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Most magneto- and electroencephalography (M/EEG) based source estimation
techniques derive their estimates sample wise, independently across time. However,
neuronal assemblies are intricately interconnected, constraining the temporal evolution
of neural activity that is detected by MEG and EEG; the observed neural currents
must thus be highly context dependent. Here, we use a network of Long Short-Term
Memory (LSTM) cells where the input is a sequence of past source estimates and the
output is a prediction of the following estimate. This prediction is then used to correct
the estimate. In this study, we applied this technique on noise-normalized minimum
norm estimates (MNE). Because the correction is found by using past activity (context),
we call this implementation Contextual MNE (CMNE), although this technique can be
used in conjunction with any source estimation method. We test CMNE on simulated
epileptiform activity and recorded auditory steady state response (ASSR) data, showing
that the CMNE estimates exhibit a higher degree of spatial fidelity than the unfiltered
estimates in the tested cases.

Keywords: MEG, EEG, source estimation, spatiotemporal source estimation, spatial filtering, grid-based Markov
localization, LSTM, deep learning

INTRODUCTION

Magneto- and electroencephalography (M/EEG) have excellent sub-millisecond temporal
resolution but limited spatial resolution. The most commonly used M/EEG distributed source
estimation methods, e.g., MNE, dSPM, and sLORETA, are linear and source estimates are
derived time-sample by time-sample, without considering the temporal sequence (Hamalainen
and Ilmoniemi, 1994; Dale et al., 2000; Pascual-Marqui, 2002). In other words, these methods
fit their source estimates directly to the sensor data without assuming any relationship between
the neuronal current distributions across time. This inverse problem is ill-posed because different
current distributions can produce the same or similar electric potentials and magnetic fields around
the head as detected by the limited amount of M/EEG sensors (Helmholtz, 1853; Hämäläinen et al.,
1993). The ill-posedness of the inverse problem along with the low SNR in M/EEG recordings cause
the limited spatial resolution of the MEG and EEG technologies (Samuelsson et al., 2020).
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A few different approaches have been developed to deal with
this ill-posedness. The most common approach involves penalty
terms on the source amplitude (regularization) or constraints
limiting the solution space of the inverse problem. Constraining
the solution space can be achieved by, e.g., assuming spatial
smoothness (Pascual-Marqui et al., 1994; Dinh et al., 2015, 2018)
or imposing focal estimates (Gorodnitsky et al., 1995). Bayesian
methods that employ an estimated source covariance matrix as
a prior have also been employed to restrict the solution space
to sparse source reconstructions (Phillips et al., 2005; Mattout
et al., 2006) or by computing posterior distributions based
on hierarchical priors (Sato et al., 2004; Nummenmaa et al.,
2007; Costa et al., 2017). These methods, however, commonly
assume that the prior probability distribution of the sources
is independent of time. This assumption ignores the temporal
structure of the underlying neural activity that could be used
to help reduce the ill-posedness of the inverse problem by
constraining the solution space.

It is well-known that the human brain is intricately
interconnected and several studies have shown that dynamic
spatiotemporal interactions are central features of brain activity
(Khan et al., 2015). For example, intracranial cortical recordings
show strong local spatial correlations within 10 mm along the
cortex (Bullock et al., 1995; Destexhe et al., 1999; Leopold et al.,
2003) and physiologically motivated spatiotemporal models of
neuronal networks have had success in explaining EEG and MEG
data (Gross et al., 2001; Jirsa et al., 2002; Wright et al., 2003;
Izhikevich and Edelman, 2008). These observations indicate that
neural activity has a distinct spatiotemporal dynamics meaning
that the brain state at any given time is a function of past brain
activity, i.e., its context (Kozhemiako et al., 2020).

