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Formation of Tau aggregates is a common pathological feature of tauopathies and
their accumulation directly correlates with cytotoxicity and neuronal degeneration. Great
efforts have been made to understand Tau aggregation and to find therapeutics halting
or reversing the process, however, progress has been slowed due to the lack of a
suitable method for monitoring Tau aggregation. We developed a cell-based assay
allowing to detect and quantify Tau aggregation in living cells. The system is based
on the FRET biosensor CST able to monitor the molecular dynamic of Tau aggregation
in different cellular conditions. We probed candidate compounds that could block Tau
hyperphosphorylation. In particular, to foster the drug discovery process, we tested
kinase inhibitors approved for the treatment of other diseases. We identified the ERK
inhibitor PD-901 as a promising therapeutic molecule since it reduces and prevents
Tau aggregation. This evidence establishes the CST cell-based aggregation assay as
a reliable tool for drug discovery and suggests that PD-901 might be a promising
compound to be tested for further preclinical studies on AD.
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INTRODUCTION

Tauopathies are complex multifactorial diseases (Lee et al., 2001; Wang and Mandelkow, 2016)
and, up to now, despite strong efforts, the drug discovery process has been inconclusive. Current
approaches for the treatment of these pathologies do not rely on disease modifying drugs but rather
on symptomatic treatments with the aim of attenuating and delaying behavioral degeneration
(Birks, 2006; Wang and Reddy, 2017).

However, these treatments cannot halt the progress of the pathology and the scientific
community is working on therapeutic approaches aimed at preventing the development and
progression of neurodegeneration by targeting the toxic amyloidogenic aggregates (Devos et al.,
2017; West et al., 2017; Novak et al., 2019).

Tau protein is considered a promising candidate since several molecular mechanisms leading
to Tau aggregation are characterized and may be specifically targeted. Among Tau-directed
drugs, molecules affecting Tau hyperphosphorylation are the most interesting since abnormal
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phosphorylation is strongly associated to pathological Tau
destabilization from microtubules, structural alteration
and aggregates formation (Alonso et al., 1994, 2001; Pei
et al., 2003; Pevalova et al., 2006; Medina and Avila, 2015;
Wang and Mandelkow, 2016).

Many different kinase inhibitors have been approved for
the treatment of other diseases such as cancer. Among these,
PD-0325901 (here reported as PD-901) and D-JNKI-1 may
be repurposed for the treatment of tauopathies. PD-901 is a
potent inhibitor of ERK pathway since it inhibits MEK1 and
MEK2 preventing the activation of ERK (Barrett et al., 2008;
Henderson et al., 2011; Yap et al., 2011). It is currently in
clinical trial for the treatment of lung cancer and solid tumors
(ClinicalTrials.gov Identifier: NCT02022982; NCT02039336;
NCT03905148). D-JNKI-1 is a cell-penetrating peptide that
inhibits JNK pathway (Hirt et al., 2004; Milano et al., 2007) and it
is currently in clinical trial for the treatment of acute hearing loss
(ClinicalTrials.gov Identifier: NCT02809118; NCT02561091).

These molecules could be of great interest also to treat
tauopathies since both ERK and JNK pathways have been
demonstrated to target Tau specific residues resulting
in hyperphosphorylation and aggregation enhancement
(Perry et al., 1999; Zhu et al., 2001; Hanger et al., 2009).

Nowadays a crucial point for the drug discovery against
tauopathies is the development of cell-based molecular tools for
preclinical screening and testing of potential therapeutic drugs.
Several biosensors to study Tau aggregation have been proposed
(Kfoury et al., 2012; Tak et al., 2013).

Recently, we developed the Conformational Sensitive Tau
(CST) sensor, the first intramolecular FRET-based biosensor
allowing to discriminate Tau full length conformations
depending on its association to microtubules, its release in
the cytosol and its aggregation (Di Primio et al., 2017).

