ​A​ 1​​ ​ cos ( −  ) ​]​​​​	 (8)

Note that this relation only depends on the amplitude ratio. The 
loss  and the gain G(E, t) do not appear here. Therefore, it also 
applies to many different coupled oscillatory systems and other types 
of nonlinearities. In Fig. 4, we show the (A1/A2, ) regime dia-
gram of the measured synchronization for the same values of  as 
in Fig. 1.

Let us first discuss synchronization with equal amplitudes A1 = 
A2 (red line in Fig. 4). Here, the condition d/dt = 0 in Eq. 8 reduces 
to Eq. 6 and coincides with the phase along the anyonic-PT symme-
try line. Hence, equal amplitude synchronization is possible only if 
∣∣ is smaller than sin , the dissipative part of the coupling. 
Therefore, the anyonic-PT symmetry must be unbroken. For purely 
dissipative coupling, this reduces to the well-known condition for 
synchronization ∣ ∣ <  (37), and the border coincides with the 
anti-PT symmetric EPs (38). Conversely, when the dissipative part 
vanishes, as in the PT symmetric case, uniform amplitude synchro-
nization is impossible.

In the case of unequal amplitudes, Eq. 8 implies that syn-
chronization is possible, in principle, for every  and . The 
synchronization condition in the region is (see Materials and 
Methods)

	​ ∣∣≤ ​   ─ 2 ​ ​​[​​ ​​(​​ ​ ​A​ 1​​ ─ ​A​ 2​​ ​​)​​​​ 
2
​ + ​​(​​ ​ ​A​ 2​​ ─ ​A​ 1​​ ​​)​​​​ 

2
​ − 2cos 2​]​​​​ 

1/2

​​	 (9)

indicated by the black lines in Fig. 4. For all values of , we see a 
good agreement between the regions of high coherence and the 
synchronization criteria of Eq. 9. In particular, larger frequency 
detunings require larger amplitude ratio for the lasers to syn-
chronize. For purely dispersive coupling, we get a unique linear 
behavior at the origin. Paradoxically, here, it is more difficult to 
synchronize the lasers when they have the same frequency. This 
is because for dispersive coupling with  = 0, the PT symmetry, 
until broken, forces equal amplitudes, preventing the lasers from 
synchronizing.

DISCUSSION
To conclude, we demonstrated and investigated anyonic-PT 
symmetries using a degenerate cavity laser. We provided detailed 
regime diagrams for the case of two coupled lasers, showing how 
the novel anyonic-PT symmetry, as well as the special cases of PT 
and anti-PT symmetries, is manifested. At the heart of our experi-
ments is the ability to control the nature of the coupling—from 
purely dispersive to purely dissipative. The mixed case, where the 
coupling is complex, presents a rich structure that can be advanta-
geous for future applications. The presence of a robust symmetry 
line in parameter space, which depends on both the frequency and 
the relative loss between the lasers, can be used for calibration, for 
sensing applications, or to detect a frequency loss–correlated noise. 
Furthermore, by controlling the coupling, one can control the loca-
tion of the EPs in parameter space.

An interesting direction for future research is the possibility to 
dynamically alter the coupling type. For instance, by dynamically 
changing the coupling from purely dispersive to purely dissipa-
tive, a PT symmetric system can be transformed into an anti-PT 

Fig. 4. Synchronization regions. The different panels correspond to  = , − 0.88, 
and − /2, as in Fig. 1D. The black lines are the theoretical synchronization criteria 
of Eq. 9, while the scattered points show the experimental data. The color rep-
resents the measured phase coherence, where the yellow color indicates perfect 
synchronization. Each data point is the average of 10 measurements. The white 
points show the  value of the EPs, which border the frequency range for uniform 
amplitude synchronization.
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symmetric system continuously. In our degenerate laser cavity, this 
could be achieved by dynamically changing the distance between 
the lasers. Furthermore, by dynamically changing the coupling type, 
the EP itself can move along a circle around a fixed point in pa-
rameter space, rather than encircling the EP, which is of recent 
interest (49).

While synchronization is inherently a nonlinear phenomenon, 
we demonstrated how the non-Hermitian (linear) framework can 
provide valuable insight. The lasers fail to synchronize because of 
the reality of the spectrum’s pseudo-Hermiticity symmetry, as all 
modes have equal loss. In the more familiar case of dispersive cou-
pling, the pseudo-Hermiticity and the PT symmetries overlap. How-
ever, when the coupling is complex, we found an intriguing structure, 
where the reality of the spectrum is along hyperbolic lines in the regime 
diagrams. The relation between synchronization and pseudo-
Hermiticity is not limited to just two lasers. This opens an arena for 
future study of complex band structures in laser lattices (50). In this 
case, the pseudo-Hermiticity symmetry can be seen as an imaginary 
flat-band analog (51).