There have been efforts to include spatiotemporal dynamics
in M/EEG source estimation but these methods have assumed
certain constrained spatiotemporal interactions. One such
example is the use of Bayesian source estimation methods
that incorporate temporal smoothness constraints, which specify
various prior distributions for the sources in space and time
(Baillet and Garnero, 1997; Greensite, 2003; Somersalo et al.,
2003; Friston et al., 2008; Limpiti et al., 2008; Trujillo-Barreto
et al., 2008; Zumer et al., 2008; Bolstad et al., 2009; Ou et al., 2009;
Sorrentino et al., 2009; Lucka et al., 2012; Vivaldi and Sorrentino,
2016; Calvetti et al., 2019). Mixed-Norm estimates have been
introduced that impose spatial stationarity of the source estimates
within a given time window and quasinorm penalties to
promote spatial sparsity (Gramfort et al., 2012; Gramfort et al.,
2013b; Strohmeier et al., 2014). Linear state-space models have
also been employed that either apply temporally independent
approximations (Galka et al., 2004) or a parametric approach
(Long et al., 2011) to reduce their computational burden.
Recent studies have introduced more realistic spatiotemporal
dynamic models using Kalman filters, which take local cortical
interactions into account (Lamus et al., 2012; Pirondini et al.,
2018) by assuming a linear relationship between subsequent
samples. This approach implicitly includes the estimation history
but with the limiting assumption that past activity is linearly
related to the subsequent activation and directly manifests in the
source estimate. Although these models have shown promise,

the potential of incorporating non-linear long range dynamic
interactions without strict a priori assumptions to improve
inverse solutions has remained largely unexplored.

Meanwhile, recent advances in machine learning have focused
on sequential data sets, e.g., recurrent neural networks (RNN),
enabling contextual data recognition (LeCun et al., 2015;
Schmidhuber, 2015). These new contextual capabilities have been
demonstrated to significantly improve classification accuracy in
natural language processing (NLP) and have been successfully
applied in, e.g., text and speech recognition (Graves et al.,
2013; Chorowski et al., 2015). Although some studies have used
machine learning techniques to classify various brain states or
seizures based on MEG and particularly EEG data, most studies
have done so in sensor space and the use of machine learning
techniques in the M/EEG inverse problem has yet to be fully
explored (Hofmann et al., 2018; Ali et al., 2019; Yu et al., 2019).

Here we investigate whether contextual machine learning
techniques can be applied to reduce the ill-posedness of the
M/EEG inverse problem, thus utilizing the superior temporal
resolution of M/EEG to increase the spatial fidelity of source
estimates. This approach thus constitutes a spatiotemporal
inverse method that is based on deep learning without too
strong explicit a priori modeling assumptions, except for
those intrinsic to MNE, which has been the main focus of
previous spatiotemporal inverse methods. In our approach,
source estimates are spatially filtered, or “corrected,” by a
prediction that has been generated by a network of long short-
term memory (LSTM) cells (Hochreiter and Schmidhuber, 1997)
from a sequence of previous source estimates. LSTM cells
constitute a special type of RNN which has consistently shown
success when applied to data with a temporal structure, e.g., in
natural language processing and grid-based markov localization
problems, and is thus a suitable candidate for a spatiotemporal
inverse operator.

In this study we implemented the technique together
with noise-normalized minimum norm estimates (MNE), and
therefore call this implementation Contextual Minimum Norm
Estimates (CMNE). Importantly, this method can also be
described in the framework of linear algebra, where the weighing
vector is being updated in a time-dependent manner using the
prior context. Conceptually, the main advantage of the CMNE
approach over recursive Bayesian filters like the Kalman filter is
that its model is not explicitly defined and can instead be learned
from the data; RNNs are thus more general than Kalman filter
approaches. We tested our CMNE implementation on simulated
epileptiform and recorded M/EEG data from auditory steady
state response (ASSR) experiments. An earlier preprint version
of this work was posted at arXiv (Dinh et al., 2019).

MATERIALS AND METHODS

Contextual Estimates
We begin by describing our method and the specific
implementation used in this study. The implementation of
the presented method can be found at https://github.com/
chdinh/cmne. We then describe the data analysis and training of
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the LSTM network. We denote vectors and scalars by lowercase
and matrices by uppercase characters.

