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Simple Summary: With a short sample-preparation time, micro-computer tomography provides a
non-destructive method to estimate the post-mortem interval. With a deep learning approach for
post-mortem interval estimation (ranging from one day to 2000 years) in bones, the estimation can be
approximated with high precision.

Abstract: It is challenging to estimate the post-mortem interval (PMI) of skeletal remains within
a forensic context. As a result of their interactions with the environment, bones undergo several
chemical and physical changes after death. So far, multiple methods have been used to follow up on
post-mortem changes. There is, however, no definitive way to estimate the PMI of skeletal remains.
This research aimed to propose a methodology capable of estimating the PMI using micro-computed
tomography measurements of 104 human skeletal remains with PMIs between one day and 2000 years.
The present study indicates that micro-computed tomography could be considered an objective and
precise method of PMI evaluation in forensic medicine. The measured parameters show a significant
difference regarding the PMI for Cort Porosity p < 0.001, BV/TV p > 0.001, Mean1 p > 0.001 and
Mean2 p > 0.005. Using a machine learning approach, the neural network showed an accuracy of 99%
for distinguishing between samples with a PMI of less than 100 years and archaeological samples.

Keywords: post-mortem interval; micro-CT; machine learning

1. Introduction

Estimating the post-mortem interval (PMI) is challenging in forensic medicine [1–3].
It is crucial to calculate the PMI when detecting human remains. It is well known that
bones undergo various chemical and physical processes after death due to their interac-
tion with the environment in which they are located. Several methods have been used
to track these post-mortem changes to estimate the elapsed time since a person’s death,
but they have serious drawbacks in terms of reliability and accuracy [4,5]. Various tech-
niques and methods have been employed to estimate the PMI with the highest accuracy.
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Methods include examination of the external physical appearance; histopathological sur-
veys [6–8]; reaction with a mineral acid, reaction with benzidine, nitrogen loss [9]; molecu-
lar biology [10–15]; metabolomics [16]; high performance liquid chromatography-tandem
mass spectrometry [17]; UV-Vis spectroscopic methods [18–22]; radioisotope measure-
ments [23–26]; luminol chemiluminescent reaction [24,27–31]; X-ray diffraction [32–34];
spectroscopic technology [21,34–47]; postmortem computed tomography (CT) [48], micro-
CT [2,34]; visible and thermal 3D imaging [49]; and entomological methods (succession
model, carrion insect development) [50]. No matter what technique is used, decomposition
of tissue with time makes estimating PMI difficult [51]. Despite these favourable factors,
the precise estimation of PMI is not possible with the current approaches. This makes
micro-computed tomography of the bone extremely beneficial in PMI estimation since it
provides the most accurate information about the hard tissues in the body [2,34,52]. The
significant advantage of the micro-CT is that it allows the evaluation of small specimens
and small alive animals due to their capacity or small scanning chambers.

Furthermore, getting qualitative and quantitative results with high-resolution images
and small samples provided several applications in the in vivo and in vitro imaging of
bones [2,52]. The micro-CT technique is similar to CT in terms of its physical and technical
basis. In preclinical research, they are essentially miniaturized versions of the volume- or
cone-beam CT scanner used for non-invasive, three-dimensional studies of bones, teeth,
and small animals. Micro-CT offers several advantages over clinical CT, including a signifi-
cantly higher spatial resolution and improved anatomical structure visualization [53–55].
The latest equipment allows for in vivo measurements down to a spatial resolution of
10 µm [56,57]. The present study hypothesized that bone density could be used to evaluate
mineral density in different post-mortem timelines as an indicator of PMI. To achieve this
goal, micro-CT, one of the most novel and accurate methods for quantitative imaging,
is used.

