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Innate lymphoid cells (ILCs) belong to a family of immune cells. Recently, ILCs have been

classified into five different groups that mirror the function of adaptive T cell subsets

counterparts. In particular, NK cells mirror CD8+ cytotoxic T cells while ILC1, ILC2, ILC3,

and Lymphoid tissue inducer (LTi)-like cells reflect the function of CD4+T helper (Th)

cells (Th1, Th2, and Th17 respectively). ILCs are involved in innate host defenses against

pathogens and tumors, in lymphoid organogenesis, and in tissue remodeling/repair. In

recent years, important molecular inducible checkpoints (PD-1, TIM3, and TIGIT) were

shown to control/inactivate different immune cell types. The expression of many of these

receptors has been detected on NK cells and subsets of tissue-resident ILCs in both

physiological and pathological conditions, including cancer. In particular, it has been

demonstrated that the interaction between PD-1+ immune cells and PD-L1/PD-L2+

tumor cells may compromise the anti-tumor effector function leading to tumor immune

escape. However, while the effector function of NK cells in tumor is well-established,

limited information exists on the other ILC subsets. We will summarize what is known

to date on the expression and function of these checkpoint receptors on NK cells and

ILCs, with a particular focus on the recent data that reveal an essential contribution of

the blockade of PD-1 and TIGIT on NK cells to the immunotherapy of cancer. A better

information regarding the presence and the function of different ILCs and of the inhibitory

checkpoints in pathological conditions may offer important clues for the development of

new immune therapeutic strategies.
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INTRODUCTION

Innate Lymphoid Cells (ILCs) represent a heterogeneous group of developmentally related
lymphocytes (1). However, distinct aspects differentiate T or B lymphocytes from ILCs. Thus,
unlike T and B cells, ILCs are characterized by the lack of expression of recombination activating
genes (RAG-1 and RAG-2)-dependent rearranged antigen receptors and rely on a set of germ-line
encoded receptors to exert their function (2–5). Thus, while T cells responses require longer time
intervals due to antigen-mediated clonal selection and expansion, ILCs can exert a prompt response
to recognition of conserved molecular patterns from pathogens and infected or injured tissues
(6). For this reason and for their tissue-residency ILCs may represent the leading orchestrator of
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immune responses. ILCs release effector and regulatory cytokines
that play a role in tissue repair and immune defense being
also able to coordinate the adaptive immune responses (7–9).
Thus, ILCs might also play a primary role in sensing cells
that underwent malignant transformation and in initiating anti-
tumor immune response, even though, as will be discussed in this
review, their actual role in tumor suppression is controversial.