MATERIALS AND METHODS
Experimental setup
A schematic diagram of the experimental arrangement is presented 
in Fig. 2 (see the Supplementary Materials for a detailed version). It 
consists of two lenses that form a 4f telescope configuration, a gain 
medium, reflective spatial light modulator (SLM), and an output 
coupler, with a total propagation length of 5 m per round trip. The 
arrangement is essentially a perfect degenerate cavity laser (34), 
where the field of each point at one end (the input) maps onto itself 
after a complete roundtrip. The gain medium is a doped Nd–yttrium-
aluminum-garnet rod of 10-mm diameter and 11-cm length that is 
pumped by a xenon flash lamp, generating a quasi–continuous-
wave laser pulse of 200-s duration. The reflective SLM (43) at the 
input plane is used as a digital mask in which two holes of diameter 
300 m are imprinted. The field of each hole matches that of a single 
spatial Gaussian mode with waist of w0 ≈ 150 m (see the Supple-
mentary Materials), so the field of the holes can be viewed as that 
from two independent lasers. The SLM can thus be used to control 
the relative loss and frequency detuning of the two lasers. Coupling 
between the lasers is obtained by shifting the output coupler from 
the exact imaging plane (more details below).

Coupling mechanism
The coupling between the lasers is generated by shifting the out-
put coupler by z = 10 cm from the exact imaging plane. As a 
result, a portion of the light from each laser leaks to the other 
laser (see Fig. 2). The complex-valued coupling coefficients nm 
(by convention Hnm = − inm) are given by the normalized over-
lap integral of the expanded field of one laser with that of the 
other one at the imaging plane (see the Supplementary Mate-
rials for explicit derivation). As the field propagation from one 
laser to the other is symmetric, so are the coupling coefficients. 
The effective Hamiltonian is therefore a complex-symmetric 
matrix, while generally not Hermitian, i.e., Hnm = Hmn but ​​
ℋ​nm​ * ​   ≠ ​ ℋ​ mn​​​. In our experiments, we vary the coupling by 
changing the distance between the lasers (reflective spots on the 
SLM), so as to generate a dispersive, dissipative, or complex cou-
pling between the lasers.

Detection arrangement
One mirror serves as an output coupler, where light emerges and 
propagates to the detection arrangement. The measurement of the 
lasers’ amplitudes and relative phase is carried out by using an 
interferometer, schematically depicted in fig. S1. In one arm of the 
interferometer, one laser is selected and expanded using a pinhole 
and a lens to serve as a reference field. In the second arm, the laser 
field on the SLM is imaged by a 4f telescope. The light from both 
arms is then recombined on a complementary metal-oxide semi-
conductor detector with a small angle, resulting in interference fringes 
on top of each laser field. Figure  1B shows a typical interference 
image. Each data point is averaged over 10 measurements.

Laser rate equations
Consider an array of many coupled lasers. The dynamics of the laser 
field and the gain medium is given by (40)

	​​​  ​dE​ m​​ ─ dt ​   = ​  1 ─ ​​ p​​ ​​[​​(​G​ m​​ − ​​ m​​ − i ​​ m​​ ) ​E​ m​​ − ​∑ 
n
​ ​​ ​​ mn​​ ​E​ n​​​]​​​​	 (10)

	​​​  ​dG​ m​​ ─ dt ​   = ​  1 ─ ​​ c​​ ​​[​​ ​P​ m​​ − ​G​ m​​​(​​1 + ​ ​∣​E​ m​​∣​​ 2​ ─ ​I​ sat​​
 ​​ )​​​]​​​​	 (11)

where m, m, and Pm are the loss, frequency, and pump of each 
laser; nm is the coupling matrix; and p, c, and Isat are the cavity 
round trip time, the gain medium fluorescence lifetime, and the sat-
uration intensity. We write the equations in a dimensionless form 
by rescaling the units of the electric field and time by setting Isat = 1 
and p = 1. For our symmetric coupling, we can write 12 = 21 ≡ 
iei. Using 1,2 = 0 ±  and 1,2 = 0 ± , Eq. 10 takes the form 
of Eq. 2 for the two lasers, with H given by Eq. 3. The initiation of 
lasing typically begins with a relaxation oscillations period (41). 
When (and if) the system reaches a synchronized steady state, the 
gain (Eq. 11) takes the value Gm = Pm/(1 + ∣Ei∣2). For a pump 
strength that is slightly above the lasing threshold value, the inten-
sity is weak, and we can approximate the steady state gain by Gm ≈ 
Pm. If we also assume uniform pumping Pm = P, then the gain terms 
in Eq. 2 are proportional to the unit matrix, and the fixed points can 
be approximated by the eigenstates of H. When both lasers have the 
same intensity, the eigenstates of H are exact solutions, because 
G1 = G2, irrespective of the pump strength or the intensity.