Here we report a CST-based cellular screening to test potential
therapeutic molecules against Tau aggregation. The screening
exploits the differentiated SH-SY5Y cell line, stably expressing
CST reporter, where Tau aggregation is induced by synthetic Tau
seeds. We tested two kinase inhibitors, PD-901 and D-JKNI-1
and remarkably we found that PD-901, more than D-JNKI-1,
is able to interfere with Tau aggregation. The anti-aggregation
activity is retained also in primary hippocampal neurons
supporting the preclinical application of the CST cell-based
aggregation assay but also the clinical employment of PD-901, not
only for the treatment of cancers, but also for tauopathies.

RESULTS

CST Cell-Based Aggregation Assay
To set up the CST cell-based aggregation assay, we first validated
the biosensor as a sensitive tool in detecting Tau aggregates
displaying proteopathic features. Briefly, the CST is the fusion of
the Tau protein with the CFP at the C-terminal and the YFP at the
N-terminal. In normal conditions, the binding to MTs induces
the folding of the CST into a loop-like conformation that brings
the fluorophores close together generating the FRET signal; on
the contrary, upon aggregation it detaches from MTs and forms

FRET-positive inclusions in the cytoplasm without affecting the
MT network (Di Primio et al., 2017). Hela cells expressing
CSTP301S were exposed to recombinant heparin-assembled Tau
seeds to induce aggregation (as described in M&M). The P301S
mutant has been preferred to TauWT to enhance its contribution
to intracellular aggregates (McEwan et al., 2017). The quantitative
sensitized emission FRET microscopy was employed to detect
intracellular aggregates 72 h after induction. In control cells we
detected the expected FRET signal displayed by CST bound to
MTs, as previously reported (Di Primio et al., 2017).

On the contrary, in cells exposed to Tau seeds, the FRET signal
was not associated to MTs but discrete FRET-positive spots were
detectable in the cytosol (Figure 1A).

By comparing cells exposed to seeds and control cells we
found that NFRET values on aggregates were significantly higher
(46.50 ± 2.25SE) than those on microtubules (16.89 ± 1.73SE)
indicating that Tau molecules interaction in aggregates is tighter
(Figure 1B). Moreover, this difference could be also due to the
higher amount of molecules contributing to the FRET signal.

To take into account at the same time the close interaction
among Tau molecules and the differences in size of aggregates,
a line crossing either MTs or aggregates was selected, the
corresponding NFRET profile was obtained and the integral
below was designed to be the integrated NFRET signal (iNFRET)
(Figure 1C). iNFRET values on aggregates were significantly
higher (30.84 ± 2.49) than those on microtubules (3.35 ± 0.52)
highlighting the larger size of aggregates with respect to
MTs (Figure 1D).

To further verify that CST-positive spots correspond to
amyloidogenic proteopathic aggregates, we performed the K114
staining for β-sheet fibrils (Crystal et al., 2003). Remarkably, CST
signal significantly colocalizes with K114 (Costes et al., 2004)
(Figures 2A,B) demonstrating that FRET-positive aggregates
share structural characteristics with pathological Tau fibrils.

To investigate the putative interference of the CST
fluorophores on aggregate FRET signal, we performed an
aggregation assay exploiting cells expressing unlabeled TauP301S.
Cells were added with recombinant heparin-assembled Tau
fibrils and aggregates were visualized by immunofluorescence.
We found that aggregates in CST- or in unlabeled Tau- reporter
cells displayed similar morphology, demonstrating that the
fluorophores do not interfere with the process of aggregation
(Supplementary Figures S1A,B).

Finally, we performed detergent fractionation to investigate
possible biochemical differences in these aggregates. We found
that both CST and Tau increased in Triton X-100 insoluble
fraction upon aggregation induction (Figure 2C).

Altogether these results indicate that, upon aggregation
induction, CST forms FRET positive inclusions that display
morphological and biochemical features allowing them to be
defined as Tau aggregates.