ILC DIFFERENTIATION AND
CLASSIFICATION

Recently, five main ILCs groups have been identified according
to the transcription factors required for their development and
function (6, 10). These groups are represented by natural killer
cells (NK), group 1 ILCs (ILC1), group 2 ILCs (ILC2), group 3
ILCs (ILC3), and lymphoid tissue-inducer (LTi) cells. All ILCs
derive from common lymphoid progenitors (CLPs) that mainly
reside in the bone marrow, even though ILCs progenitors are
also found in other tissues, such as fetal liver, tonsils, decidua,
and intestinal lamina propria (9, 11–16). ILCs are divided into
cytotoxic-ILC and helper-ILC, which resemble cytotoxic and
helper T cell subsets (17). In particular, NK cells mirror cytotoxic
CD8+ cells while ILC1, ILC2, and ILC3 resemble the T helper
cell subsets Th1, Th2, and Th17, respectively. Originally NK and
ILC1 represented the group 1 of ILC family because both subsets
express the transcription factor T-bet, and secrete interferon
(IFN)-γ and tumor necrosis factor (TNF)-α (18, 19) (Figure 1).
However, it must be noticed that NK cells, apart from T-bet, rely
also on Eomes expression for their development (20) (Figure 1).
NK cells, the first ILC subset to be identified, circulate in the
bloodstream where they represent about the 15% of peripheral
blood lymphocytes (1, 21). However, tissue-resident NK cells
have also been found in liver, uterus and decidua (15, 22–24).
In humans, two main PB-NK cell subsets can be distinguished
based on the level of CD56 surface expression (25). In particular
CD56dim, expressing high levels of perforin and granzyme, are
characterized by a high cytotoxic activity, while CD56bright cells
secrete inflammatory cytokines and are prevalently found in
tissues and secondary lymphoid organs (26). NK cells play a
major role in innate defenses against viruses and tumors, both by
direct cell killing and by promoting the initiation of inflammation
(27–30). On the contrary, ILC1 express low level of perforin and
are barely found in PB while they mainly reside within tissues,
such as intestine, lung, skin and decidua where they are involved
in the first line of defense against viruses and bacteria (19, 31–
33). ILC2s, which rely on GATA3 expression, are mostly found in
lung, intestine, adipose tissue, skin, and gut (34). Upon activation
in response to epithelia-derived stimuli (mainly IL-33 and IL-
25), they release type-2 cytokines (primarily IL-5, IL-13, and IL-
9) and promote defenses against parasites, viral infections, and
contribute to metabolic homeostasis (7, 31, 35, 36). In addition,
ILC2s produce amphiregulin, an epidermal growth factor family
member involved in tissue repair (17). The most heterogeneous
ILC subset includes fetal LTi and postnatal ILC3, both depending
on the Rorγt transcription factor. They were previously called
“group 3 ILCs” but, because of their different developmental

trajectories, they are now classified into two distinct subsets
(1). LTi cells play a pivotal role in the formation of secondary
lymphoid structures, including lymph nodes and Peyer’s patches
during fetus development (37, 38). After birth, ILC3s can be
found in gut, tonsils, and intestine where, through release of IL-
22, play an important role in the innate immunity against bacteria
and fungi (38, 39). However, LTi and a particular subset of ILC3,
namely NCR+ ILC3, have also been found in decidual tissue
during early pregnancy (33).

While the role of NK cells in anti-tumor immunity has
been widely studied and well-established, ILCs function in
the immune defenses against tumors is still controversial (40).
Their preferential localization at the mucosal surfaces may even
suggest a negative role, as some of their cytokines exacerbate
the development of chronic inflammation and potentially favor
tumor growth. Indeed, IFN-γ released by ILC1 in inflamed
conditions could have detrimental effects by favoring tumor
growth. Similarly, type-2 cytokines produced by ILC2s are
associated with poor prognosis in cancer patients and can
create a pro-tumorigenic environment through the stimulation
of myeloid derived suppressor cells (MDSC) or M2 macrophages
(2, 41, 42). Moreover, ILC3s have been associated with tumor
growth and metastasis in different type of cancers (10). However,
available evidence suggests that ILCs function may depend on
the tumor microenvironment (43–48). Indeed, the different
cytokines, soluble factors, and cell types that characterize the
tumor microenvironment can shape the function of different
immune cells, dampening antitumor immunity (7). In this
context, ILCs plasticity, that allows them to convert from one
subset into another depending on the surrounding stimuli, might
have a negative role in immune defenses. Therefore, a deeper
understanding of NK and ILCs in protective immunity and how
tumor cells and the tumor microenvironment can inhibit their
functions is of extreme interest especially for the development of
new immunotherapies.

NK/ILC CELL RECEPTORS

NK/ILC are able to discriminate between healthy and virus-
or tumor- infected cells through an array of inhibitory and
activating receptors that recognize specific ligands induced
by virus infection or tumor transformation (49–51). Natural
Cytotoxicity Receptors (NCR), which include NKp46, NKp44,
and NKp30, represent the major NK cells activating receptors
(52–57). NCRs can be also expressed by specific ILCs subsets,
with ILC1 expressing NKp46, ILC2 NKp30 and tonsil-derived
ILC3 and mucosal NCR+ ILC3 bearing NKp30 and NKp46,
respectively (58). NKG2D and DNAM-1 represent other
important activating receptors able to recognize ligands that
are de novo expressed or upregulated upon cell stress or tumor
transformation (59–62). Additionally, NK cells express co-
activating receptors, such as NTB-A and 2B4, whose function
depends on the simultaneous co-engagement of one or more
activating receptors (57, 63–65). The function of activating
receptors is counterbalanced by inhibitory receptors that are
mainly represented by the killer Ig-like receptors (KIR) and
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FIGURE 1 | Current view of differentiation and immune function of ILC subsets. ILCs originate from common lymphoid progenitors (CLPs) that give rise to common