M/EEG signals are linked to their neural sources by a time-
invariant gain matrix G, which incorporates the forward model:

yt = Gxt + nt, (1)

where the vector yt represents the sensor data at time t, the vector
xt represents the true source distribution, and nt is the noise. In
the following, we will be using the whitened measured signals ỹt
and whitened gain matrix G̃,

ỹt = C−1/2
n yt (2)

and
G̃ = C−1/2

n G, (3)

where Cn is the noise covariance matrix. Most source estimates x̂t
are found by minimizing a cost function,

x̂t = arg min
xt

(∣∣∣∣ỹt − G̃xt
∣∣∣∣2

2 + f (xt)
)

(4)

where the first term is the Euclidean norm of the difference
between the measured data ỹt and the predicted signal G̃xt
based on the model G̃ and source distribution xt, while f (xt)
incorporates a priori assumptions or regularization. In MNE,
f (xt) = λ2xT

t C−1
R xt, where CR is the source covariance matrix

and λ2 is the Tikhonov regularization parameter, which was set
to λ2

= 1/SNR2
= 1/9, assuming an SNR of 3. The solution to

this minimization problem can be written as a product of the
measured data ỹt and an inverse kernel K,

x̂t = Kỹt, (5)

K = CRG̃T
(

G̃CRG̃T
+ λ2I

)−1
, (6)

which is thus time-invariant and is applied sample-wise to
compute the source estimate x̂t from each measurement ỹt. In
dynamic statistical parametric mapping (dSPM) (Dale et al.,
2000), the inverse kernel K is normalized with respect to the noise
energy mapped to each source;

KdSPM =WdSPMK, (7)

where WdSPM is a diagonal matrix;

WdSPMi,i =
1√

diagi
(
KCnKT

) . (8)

In this study, the dSPM estimates were rectified and then
normalized by z-scoring;

q̂ti = (|x̂ti | − µ
(
|x̂ti |

)
)/σ(|x̂ti |). (9)

In CMNE, the estimates are then reweighted with a time-
dependent diagonal weighting matrix whose diagonal elements
are the output of the LSTM network;

bt =WCMNE
t q̂t, (10)

diag(WCMNE
t ) =

∣∣∣LSTM
({

bi
}

i=t−k, ..., t−1

)∣∣∣
/ max

(∣∣∣LSTM
({

bi
}

i=t−k, ..., t−1

)∣∣∣) |t≥k, (11)

WCMNE
t = I |t=0..k−1 (12)

where bt is the final contextual estimate, LSTM is our network of
LSTM cells, k is the number of LSTM cells in our network, which
is a hyperparameter, and WCMNE

t is a diagonal matrix whose
diagonal entries is the prediction output of the LSTM network
after the first k time steps, when the LSTM network has sufficient
history to make a prediction, and the identity matrix before then.
After the first k timesteps, the CMNE estimate itself is used as
input to the LSTM network, forming a Markov chain;

bt =WCMNE
t (bi=t−1,...,t−k)q̂t. (13)

In this approach, we thus use two spatial filters, first the filter
found by the inverse of the noise covariance matrix (dSPM) and
secondly the spatial filter given by the LSTM prediction which
contains the contextual information. These two filters serve
different functionalities; dSPM gives statistical scores with respect
to the baseline while keeping the weights static. In contrast, the
CMNE weights are updated in a recursive fashion. This algorithm
is illustrated in Figure 1.