To exploit the system as a quantitative tool to measure Tau
aggregation in different cellular conditions a CSTP301S-reporter
line has been generated in a neuron-like cellular model, SH-SY5Y
cells. Reporter cells were differentiated and exposed to synthetic
TauP301S seeds to induce aggregation. FRET positive aggregates
were easily detectable in seeds-treated cells (hereinafter referred
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FIGURE 1 | CST aggregates are detected and quantified in live cells. (A) FRET measured by sensitized emission in CST-reporter HeLa cells. Donor (cyan), acceptor
(yellow) and Normalized FRET (NFRET) images (false color). White scale bar = 10 µm. (B) Box plot of NFRET values calculated on MTs network (N = 9) and on
aggregates (N = 12). Box spans the standard error of the mean while whiskers indicates the standard deviation (∗∗∗p < 0.001 t-test). (C) Magnification of cells in A
and corresponding NFRET profile along the white line crossing MTs (upper panel) or aggregates (lower panel). (D) Box plot of iNFRET values calculated on MTs
network (N = 9) and on aggregates (N = 19). Box spans the standard error of the mean while whiskers indicates the standard deviation (∗∗∗p < 0.001 t-test).

FIGURE 2 | CST aggregates are amyloidogenic proteopathic aggregates. (A) CST-reporter HeLa cells were stained with K114. YFP (yellow), K114 (magenta), white
scale bar = 10 µm. (B) Colocalization between CST and K114 signals has been quantified by Pearson Correlation Coefficient (PCC). Box spans the standard error of
the mean while whiskers indicates the standard deviation (∗p < 0.01 t-test). (C–D) Detergent fractionation of CST-reporter and unlabeled Tau-reporter cells. Western
blot of the Triton-X100 insoluble fraction (T-IF) and of the Triton-X100 soluble fraction (T-SF) developed with the Tau5 antibody.
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as “control cells, CTR”) as reported in Figure 3A with a value
of iNFRET that is comparable to that obtained in HeLa cells
(25.19 ± 1.77SE). The SH-SY5Y cellular set-up has been exploited
for the following functional experiments.

It is well known that Tau hyperphosphorylation results
in aggregation that can be further exacerbated by boosting
phosphorylation (Pei et al., 2003; Despres et al., 2017).

To test whether CSTP301S-reporter cells could detect these
modulations, cells were treated with drugs inhibiting or
promoting phosphorylation: Staurosporine (STS) and Okadaic
acid (OA), respectively. STS is a potent, non-specific protein
kinases inhibitor which prevents Tau phosphorylation; on the
contrary, OA is an inhibitor of protein phosphatase PP2A which
induces Tau hyperphosphorylation (Rüegg and Burgess, 1989; Pei
et al., 2003; Karaman et al., 2008; Gani and Engh, 2010).

Seventy-two hours after aggregation induction, cells have been
treated with STS or OA. We found that few small aggregates
appeared in STS treated cells but the relative iNFRET values were
significantly reduced compared to untreated cells, indicating
smaller and less stable aggregates (Figures 3A,B).

On the contrary, by boosting phosphorylation with OA,
bigger FRET positive aggregates formed. The increased iNFRET
signal confirmed that hyperphosphorylation enhances the
accumulation of Tau proteins into aggregates (Figure 3).

Accordingly, the K114 signal was significantly lower in STS-
treated cells and higher in OA-treated cells compared to control
cells (Supplementary Figure S2).

To further confirm the effect of drugs on Tau phosphorylation
we checked by WB the Tau sensitive epitopes T231, S356 and

S202/T205 and we found a decreased signal in STS treated cells
with respect to OA-treated cells (Figure 3).

Taken together, these findings confirm that the modulation
of phosphorylation is quantitatively detected by the FRET
signal, with a broad dynamic range, and demonstrate that
this system can be a valuable and reliable tool to quantify
aggregation in live cells.

PD-901 Reduces Tau Aggregation
We exploited the CST cell-based screening assay to test candidate
therapeutic molecules supposed to reduce Tau aggregation. We
tested two FDA-approved kinase inhibitors: PD-901, an ERK
inhibitor, and D-JNKI-1, a JNK1 inhibitor.

First, to verify the ability of these compound to reduce
Tau phosphorylation, control cells pre-exposed to synthetic
seeds were treated with PD-901 or D-JNKI-1. The drugs have
been used at a concentration that does not induce cytotoxicity
(Supplementary Figure S3A). Western blot experiments showed
that PD-901 but not D-JNKI-1 decreased Tau phosphorylation
at Thr231 and Ser356 residues, as expected (Figure 4A). On the
contrary the epitope S202/T205 was unaltered (data not shown).