innate lymphoid progenitors (CILPs). On one side, CILPs can differentiate into NK precursor (NKP) that, through T-bet and Eomes, will originate NK cells, and on the

other side into common helper innate lymphoid precursors (CHILP) from which originate both Innate lymphoid precursors (ILP) and lymphoid tissue inducer

progenitors (LTiP). ILC1/2/3 subsets and LTi cells differentiate, according to the different transcription factors required, from ILP and LTiP precursors, respectively. As

specified in the text, NK/ILC cells release various cytokines and exert different immune functions.

the heterodimer CD94/NKG2A which recognize the main type
of HLA class-I molecules and function as true checkpoints in
NK cell activation (29, 66–68). Indeed, in normal conditions
these inhibitory receptors recognize HLA-I ligands expressed
on healthy cells preventing their killing. As a consequence,
loss of MHC expression on tumor cells is increasing rather
than decreasing their susceptibility to NK cell-mediated killing
(69). Recently, additional inhibitory checkpoints (such as PD-1,
TIGIT, etc.), which under normal conditions maintain immune
cell homeostasis, have been shown to facilitate tumor escape.
Indeed, different studies demonstrated that, in these pathological
conditions, checkpoint regulators, usually absent on resting
NK cells, can be induced de novo and contribute to the
downregulation of NK cell anti-tumor function upon interaction
with their ligands expressed at the tumor cell surface (70).

In the next paragraphs, we will summarize what is known
to date about the expression and function of these checkpoint
receptors on NK cells and ILCs, with a particular focus on PD-1,
TIGIT, and CD96.

PD-1

PD-1, a member of immunoglobulin superfamily, is a cell surface
inhibitory receptor, functioning as a major checkpoint of T cell
activation. It binds PD-L1 and PD-L2, ligands expressed on
many tumors, on infected cells, on antigen-presenting cells in
inflammatory foci, and in secondary lymphoid organs. Lack of
PD-1 expression results in the suppression of tumor growth
and metastasis in mice (71). The efficacy of PD-1 blockade has

been mainly correlated with the restoration of a preexisting
T cell response. PD-1 expression, initially described on T, B,
and myeloid cells, has been recently described also on NK
cells (72, 73) (Figure 2). In particular, PD-1 expression was
shown on NK cells from some healthy individuals and in most
cancer patients, including Kaposi sarcoma, ovarian and lung
carcinoma and Hodgkin lymphoma, where it can negatively
regulate NK cell function (73–78). The contribution of PD-1
blockade on NK cells in immunotherapy has been demonstrated
in several mouse models of cancer, where PD-1 engagement by
PD-L1+ tumor cells could strongly suppress NK cell–mediated
anti-tumor immunity (79). PD-1 expression was found more
abundant on NK cells with an activated and more responsive
phenotype rather than on NK cells with an exhausted phenotype
(79). However, to date the molecular mechanisms regulating the
expression of this inhibitory receptor on NK cells are not clear.
It has been demonstrated in a mouse model of cytomegalovirus
infection (MCMV) that endogenous glucocorticoids integrate the
signals from the microenvironment to induce PD-1 expression at
the transcriptional level, highlighting the importance of a tissue-
specific cooperation of cytokines and the neuroendocrine system
in this regulation (80). Regarding the cancer setting, however,
recent data suggest that PD-1 is accumulated inside NK cells
and translocated on the cell surface rather than induced at the
transcriptional level (81). However, the stimuli required for its
surface expression are unknown.