The employed LSTM network consists of an LSTM cell
sequence, shown in Figure 2, where each cell i has a source
estimate of the corresponding past time step b(q̂t−i) as its
input, which was standardized by z-scoring. For the first k time
steps, before we have enough previous estimates to generate
a prediction, the non-contextual dSPM estimates q̂i are used
(Figure 1). Each LSTM cell consists of four fully connected
neural networks (NN); the “forget gate layer,” “input gate layer,”
“candidate cell state layer,” and “output gate layer.” All of those
networks have sigmoidal activation functions except for the
candidate cell state layer which has tanh activation functions. The
actual output ht of the LSTM cell is a filtered subset of the cell
state St. The number of neurons in each neural network layer d
is another hyperparameter, in addition to the number of LSTM
cells k. There are thus two hyperparameters in this network; k
and d. The LSTM network is followed by a densely connected
neural network layer with linear activation functions, i.e., a linear
transformation with adaptable entries, mapping the output of the
last LSTM cell ht to the prediction bt (Figure 2). The processing
steps of each LSTM cell can thus be summarized in the following
equations (Hochreiter and Schmidhuber, 1997);

ft = σ(bT
t−1Wf + hT

t−1Vf + Bf ) (14)

it = σ(bT
t−1Wi + hT

t−1Vi + Bi) (15)

S̃t = tanh(bT
t−1Ws + hT

t−1Vs + Bs) (16)

ot = σ(bT
t−1Wo + hT

t−1Vo + Bo) (17)

St = σ(ft ∗ St−1 + it ∗ S̃t) (18)
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FIGURE 1 | Schematic illustration of CMNE outlining the major steps. (1) M/EEG data are measured, saved and processed as per standard protocol. (2) Based on
the measurement data yt, a source estimate q̂t is found by dSPM. (3) The dSPM source estimate q̂t is corrected by a prediction b̄

(
q̂t
)

of what the estimate is
expected to be based upon previous activations. This prediction b̄

(
q̂t
)

is found by an LSTM network (explained in step 5). The correction is an elementwise product
∗ of the source estimate q̂t and the prediction b̄

(
q̂t
)
, and the resulting product b

(
q̂t
)

is the CMNE estimate: b
(
q̂t
)
= q̂t ∗ b̄

(
q̂t
)
. (4) The CMNE estimate b

(
q̂t
)

is put
into a stack together with the k previous activations b

(
q̂t−k:t

)
. (5) This stack of previous CMNE estimates is given to the LSTM network to predict the next activation

b̄
(
q̂t+1

)
. This forms an iterative circle, i.e., a Markov chain (MC) (Dinh, 2015). In the first k time steps there is not enough prior history to make a prediction and the

dSPM estimates are therefore not corrected and used as input to the LSTM network instead of the CMNE estimates.

ht = ot ∗ tanh(St) (19)

b̄t = hT
t Wd + Bd (20)

where ∗ denotes elementwise multiplication (Hadamard
product), + elementwise addition, W is the adaptable weights
kernel multiplied with bt−1, V is the adaptable weights kernel
multiplied with ht−1 and B is the adaptable bias. W{f ,i,s,o} are
all ns × d dimensional real matrices, V{f ,i,s,o} are all d × d
dimensional real matrices and B{f ,i,s,o} are all d dimensional
real vectors, where ns = 5124 is the number of sources. Wd
is the adaptable weights kernel matrix of the last densely
connected neural network of dimensions d × ns and Bd is the ns
dimensional bias vector. ft, it, S̃t, ot, St, ht are d-dimensional
and bt is ns-dimensional. The weight matrices and bias vectors
W, V, B were trained using supervised learning and is described
in section “LSTM Network”.

Data Analysis
Data Acquisition
MEG and MRI data were collected after informed consent from
a healthy 27 years old male under a protocol approved by the
Massachusetts General Hospital Institutional Review Board. The
subject had no medical history of hearing loss.

T1-weighted, high resolution MPRAGE (Magnetization
Prepared Rapid Gradient Echo) structural images were acquired
on a 1.5 T Siemens whole-body MRI (magnetic resonance)
scanner (Siemens Medical Systems) using a 32 channel
head coil at MGH.