Anyonic PT symmetry condition
Here, we show explicitly the condition for our effective Hamiltoni-
an to have anyonic-PT symmetry. To avoid confusion, here, we 
replace  by ​​ ~ ​​ in the anyonic commutation in Eq. 1. We define the 
time reversal and parity operators in the standard way (1), such 
that T performs complex conjugation and the parity operator here 
is given by

	​​ P  = ​ (​​​0​  1​ 1​  0​​)​​​​	 (12)

In addition, we have P2 = 1, T 2 = 1, and [P, T] = 0. We can re-
write Eq. 1 as

	​ ℋ  = ​ PTe​​ −2i​   ​​ ℋPT  = ​ e​​ −2i​   ​​ Pℋ * P​	 (13)

For the Hamiltonian of Eq. 3, we have

	​​​ (​​​  z​   ​e​​ i​​ 
 ​e​​ i​

​ 
− z

  ​​)​​  = ​ e​​ 2i​   ​​​(​​​  − ​z​​ *​​   ​e​​ −i​​ 
 ​e​​ −i​

​ 
​z​​ *​

 ​​ )​​​​	 (14)
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The off-diagonals give ​​e​​ i​  = ​ e​​ i(2​ ~ ​−)​​, which means that we must 
have ​​ ~ ​  =  ​ (optionally, ​​ ~ ​​ and  can differ by , but this makes no 
difference), as in our original definition in Eq. 1. The diagonal terms 
give z = − z*e2i or ​Re [ z ​e​​ −i​ ~ ​​ ] = 0​, so that, with z =  − i, we 
obtain the anyonic-PT symmetry line (Eq. 4).

The anyonic-PT symmetry can also be understood as a general-
ization of the more familiar PT symmetric case. Every anyonic-PT 
symmetric Hamiltonian can be written as H = eiHPT, where HPT 
is PT symmetric. This is because Eq. 1 is formally equivalent to 
[PT, e−iH] = 0. The celebrated PT symmetric two-site system [see, 
e.g., (2)] is given in our notation by

	​​​ ℋ​ PT​​  = ​ (​​​iΔα​  κ​ κ​  − iΔα​​)​​​​	 (15)

which is a special case of Eq. 3 with purely real coupling ( = 0) and 
vanishing frequency detuning ( = 0). When multiplying by the 
phase factor ei, the coupling becomes complex as required, while 
the line  = 0 is rotated in the (, ) plane.

Synchronization borders
To derive the synchronization regimes of Fig. 4, we first rewrite 
Eq. 10 in terms of the amplitudes and phases using Ei = Aieii to 
obtain Eq. 8 for the dynamic of the phase difference . Frequency 
synchronization essentially means that the lasers are phase-locked, 
i.e., d/dt = 0. The steady-state  depends on the amplitude ratio—, 
, and , within some allowed frequency range. To find the bor-
der  values for which synchronization is possible, we maximize 
the last two terms of Eq. 8 with respect to . Taking the  derivative 
gives ​​A​1​ 2​ sin ( +  ) = ​A​2​ 2​ sin ( − )​, which solves for the relative 
phase at the synchronization border. Using this condition and 
Eq. 8, we find that the maximal ()2 is given by

	​​
​max​ 


​ ​ ​​ [​​ ​ ​A​ 1​​ ─ ​A​ 2​​ ​ cos ( +  ) − ​ ​A​ 2​​ ─ ​A​ 1​​ ​ cos ( −  ) ​]​​​​ 

2
​
​   

= ​​(​​ ​ ​A​ 1​​ ─ ​A​ 2​​ ​​)​​​​ 
2
​ + ​​(​​ ​ ​A​ 2​​ ─ ​A​ 1​​ ​​)​​​​ 

2
​ − 2cos 2

  ​​	 (16)

Hence, synchronization is possible in the frequency detuning 
range Eq. 9.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm7454
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