Two recent papers described that, in mice, PD-1 expression
identifies ILC committed progenitors, capable of generating
ILC1s, ILC2s, ILC3s, and a small number of circulating NK cells
(82, 83). High expression of PD-1 is lost upon differentiation,
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FIGURE 2 | Schematic representation of checkpoint receptors and their ligands expressed by ILC and tumor cells, respectively. NK cells express multiple immune

checkpoint receptors, such as PD-1, TIM-3, Lag-3, TIGIT, and CD96. ON the other hand, these checkpoint receptors are instead differentially expressed by ILC

subsets. Thus, TIGIT and TIM-3 have been detected only on ILC1 cells, while CD96 is expressed on both ILC1 and ILC2. Surface expression of KLRG1 and PD-1

appears to be restricted to ILC2 cells. The inhibitory ligands expressed by tumor cells, specifically interact with the checkpoint receptors preventing cells activation.

However, different therapeutic approaches, aimed to block receptor/ligand interactions, have been demonstrated to restore the anti-tumor activity of immune cells, as

illustrated in the Figure. The solid and dotted arrows indicate the strong and weak binding affinity of TIGIT for the different ligands, respectively.

but upregulated on effector tissue resident ILC2s upon lung
inflammation (83). In agreement with these findings, it was
shown that mouse ILC2s express PD-1 in different percentages
depending on their tissue origin and that this expression is
enhanced by IL-33 stimulation, reducing their ability to release
cytokines (84). This is particularly relevant in type 2 infections,
such as helminth infection, but the role of PD-1 expression
on ILC2s in the context of cancer remains to be investigated.
Nonetheless, the finding that it is possible to modulate ILC2s
effector functions by using PD-1 blocking antibodies suggests
that targeting this receptor with checkpoint inhibitors could
also affect type 2 responses in cancer patients and favor cancer
growth by restoring the production of type-2 cytokines. The
possible unfavorable effect of this ILC2-mediated response
and its contribution to therapy with checkpoint inhibitors
should be further explored to further improve the efficacy of
cancer treatment.

Recent studies provided the first evidence that also ILC3s
can express a functional PD-1 receptor. In particular, PD-
1 expression has been detected on both NK cells and ILC3s
in malignant pleural effusions of patients with primary and

metastatic tumors (85). Moreover, it has been shown that NK
cells and ILC3s in human decidua express PD-1 during the first
trimester of pregnancy, while the invading trophoblast expresses
PD-L1. The PD-1/PD-L1 molecular interaction regulates ILC3
production of cytokines, suggesting that it may play a regulatory
role at the feto-maternal interface (16).

TIGIT AND CD96

TIGIT (T cell Ig and ITIM domain) and CD96 are co-inhibitory
receptors expressed on subsets of T cells, human NK cells,
ILC1s, and ILC3s (Figure 2). They belong to a group of
immunoglobulin superfamily receptors comprising also the co-
stimulatory receptor DNAM-1 (CD226). They recognize nectin
and nectin-like ligands, frequently upregulated on tumor cells.
CD155 is a ligand shared by the three receptors, with CD96
showing the highest binding affinity (86). These receptors initiate
a pathway that is analogous to the CD28/CTLA-4 one. In
this pathway, ligands and differential receptor:ligand affinities
can fine-tune the immune response. The work of Zhang et al.
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(87) recently demonstrated that TIGIT constitutes a previously
unappreciated checkpoint in NK cells, and that targeting TIGIT
alone or in combination with other checkpoint receptors may
represent a promising anti-cancer therapeutic strategy. It has
been shown that, in patients with colon cancer, TIGIT expression
is increased on tumor associated NK cells. In addition, evidences
has been provided that, beyond the targeting of effector and
regulatory T cells, the mode of action of TIGIT blockade also
involves NK cells (87). In particular, genetic KO or mAb-
mediated blockade of TIGITwas able to unleash both NK cell and
T cell antitumor activity, leading to a substantial improvement
in the control of tumor growth in several preclinical mouse
models. Moreover, TIGIT blockade preventedNK cell exhaustion
in the absence of adaptive immunity, and elicited a potent T
cell–mediated memory response to tumor re-challenge through
a not yet identified mechanism (87). Increased TIGIT and CD96
expression and lower levels of DNAM1 were also detected on
ILC1s induced by TGF-β, contributing to the impairment of their
anti-tumor response (88).