2. Materials and Methods
2.1. Sample Collection and Ethical Considerations

Recent forensic bone samples (n = 99) were routinely collected for molecular genetic
identification purposes during an autopsy at the University Institute of Forensic Medicine,
and archaeological bone samples from medieval times were collected from European
excavation sites (n = 5). The bone samples with 0–2 weeks PMI (class 1, n = 32), 2 weeks–
6 months PMI (class 2, n = 46), 6 months–1 year PMI (class 3, n = 11), 1 year–10 years
PMI (class 4, n = 10), and > 100 years PMI (class 5, n = 5) were obtained from 16 female
and 88 male human remains. The classification of PMI was based on investigations by
the police and forensic needs before micro-CT. In the case of the uncertain conventional
estimation of PMIs, the average result was used for classification. The diaphysis of the
femur of forensic and archaeological bone samples was used for analyses. Using a hand
saw, one half transversal section was cut from each bone with a thickness of about 7 mm.
The sectional planes were cleaned from periost and bone marrow and dried a few days
at room temperature. NIR spectrometry was applied for this study before additional
forensic analyses.

The study was conducted according to the ICH-GCP guidelines and the declaration of
Helsinki. Ethical approval was obtained from the local ethics commission (EK: 1357/2021).

2.2. Micro-CT

Micro-CT experiments were performed using a vivaCT 40 (Scanco Medical AG, Brüt-
tisellen, Switzerland). The scan settings were 1000 projections with 2048 samples, resulting
in a 15 µm isotropic resolution using a 30.72 mm field of view. The used tube settings
were 70 kV voltage, 114 µA current, and an integration time of 200 ms per projection. The
acquired images have a 2048 × 2048 voxels matrix and a grayscale depth of 16 bit. The
length of the image stack is individually dependent on the size of the collected femora
sample. While most samples could be positioned axially in the sample holder, some had
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to be longitudinally scanned due to size restrictions. The image reconstruction using
a cone beam convoluted back-projection and post-processing was performed using the
system workstation of the micro-CT. The system workstation is running on open VMS
(©Hewlet Packard, Palo Alto, Santa Clara, CA, USA) combined with IPL (Image processing
language, Image Processing Language, Scanco Medical AG, Brüttisellen, Switzerland).
The post-processing consisted of two independent steps. The IPL integrated alignment
algorithm was used for the longitudinal scanned samples to rotate the image space that the
samples were represented axially.

2.3. Segmentation and Quantitative Analysis

For the evaluation, four separate areas were analyzed. The first area was the whole
cortical bone (Figure 1A). The following areas were 3200 pixels wide, 200-pixel long cylin-
ders aligned centrally in the cortical bone around the analyzed sample (Figure 1B). The
segmentation of the bone used the standard parameters for the Gauss threshold segmenta-
tion (threshold: 220, gauss sigma: 0.8, gauss support: 1). The bone parameters evaluated
are summarized in Table 1.
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Figure 1. Segmentation and quantitative analysis of the whole cortical bone (A) and 3 cylinders
aligned centrally in the cortical bone around the analyzed sample (B).

Table 1. Micro-CT parameters with associated abbreviations, description, and unit.

Metric Measures Abbreviation Description Standard Unit

Bone volume ratio BV/TV Ratio of bone volume to total volume in the ROI %
Cortical Porosity Cort Porosity cortical volume %

Trabecular number Tb.N Mean number of trabeculae per unit length mm−1

Trabecular thickness Tb.Th Mean thickness of the trabeculae mm
Trabecular separation Tb.Sp Mean distance between trabeculae Mm

Apparent density Mean1 Mean density of the ROI mgHA/mm3

Material density Mean2 Mean density of the bone fraction of the ROI mgHA/mm3

2.4. Statistical Analysis and Machine Learning

ANOVA and a machine learning approach were used to analyze the time-dependent
data. The ANOVA was performed on time-dependent parameter sets obtained from the
micro-CT scans. Additionally, ANOVA analysis was performed to check whether the data
obtained from the whole cortical bone or cylinders aligned centrally in the cortical bone
around the analyzed sample showed a statistically significant difference. The Shapiro–
Wilk test for normality was used to check whether the data met the requirements for
the ANOVA analysis. The micro-CT data have been further analyzed using a machine
learning approach. A small, fully connected neural network (3 layers, 10, 25, 10 neurons per
layer) was implemented. The micro-CT data was used to train and evaluate the predictive
performance of the neural network. The output of the neural network, consisting of 5 binary
neurons (sigmoid activation function), corresponds to the belonging to the respective age
class. The neural network was trained using the leave-one-out cross-validation (LOOCV).
With the LOOCV method, one data point is left out in the training process. This data point
is then used to evaluate the predictive abilities of the neural network. This step (a new
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training from scratch) is repeated until every data point has been left out and assessed once.
This technique helps to deal with the limitations of small data sets.