To investigate the potential in vivo anti Tau aggregation effect
of the drugs, FRET analysis was employed to quantify aggregation
in treated cells (Figure 4B).

We observed, in both PD-901 and D-JNKI-1 treated cells,
the formation of small FRET positive aggregates (Figure 4B),
however, by measuring the relative iNFRET values, we found
that the size and cohesion of aggregates in drug treated cells
were significantly reduced compared to control cells. Moreover,

FIGURE 3 | CST aggregates are altered by phosphorylation in SH-SY5Y cells. (A) FRET measured by sensitized emission in CST reporter cells treated with seeds
(CTR) or treated with seeds and STS or OA. CFP (cyan), YFP (yellow) and Normalized FRET (NFRET) images (false color). White scale bar = 10 µm. (B) Box plot of
iNFRET values calculated in CTR cells (N = 37), STS treated cells (N = 21) and OA treated cells (N = 15). Box spans the standard error of the mean while whiskers
indicates the standard deviation (∗∗∗p < 0.001 ANOVA one-way test). (C) WB and corresponding quantification of phosphorylation at indicated epitopes in CST
reporter cells treated with STS or OA (N = 4).
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FIGURE 4 | CST aggregates are reduced by PD-901 and D-JNKI-1 treatment in SH-SY5Y cells. (A) WB and corresponding quantification of phosphorylated
epitopes S202/T205, S231, S356 in CST reporter cells treated with PD-901 or D-JNKI-1 (N = 4). (B) FRET measured by sensitized emission in reporter cells treated
with PD-901 or D-JNKI-1. CFP (cyan), YFP (yellow) and Normalized FRET (NFRET) images (false color). White scale bar = 10 µm. (C) Box plot of iNFRET values
calculated in CST reporter cells treated with seeds (CTR) (N = 37), seeds and PD-901 treated cells (N = 27), seeds and D-JNKI-1 treated cells (N = 20). Box spans
the standard error of the mean while whiskers indicates the standard deviation (∗∗∗p < 0.001 ANOVA one-way test).

the effect of PD-901 in destabilizing Tau aggregates was stronger
than D-JNKI-1 (Figure 4C). Indeed, PD-901 reduced the
iNFRET to 12.94 ± 1.21 while D-JNKI-1 induced a reduction
to 18.82 ± 2.00. Potentially, by blocking aggregation, the
drugs might induce the accumulation of Tau soluble species
considered even more toxic then big aggregates for the cell.
However, the cell toxicity assay (Supplementary Figure S3B)
performed in these conditions demonstrated that the viability
of treated and untreated cells is comparable. The different effect
of drugs on aggregates was confirmed by the K114 staining,
reported in Supplementary Figures S3C,D, showing that the
amyloid component was significantly lower in PD-901-treated
cells compared to control cells. On the contrary, no significant
difference can be detected between D-JNKI-1-treated cells and
control cells (Supplementary Figure S3D).

To further test the anti-aggregation efficacy of PD-901, we
treated mouse hippocampal primary neurons expressing the
CSTP301S after the exposure to seeds and we performed the FRET
experiment. These cells displayed the expected iFRET signals in
control and seed-treated conditions (CST: 27.62 ± 1.61; Seeds:
110.54 ± 11.40) (Figure 5). Remarkably, after the treatment
with PD-901 the iFRET signal is strongly decreased (PD-
901: 47.03004 ± 3.04793) indicating that cohesion and size of
aggregates are significantly reduced.

Altogether, these results point out that the cell-based
aggregation assay developed is a powerful tool to detect and
quantify Tau aggregation. Moreover, we demonstrated that PD-
901 could be a potential therapeutic molecule blocking or even
reverting Tau aggregation. The assay system might be easily
scalable to set up a high content screening assay.

DISCUSSION

We developed a cell-based assay allowing to detect and
quantify Tau aggregation in living cells. The development of
a reliable assay for Tau aggregation is necessary not only to
identify new therapeutic biomarkers but also to screen potential
drug candidates.