Although the role of TIGIT and CD96 as immune checkpoint
receptors are just beginning to be uncovered, accumulating data
would support the notion that targeting of these receptors for
improving anti-tumor immune responses also involves NK cells
and ILCs.

OTHER CHECKPOINTS ON NK CELLS AND
ILCs

KLRG1 is another inhibitory receptor expressed by mature NK
cells whose expression varies with cell activation. It is a C-type
lectin-like receptor containing one ITIM, and it has been used
as a marker for distinct NK and T-cell differentiation stages (89).
However, KLRG1 knock-out mice showed that it does not play a
deterministic role in the generation and functional characteristics
of these lymphocyte subsets. KLRG1 is also expressed by mast
cells, basophils, eosinophils, and ILC2s, suggesting a role in type
2 immune responses. Experiments in mice showed that in vivo
administration of IL-25 elicits the expansion of a subset of ILC2s
referred to as “inflammatory” ILC2s that are characterized by
high expression of KLRG1 and that participate in the control of
helminth infection (90). In the tumor context, KLRG1 expression
was found on ILC2 associated to the tumor in NSCLC and CRC
(91, 92). While the interaction of KLRG1 and its E-cadherin
ligand has been shown to inhibit human ILC2s in vitro, its
function in vivo remains to be established (90, 93).

Lag-3 and Tim-3 are inhibitory receptors whose expression
has been reported on NK cells and ILC1s (Figure 2). Tim-3 is
a type 1 glycoprotein expressed by mature NK cells, and its
expression is further increased onNK cells inmelanoma and lung
adenocarcinoma patients, impairing NK cell effector functions
(94, 95). More recently, Tim-3 expression has been reported on
human decidual NK cells and also on ILC3s. It was demonstrated
that Tim-3 is expressed in higher percentages in CD56+ILC3s
compared to LTi-like cells, and that its triggering is able to
significantly reduce IL-22 production by CD56+ILC3s (16). Lag-
3 is a negative costimulatory receptor that is homologous to CD4

and binds MHC-II molecules with very high affinity. Although
its role in downregulating T cell proliferation, activation, and
homeostasis is clear, its mechanism of action in NK cells remains
to be dissected in detail (96).

NKG2A is a HLA-E-specific inhibitory receptor that plays an
important regulatory role in NK cell function. Also antigen- or
cytokine-stimulated T cells were shown to express a functional
NKG2A that may antagonize T cell function (97, 98). It has
recently been reported that NKG2A is expressed on NK and T
cells in the tumor bed in many human cancers such as squamous
cell carcinoma of the head and neck (SCCHN) and colorectal
carcinoma (CRC) (99). In addition, its ligand, HLA-E, is
frequently overexpressed in these tumors. NKG2A targeting with
monalizumab (a humanized anti-NKG2A antibody) has been
shown to enhance the anti-tumor immunity mediated by NK
and CD8+ T cells when used as a single agent or in combination
with other therapeutic antibodies such as durvalumab (blocking
PD-L1), or cetuximab (directed against the epidermal growth
factor receptor, EGFR) (99, 100).

In mouse tumor models, it has been shown that TGF-β
signaling in the microenvironment induces NK cell conversion
to ILC1s. These tumor-associated ILC1s express higher levels
of inhibitory receptors (NKG2A, KLRG1, CTLA4, LAG3)
as compared to NK cells. While NK cells favored tumor
immune surveillance in this setting, the higher expression
of immunological checkpoint receptors on ILC1s was
associated with a lower ability to control local tumor growth
and metastasis (88). These evidences suggest that NK cell
conversion to ILC1s displaying a functional impairment could
represent an additional mechanism by which tumor escapes
immune surveillance.