To exclude a possible bias by premortem loss of bone, the BV/TV ratio and the Cort
porosity were then age-adjusted (where the age at death was available) according to a
Canadian population-based HR-pQCT study [58]. The data of [58] demonstrated a linear
or quadratic behaviour between the ages of 20 and 60. That made it numerically favourable
to choose an age in this range. From this range, the median age was taken. However, the
choice for the base age is not expected to change the outcome of the analysis since all data
were normalized to that age. Therefore, the values have been normalized to the 40-year age
value, and data compared between the different age classes as described above.

3. Results

The data obtained by micro-CT provide a high dimension of information, demonstrat-
ing different structures or mechanisms linked to the PMI. Optimizing the analyzing strategy
for micro-CT experiments is essential to get high-quality results. All samples were analyzed
using the whole cortical bone for morphological analyses, and cylinders aligned centrally
in the cortical bone around the analyzed sample. Results are illustrated in Table 2, Figure 2
for the whole cortical bone, Figure 3 for cylinders aligned centrally in the cortical bone, and
Figure 4 boxplots of selected values from all the extraction locations. Comparison between
the two strategies indicated negligible differences, concluding that using the whole cortical
bone for analysis is sufficient for PMI estimation (see Table 2 and Figure 4). Therefore, it
was possible to demonstrate that the internal and external decomposition processes hardly
influence the evaluation strategy and micro-CT measurements. The 3-D surface renders
images with local thickness analysis (as proposed by [59]), and separation from one repre-
sentative sample for each analysis strategy is presented in Figure 2 for the whole sample
and Figure 3 for cylinders aligned centrally. The microarchitecture was assessed using the
standard trabecular segmentation and thickness values with a separation model [60–65].
Class 5 displays a higher cortical porosity (Cort Porosity) than the other classes, defined as
trabecular separation and a decreased bone volume density (= bone volume over the total
volume, BV/TV) (see Table 2).
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Table 2. Parameters are shown for the five different age classes: class 1 with PMI of 0–2 weeks, class 2
with PMI of 2 weeks–6 months, class 3 with PMI of 6 months–1 year, class 4 with PMI of 1 to 10 years,
and class 5 with PMI of >100 years. The values with noticeable differences from one representative
sample are presented for each class.

Age
Class PMI Analyzed Areas BV/TV [%] Cort Porosity Tb.N

[mm] Tb.Th [mm] Tb.Sp [mm] Mean1
[mgHA/cm3]

Mean2
[mgHA/cm3]

1 0–2 wk whole cortical bone 0.96 ± 0.10 0.041 ± 0.022 1.8 ± 0.2 1.40 ± 0.65 2.5 ± 1.2 928 ± 39 950± 121

1 0–2 wk 3 x cylinders
aligned centrally 0.95 ± 0.02 n.a 3.1 ± 1.0 0.65 ± 0.22 2.2 ± 1.4 909 ± 31 959 ± 15

2 2 wk–
6 mth. whole cortical bone 0.97 ± 0.027 0.038 ± 0.028 1.8 ± 0.3 1.54 ± 0.60 2.7 ± 1.2 934 ± 41 967 ± 22

2 2 wk–
6 mth.

3 x cylinders
aligned centrally 0.96 ± 0.02 n.a 3.6 ± 1.4 0.75 ± 0.21 2.9 ± 1.9 894 ± 139 940 ± 142

3 6
mth.–1 yr. whole cortical bone 0.97 ± 0.02 0.030 ±0.013 1.6 ± 0.2 1.48 ± 0.47 2.5 ± 0.9 939 ± 31 972 ± 12

3 6
mth.–1 yr.