In the last 10 years several Tau aggregation systems have
been developed to investigate the molecular mechanism in
cells. Pouplana et al. (2014) obtained Tau aggregates in a
bacterial system, however, this model does not allow post-
translational modifications required for Tau aggregation in cells.
Several other groups proposed mammalian reporter systems
allowing Tau aggregation upon induction with congo red or
exogenous Tau fibrils (Bandyopadhyay et al., 2007; Guo and
Lee, 2011; Lim et al., 2014). Altogether these studies proved
that overexpressed Tau could be aggregated in cells allowing
to study the aggregation-induced cellular toxicity. Nevertheless,
these approaches required cellular fixation and staining with
ThS or antibodies to confirm Tau aggregation. The exploitation
of fluorescent proteins allowed to monitor Tau aggregation in
living cells. Indeed, by fusing fluorescent proteins to caspase-
cleaved Tau or to Tau fragments it is possible to study Tau
aggregation and trans-cellular propagation of aggregates by
FRET microscopy (Rizzo et al., 2004; Chun and Johnson, 2007;
Kfoury et al., 2012). Exploiting the bimolecular fluorescence
complementation (BiFC) technique, Tau-BiFC sensors have been
developed to follow aggregation in real time (Chun et al., 2007,
2011; Tak et al., 2013), however BiFC produces a signal after
a delay required for the chemical reactions that generate the
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FIGURE 5 | CST aggregates are reduced by PD-901 in mouse primary
hippocampal neurons. (A) FRET measured by sensitized emission in primary
neurons treated with PD-901. CFP (cyan), YFP (yellow) and Normalized FRET
(NFRET) images (false color). White scale bar = 10 µm. (B) Box plot of iNFRET
values calculated in cells expressing CST (N = 58), cells treated with seeds
(N = 24), cells treated with seeds and PD-901 (N = 39). Box spans the
standard error of the mean while whiskers indicates the standard deviation
(∗∗∗∗p < 0.0001; seed p < 0.0000001; PD-901 p < 0.00001 ANOVA
one-way test).

fluorophore and this intrinsic property is not appropriate for
massive and rapid drug screening.

We previously developed the CST, a FRET-based
conformation sensor for full length Tau, forming FRET
positive inclusions upon proteopathic Tau seeding (Di Primio
et al., 2017). Importantly, this is the first fluorescent sensor
exploiting the full length Tau, allowing to study the aggregation
and monitoring the increasing or decreasing cohesion of Tau
molecules. Since FRET enables instantaneous monitoring of
protein interactions, we exploited the CST for a cell-based assay
to develop a screening platform for therapeutic compounds.

First we validated the FRET signal of aggregates as related to
amyloid inclusions, indeed, they are stained by the K114 dye and
are detected in the insoluble fraction after detergent fractionation.
Then, since it is generally believed that Tau aggregation is
initiated or accelerated by hyperphosphorylation, we checked the
modulation of the FRET signal upon inhibition or induction of
phosphorylation. We found that the FRET signal of aggregates
was quite different after these treatments, the phosphorylation
inhibition by STS impaired the aggregation and CST inclusions
were very few, small and destabilized. On the contrary, increasing
phosphorylation by OA resulted in the appearance of very large
and stable aggregates, as expected. This evidence established the
CST as a reliable tool for aggregation study in living cells since it
closely resembles Tau aggregation dynamic.

In order to propose this system for drug discovery we focused
on compounds that could block Tau hyperphosphorylation.
Moreover, to foster the identification of active drugs against
aggregation we focused on kinase inhibitors already approved
for the treatment of cancer or other diseases. These drugs might
be used off-label for the treatment of tauopathies with the
clear advantage of knowing the working concentrations and the

lack of side effects. Among these, the PD-901 and D-JNKI-1
proved to be able to decrease Tau phosphorylation and to reduce
Tau aggregation. Moreover, PD-901 decreased phosphorylation
at T231 and S356 that are considered sensitive epitopes early
modified for the subsequent aggregation (Johnson, 2004).

The analysis of aggregates after treatment with these
compounds revealed that both are able to destabilize Tau
aggregates, but PD-901 is more efficient than D-JNKI-1 as
confirmed also by the K114 staining of β-sheet structures.