CANCER IMMUNOTHERAPIES

During the past few years, different strategies have been
developed to overcome the immunosuppressive tumor
environment and restore antitumor immune activity. The
use of blocking antibodies against inhibitory receptors or their
ligands, in order to restore the T or NK cell function has been
demonstrated to be an efficient and safe cancer immunotherapy
in the treatment of several tumors (70). Considering the wide
expression of PD-1 on immune cells, most therapies have been
developed in order to block PD-1/PD-L1/2 interactions. Indeed,
some anti-PD-1 mAbs have already been approved by FDA,
showing encouraging results in patients with melanoma or
lung cancer (101, 102). Currently, there are ongoing phase I
and II clinical trials for anti-KIR, -NKG2A, -Tim3, -LAG3,
-TIGIT inhibitory receptors (102). Interestingly, considering
that checkpoint inhibitors can act in synergy with each other,
combinations of mAbs are also under investigation as a
new approach for optimal boost of the immune system. In
particular, clinical trials are investigating the combination
of anti-PD1 therapy with anti-TIM3 or anti-TIGIT blocking
antibodies in different tumors (70, 103). Moreover, encouraging
results obtained in phase II clinical trial for SCCHN using a
combination of monalizumab and cetuximab suggested that,
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targeting checkpoint receptors on NK cells, may be an efficient
tool to complement first-generation immunotherapies against
cancer (99).

Of notice is also the discovery of soluble forms of LAG-
3 (sLAG3) and PD-1 (sPD-1) (70, 104). Different studies have
been focused on the role of sPD-1 as a putative antitumor agent.
Indeed, in mice an increase in anti-tumor activity was observed
upon delivery of sPD-1 encoding plasmid at tumor site (105,
106). Moreover, clinical studies have investigated the presence of
sPD-1 and its correlation with the overall survival of patients with
different cancers (107, 108). It has been shown that sLAG3 is able
to induce NK cytokines (IFN-γ and TNF-α) production in ex vivo
assay (109). Moreover, a phase II clinical trial is investigating the
role of sLAG3 in stimulating the immune system in combination
with anti-PD-1 therapy (70).

CONCLUSIONS AND FUTURE
PERSPECTIVES

It is now evident that NK/ILC family plays a pivotal role in
the immune defenses. Recent studies in murine and human
settings demonstrated that the expression of several inhibitory
checkpoints, that may be detrimental in the tumor context,
is not restricted to T lymphocytes, revealing an important,
yet poorly appreciated, contribution of their expression on
innate immune cells. Thus, in the recent years different
immunotherapy approaches, based on the blockade of inhibitory
NK cell receptors, have been developed in order to unleash
NK cell cytotoxicity. This is particularly important in the
context of tumors that downregulate HLA-I expression and
become invisible to T cells. However, it must be considered
that most inhibitory checkpoints, targeted by mAbs therapies,

are shared by T, NK and ILCs. Therefore, further studies
are required in order to identify all the receptors regulating
NK/ILC cells function for the development of new mAbs-based
immunotherapies. In addition, considering the role exerted by
the tumor microenvironment on ILCs plasticity and functions,
it is necessary to better clarify the role of tumor infiltrating innate
immune cells to improve the selectivity of cancer therapies.
Therefore, also accurate patient analysis and deeper examinations
of tumor biopsies will become key aspects to consider in order
to construct personalized protocols. In this context, studies have
been performed to determine the exact number of biopsies
required to have a more precise PD-L1 expression profile that
would more closely resemble to whole tumor section (110–
112). Thus, despite the great improvement reached in the last
years, further studies are required to investigate the expression
of these checkpoints both in NK cells and on the other
subsets of ILCs, and their precise role in human pathologies in
order to improve the efficacy of immunotherapies thanks to a
more personalized approach.
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