3 x cylinders
aligned centrally 0.97 ± 0.01 n.a 2.9 ± 1.2 0.71 ± 0.20 2.3 ± 1.5 926 ± 18 966 ± 11

4 1 yr.–10 yr. whole cortical bone 0.97 ± 0.02 0.059 ± 0.049 1.8 ± 0.2 1.40 ± 0.78 2.6 ± 1.6 923 ± 37 956 ± 24

4 1 yr.–10 yr. 3 x cylinders
aligned centrally 0.94 ± 0.05 n.a 3.6 ± 1.8 0.76 ± 0.20 3.0 ± 2.4 877 ± 59 944 ± 19

5 >100 yr. whole cortical bone 0.84± 0.23 0.141 ± 0.115 1.4 ± 0.2 0.52 ± 0.40 0.76 ± 0.65 663 ± 162 758 ± 89

5 >100 yr. 3 x cylinders
aligned centrally 0.85 ± 0.11 n.a n.a. n.a. n.a. 674 ± 134 776 ± 91

BV/TV [%], ratio between the total analyzed area and the bone compartment of a predefined ROI (region of
interest). Cort Porosity, Cortical Porosity, cortical volume in %. Tb.N [1/cm], trabecular number, calculated
by taking the inverse of the mean distance between the central axes of the structure [60]. Tb.Th [mm], mean
trabecular thickness [66]. Tb.Sp [mm], mean trabecular separation [66]. Mean1 [mg HA/cm3], apparent density =
Mean density of the bone fraction of the ROI. Mean2 [mg HA/cm3], material density = mean density over bone
compartment of the region an-alyzed; HA, hydroxylapatite.
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Figure 4. Boxplots of selected values of micro-CT images from all the extraction locations. The
Boxplots and the statistical analysis show no significant deviation between a sample taken from the
internal of the bones or the external, this result holds for all investigated parameters.

Taken together, bone density and pore structure decrease over time (Table 2,
Figures 2 and 3). After normalizing the BV/TV-ratio and the Cort porosity to exclude
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a possible bias by bone loss before the death, data only changed by less than one standard
deviation (data not shown).

3.1. Statistical Analysis and Classification of Post-Mortem Interval

The data of all measured samples using the whole bone information are compared
using ANOVA. Figure 5 displays the boxplots of the corresponding data sets. The results
show significant p values for cortical porosity (Cort Prososity), bone volume density
(= bone volume over total volume, BV/TV), apparent density (Mean1) and material density
(Mean2). A clear reduction in bone volume density (p < 0.001), apparent density (p < 0.001),
and material density (p < 0.005) can be observed over time. The cortical porosity represented
an increase in this value (p < 0.001).
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3.2. Deep Learning-Based Classification

Figure 6A shows the classification result as a confusion matrix. The diagonal elements
of such a confusion matrix represent the percentage of correctly classified elements. The
bright diagonal elements of the confusion matrix represent the percentage of correctly clas-
sified elements, with an accuracy ranging between 99% for the archeological samples (class
5) and 75% for samples with a PMI between 0 and 2 weeks (class 1). Hence, 13 elements
were classified with a PMI of “some weeks”, which allows an assignment to two classes.
The result also indicates a cross-talk between neighboring classes, especially between the
first two. This cross-talk is most likely due to the classes’ choice or proximity.
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Figure 6. (A) Confusion matrix for the neural network-based bone-age classification. (B) shows
the confusion matrix for the age-adjusted bone-age classification. Classes from 1 to 5 indicate time
frames (class 1: 0–2 weeks PMI; class 2: 2 weeks–6 months PMI; class 3: 6 months–1 year PMI; class
4: year–10 years PMI; class 5: >100 years PMI). For both settings, a sample classified to class 5 has
a 99% likelihood to belong to this class, that equates to a 1% likelihood for it to be classified to the
wrong category.

The same approach of deep-learning-based classification was then used for the pre-
mortem age-adjusted data. Results are comparable, as shown in Figure 6B.

4. Discussion

There is a need for forensic anthropologists and pathologists to continue investigating
precise methods for PMI estimation of skeletal remains [56]. The determination of the PMI
is based on an assessment of the morphological structures of the bones and an examination
of the clothing and personal items found on the corpse. Furthermore, the police routinely
provide information on the time and place of the discovery as well as the respective
environmental conditions.