Remarkably, as indicated by the Western blot analyses,
PD-901 might have a stronger effect by preventing Tau
phosphorylation. PD-901 is a pharmacological inhibitor of
ERK1/2 acting upstream on MEK1 and MEK2. Interestingly,
the ERK pathway seems to target Tau in the very early steps
of aggregation, since indeed it phosphorylates key epitopes
for subsequent pathological phosphorylations. It is conceivable
that in our cell-based assay, the inhibition of ERK activation
hampers the domino phosphorylation events, thus preventing
the aggregation of Tau soluble molecules. Consistently, the
administration of ERK2 inhibitor was able to rescue motor
deficits and was able to reduce the levels of abnormally
phosphorylated Tau in mouse model of tauopathy (Le Corre et al.,
2006; Hanger et al., 2009). On the contrary, the JNK pathway
mediates the phosphorylation of several Tau residues that are
considered to be involved in the late steps of aggregation and
in particular in the stabilization of aggregates (Kins et al., 2003;
Johnson, 2004; Hanger et al., 2009; Noël et al., 2015). The weaker
effect of D-JNK-1 on aggregation could be explained also by
the fact that treated cells showed a level of phosphorylation
comparable to untreated cells for the S356 and T231 epitopes.
Moreover, this compound could be less easily available to the
cell than PD-901.

These findings suggest that PD-901 might be a promising
compound to be tested for further preclinical studies on AD
and this assumption is strongly corroborated by the encouraging
results obtained in primary hippocampal neurons. One major
concern about this molecule could be its potential toxicity. In
our assay the drug does not alter the viability of cells treated
before or after Tau aggregation indicating that it might be active
also against small Tau inclusions that are considered even more
toxic then big aggregates. However, its toxicity in AD patients
need to be assessed.

The use of the CST-based platform will greatly foster and
accelerate the drug discovery process and the repurposing of
FDA-approved molecules for other diseases might open new
perspective in the treatment of tauopathies.

MATERIALS AND METHODS

Cell Culture and Transfection
HeLa cells were routinely cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) low glucose (Euroclone), supplemented with
10% Fetal Bovine Serum (FBS), 100 U/ml Penicillin and
100 µg/ml Streptomycin. SH-SY5Y cells were routinely cultured
in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12
(DMEM/F-12) (Gibco), supplemented with 10% FBS, 100 U/ml
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Penicillin and 100 µg/ml Streptomycin. The day before the
experiment, cells were seeded at 105 cells per well in six-well
plates or in glass bottom dishes (WillCo-dish) or at 104 cells
per well in 4- and 8-well formats Chamber Slides (Lab-Tek).
DNA transfection in HeLa cells was carried out using Effectene
transfection reagent (QIAGEN) according to manufacturer’s
instructions. DNA transfection in SH-SY5Y cells was carried out
using Lipofectamine 2000 transfection reagent (Thermo Fisher
Scientific) according to manufacturer’s instructions.

SH-SY5Y were differentiated with 10 µM retinoic acid (RA)
(Sigma-Aldrich) for 3 days.

Primary hippocampal neurons were obtained from postnatal
day (P) 0 B6/129 mice as previously described (Siano et al.,
2019). At 48 h after plating cells have been transfected with
Lipofectamine 2000 according to manufacturer’s instructions.

Tau Seeding and Drug Treatment
Recombinant heparin-assembled P301S Tau fibrils were prepared
as described by KrishnaKumar and Gupta (2017) with the
following modifications: for protein purification we used the
buffer A (50 mM MES pH 6,25, 0,5 mM DTT) and buffer
B (50 mM MES pH 6,25, 0,5 mM DTT, 1 M NaCl) with
the HiLoadTM 16/10 SP SepharoseTM High Performance
column (GE Healthcare Life Sciences); the protein was eluted
using a linear gradient 0–100% of buffer B in six column
volume; for protein aggregation 400 µg/ml heparin (Sigma
Aldrich) has been added.

Cells were plated in glass bottom dishes as previously
described and 1.2 µg of P301S Tau fibrils were delivered to cells
with 2 µl of Lipofectamine 2000 transfection reagent diluted in
300 µl of Opti-MEM Reduced Serum Medium (Gibco). Cells
were treated for 2 h, then DMEM low glucose, DMEM/F-12 or
Neurobasal-A were added back to HeLa, SH-SY5Y or primary
neurons, respectively. Scale up and scale down were performed
as needed. The day after Tau seeding, cells have been treated
with 1 µM PD-901 (sc-205427; Santa Cruz Biotechnology) or
6 µM D-JNKI-1 (HY-P0069/CS-5624; MedChemExpress) for
48 h in the presence of fibrils, while 10 µM STS (Cell signaling
technology) or 200 nM OA (Cell signaling technology) were
administered 72 h after Tau seeding for 1.5 h.

Preparation of TritonX 100-Insoluble
Fractions
Cells were lysed with lysis buffer (1% Triton-X 100 in PBS
with protease and phosphatase inhibitors) and the extract was
centrifuged at 16000 × g for 15 min. The supernatant was
designated as Triton X-100 soluble fraction. The pellet was
dissolved in the canonical lysis buffer (1% SDS; 1% Triton-X in
PBS with protease and phosphatase), sonicated and boiled. This
fraction was designated to be Triton X-100 insoluble fraction.

Western Blot, Immunofluorescence and
K114 Staining
For WB analyses, total cell extracts were prepared in lysis
buffer supplemented with protease and phosphatase inhibitors.
For each sample, 30 µg of each fraction has been loaded.

Proteins were separated by 8% or 4–20% Tris-Glycine SDS-PAGE
(Bio-Rad) and electro-blotted onto nitrocellulose membranes
Hybond-C-Extra (Amersham Biosciences). Membranes were
blocked (5% wt/vol non-fat dry milk) and incubated with
the primary antibody (O/N, 4◦C) and with HRP-conjugated
secondary antibodies (1 h, RT). For IF experiments, cells
were fixed with ice-cold 100% methanol for 5 min. Cell
membranes were permeabilized (0.1% Triton-X100 in PBS) and
samples were blocked (1% wt/vol BSA in PBS) and incubated
with the primary antibody (O/N, 4◦C) and with fluorophore-
conjugated secondary antibodies (1h, RT). Slides were mounted
with VECTASHIELD mounting medium (Vector Laboratories).
Primary antibodies for WB were as follows: mouse anti-
Tau (Tau5) 1:1000 (abcam); rabbit anti-pTau (Ser202, Thr205)
1:500 (Thermo Fisher Scientific); rabbit anti-pTau (Ser356)
1:500 (Thermo Fisher Scientific); mouse anti-pTau (Thr231)
1:500 (Thermo Fisher Scientific); mouse anti-GAPDH 1:15000
(Fitzgerald). Secondary antibodies for WB were as follows:
HRP-conjugated anti-mouse or anti-rabbit Abs (Santa Cruz
Biotechnology). Primary antibodies for IF: mouse anti-Tau (Tau-
13) 1:500 (Santa Cruz). Secondary antibodies for IF were as
follows: Alexa Fluor 633; Alexa Fluor 488 (Life Technologies).
For K114 staining, cells were fixed and permeabilized as described
above. Samples were incubated with 1 µM K114 (Sigma-Aldrich)
for 10 min and slides were mounted with VECTASHIELD.

Image Acquisition
Images were acquired with the TCS SL laser-scanning confocal
microscope (Leica Microsystems) using a 63 × /1.4 NA HCX
PL APO oil immersion objective. A heated and humidified
chamber mounted on the stage of the microscope was used
for live imaging experiments in order to maintain a controlled
temperature (37◦C) and CO2 (5%) environment during image
acquisition. An Argon laser was used for ECFP (λ = 458 nm) and
EYFP (λ = 514 nm), K114 (λ = 380 nm), a He-Ne laser for Alexa
Fluor 633 (λ = 633 nm). White scale bar = 10 µm.