This study aimed to evaluate the suitability of micro-CT as a non-destructive method
for distinguishing between forensic bone material with different PMIs and also archaeolog-
ical bone material. Therefore, micro-CT measurements and a deep learning approach to
correlate the PMI with the detected properties were used. The main focus of this study was
the training of an ANN that allows for estimating the PMI of human bones with micro-CT
to help authorities to assess if the found bone is from forensic interest or not. Depending
on the criminal act committed, the statute of limitation varies or does not exist in the case
of murder.

After optimizing the analyzing location (there was no difference between the extern
and intern of the bones), we could show that the Cort Porosity increases with time and the
bone density decreases over the years. The measured values reveal statistical significant
differences between all the age classes.
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As shown in a confusion matrix (Figure 6A), ANN classification results clearly distin-
guish between forensic and archaeological samples, but also showed differences within the
forensic bone sample classes.

The result shows a perfect classification for the fifth class (archaeological samples) and
the lowest accuracy (75%) for the first class. The age uncertainty of the first-class results
in a blurring of the class boundary between the first and second class, e.g., a bone with a
determined age of 14 (±1) days puts the dataset in both the first and second classes. The
same effect, but not to the same magnitude, is present in all classes besides the fifth class.
The small time window of the first class (0–14 days) compared to the age uncertainty in
this range (0–7 days) amplifies this effect in the first class. The same problem can be found
with the early samples of the second class. Some samples are classified with “some weeks”,
which, within the error, allows an assignment to both classes. The same problem can be
observed between the other classes besides the fifth class.

There are some limitations of this study. First, there was a high uncertainty in the PMI,
as discussed above, despite the relatively high sample size. PMI was classified based on
police investigations and forensic needs. The average PMI result was used for classification
when conventional estimation was uncertain. The classification results might be explained
by the differences in the chemical composition of bones. Differences in degradation and
environmental effects might also explain the observed differences between the bones with
different PMI. The classification results suggest that differences in the chemical composition
of bones are responsible for the observed differences. Unfortunately, all information was not
available in the set of samples analyzed. Samples were included with often undefined PMI
descriptions, different find spots (e.g., forest, flat, buried, water), and thermal alterations
(plane crash = 3 and apartment fire = 1).

Second, the premortem bone loss may lead to wrong results. Therefore, the data
analysis was also performed with age-adjusted Cort Porosity and BV/TV values. The
results did not change the classification accuracy so this limitation can be neglected in
this setting.

The non-invasive nature of this analysis ensures the sample’s integrity before further
analyses. Traditional methodologies are less objective, expensive, time-consuming, and re-
quire specialized operators and instrumentation [67]. Overall, the immediate environment
of skeletal remains induces specific degradation processes related to the PMI. Micro-CT ap-
pears to objectify the results of these degradation processes. Further research into particular
environments with well-defined PMIs will be necessary to improve micro-CT’s accuracy
further. Comparing these data with data from vibrational spectroscopic analyses of bones,
taxonomic identification, preservation mechanisms, diagenetic and thermal alteration path-
ways, and chemical composition [68] will improve our understating of PMI, especially
during the first days.

Comparing these data with data from vibrational spectroscopic analyses of bones,
taxonomic identification, preservation mechanisms, diagenetic and thermal alteration
pathways, and chemical composition will further improve the estimation of the PMI. This
progress will be especially important to help authorities estimate if the found bone is
of forensic interest or not. In summary, the following points should be addressed for
future research:

• Further development of prospective technical and scientific protocols.
• Creating a more extensive data pool of bones with different PMIs, stages of autol-

ysis and putrefaction, where temperature, moisture, insects, depth of burial, and
scavenging should be essential factors.

5. Conclusions

This study aimed to evaluate the suitability of micro-CT as a non-destructive method
for distinguishing between forensic bones with different PMIs as well as archaeological
bone material. The main focus of this study was the training of an ANN that allows for
estimating the PMI of human bones with micro-CT. The ANN classification results clearly
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distinguish between forensic and archaeological samples, but also between forensic bone
samples with different PMIs. The results show a perfect classification for the fifth class
(archaeological samples) and the lowest accuracy for the first class. Micro-CT appears to
objectify the results of these degradation processes, and mineral density findings can be
used for PMI estimation.
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