FRET and Colocalization Analysis
For sensitized emission FRET experiments, the donor ECFP
was excited at 458 nm and its fluorescence emission was
collected between 470 nm and 500 nm (donor channel) and
between 530 nm and 600 nm (FRET channel). The acceptor
EYFP was excited at 514 nm and its fluorescence emission was
collected between 530 and 600 nm (acceptor channel). The
donor and acceptor fluorophores were excited sequentially in
order to minimize the bleed-through between donor, acceptor
and FRET channels. Bleed-through corrected FRET images were
generated using Youvan’s method (Youvan et al., 1997): FRET
index = IFRET − BTD × ID − BTA × I IA. IFRET , ID and IA are the
images of the sample in the FRET, donor and acceptor channel
after background subtraction, respectively. BTD and BTA are the
contributions to FRET channels of donor and acceptor emission
bleed-through, respectively. BTD parameter was determined by
acquiring images in donor and FRET channels in cells expressing
only the donor (transfected with the pECFP plasmid) and using
the ImageJ plugin “FRET and Colocalization Analyzer” (Hachet-
Haas et al., 2006). BTA parameter was determined by acquiring
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images in acceptor and FRET channels in cells expressing only
the acceptor (transfected with the pEYFP plasmid) that were
then subjected to same process of BTD in the ImageJ plugin.
Typical values in our experimental conditions are BTD = 0.1 and
BTA = 0.2. Normalized FRET (NFRET) images were obtained
using the ImageJ software plugin “pixFRET” (Feige et al., 2005)
by using: NFRET = F index/donor.

For colocalization experiments, images underwent
background subtraction and were analyzed using Costes
approximation method (Costes et al., 2004) in the ImageJ
plugin “Coloc2.”

Statistical Analysis
In Western blot, differences between means were assessed
using non-parametric Mann-Whitney test or Kruskal-Wallis test
followed by pairwise Mann-Whitney test. The corresponding
quantification graphs have been obtained by normalizing each
signal on the housekeeping gene and then by normalizing the
signal of each phospho-epitope on total Tau. We calculated
the fold changes between treated and untreated cells. Four
experimental replicates have been performed. In FRET analysis,
differences between means were assessed using Student’s t-test
or one-way ANOVA followed by Tukey multiple comparisons
test. In colocalization analysis, differences between means were
assessed using Mann-Whitney test. All tests were performed
using Origin (OriginLab, Northampton, MA).

In box-plots, values are expressed as the mean (square) ± SEM
(box) and ± STD (whiskers); in bar-plots, values are expressed as
the mean ± SEM. Significance is indicated as ∗ for p < 0.05, ∗∗

for p < 0.01, ∗∗∗ for p < 0.001 and ∗∗∗∗ for p < 0.0001.
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FIGURE S1 | CST aggregates are comparable to unlabeled Tau aggregates. (A)
CST reporter cells have been visualized by live imaging in the acceptor channel
(yellow) and by Immunofluorescence exploiting and the anti Tau antibody Tau13
(red). Magnification in the IF image highlights aggregates morphology. (B)
Unlabeled Tau reporter cells have been visualized by Immunofluorescence
exploiting the anti Tau antibody Tau13 (red). Magnification in the IF image
highlights aggregates morphology.

FIGURE S2 | The modulation of phosphorylation alters aggregation. (A)
Colocalization of CST aggregates and K114 staining by confocal microscopy in
cells treated with STS or OA. The CST signal is acquired in the YFP channel
(yellow), K114 (magenta), white scale bar = 10 µm. (B) Fluorescence intensity of
K114 positive spots. (∗∗∗p < 0.001 ANOVA one-way test).

FIGURE S3 | The phosphorylation inhibition by PD-901 and D-JNKI-1 reduces
aggregation. (A) Cellular viability in treated cells probed with different
concentrations of drugs. (B) Cellular viability in Tau aggregated cells probed with
drugs. (C) Colocalization of CST aggregates and K114 staining by confocal
microscopy in cells treated with PD-910 or D-JNKI-1. The CST signal is acquired
in YFP channel (yellow), K114 (magenta), white scale bar = 10 µm. (D)
Fluorescence intensity of K114 positive spots. (∗∗p < 0.01, ∗∗∗∗p < 0.0001
ANOVA one-way test).
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