Auditory steady state response (ASSR) data were recorded
from the subject in the MGH Martinos center MEG core in
Charlestown, MA, using MEG and EEG. It is the same ASSR
data that were used in Samuelsson et al. (2019). The MEG system
was an Elekta-Neuromag (Helsinki, Finland) VectorView 306
channel MEG with 102 triplets consisting of one magnetometer
and two orthogonal planar gradiometers for a total of 204 planar
gradiometers and 102 magnetometers. The EEG was recorded
with a 58 channel EasyCap system (EasyCap GmbH, Germany).
The experiment was performed in a quiet, magnetically shielded
room (Imedco, Switzerland). The recording was bandpass filtered
between 0.1 and 1,650 Hz and sampled at 5,000 samples/s. The
data were then digitally lowpass filtered at a cutoff frequency
of 270 Hz and downsampled to 810 Hz. The ASSRs were
elicited by an amplitude modulated (AM) sound which lasted
1 s. The AM sound was followed by an inter-stimulus interval
of 500 ms plus jitter that was uniformly distributed between
0 and 750 ms, U(0, 0.75). The sound was thus played to the
subject with an inter-trial pause uniformly distributed between
0.5 and 1.25 s duration. The carrier signal was a f0 = 1 kHz
sinusoid and was amplitude modulated to a depth of 90% by
a superposition of a f1 = 40 Hz and f2 = 223 Hz sinusoid;

y (t) =
(
0.1+ 0.9[sin

(
2πf1t

)
+ sin

(
2πf2t

)
]/2
)

sin
(
2πf0 t

)
.

(21)

Data Processing
The structural data were preprocessed using FreeSurfer (Dale
et al., 1999; Fischl et al., 1999). After correcting for topological
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FIGURE 2 | Schematic illustration of the LSTM network architecture. The basic structure encompasses k LSTM cells connected in series, where the cell i receives
input from the previous cell in the form of the cell state Si−1 (Eq. 18) and hidden cell state hi−1 (Eq. 19), and then ends with a fully connected NN layer, which outputs
the prediction of the LSTM network b̄. Apart from the input from the previous cell, each LSTM cell also receives input from the stack of previous estimates bi . Each
LSTM cell consists of four fully connected NN layers (yellow boxes) which all have the same complexity d = 1,280: (i) ft (Eq. 14), the “forget gate layer,” is an NN with
a sigmoid activation function. This layer gates the previous cell states 0 ≤ St−1 ≤ 1 (Eq. 18) depending on ht−1 (Eq. 19) and the previous estimate b

(
q̂t−1

)
(Eq. 20).

(ii) it (Eq. 15), the “input gate layer,” is also a sigmoid layer with the same inputs as ft. It determines which cell state values to update. (iii) S̃t (Eq. 16) is the subsequent
fully connected NN layer with a tanh activation function, which creates candidate cell state values gated by it. The state St of the current cell is formed by “forgetting”
outdated information of the previous cell state St−1 through a multiplication with ft followed by an update with the gated new cell state candidates it ∗ S̃t. (iv) ot is a
fully connected NN layer activated by a sigmoid function. This layer decides which cell states to output. It gates the tanh scaled cell state St. Because all NN layers
have the same number of neurons d except for the final output layer, St and ht are both d-dimensional vectors, see section “Contextual Estimates” for more details.
The illustration is adapted from Olah (2015).

defects, cortical surfaces were tessellated using triangular meshes
with ∼130,000 vertices in each hemisphere. To expose the
sulci in the visualization of cortical data, we used the inflated
surfaces computed by FreeSurfer. 49 bad epochs were dropped
using autoreject (Jas et al., 2017), resulting in 1,653 clean, i.e.,
artifact free, epochs.

Forward Model and Inverse Operator
The dense triangulation of the folded cortical surface provided
by FreeSurfer was decimated to a grid of 2,562 dipoles
per hemisphere, corresponding to a spacing of approximately
6.2 mm between adjacent source locations. A piecewise-
homogenous head conductor model with three compartments
bounded by the inner skull, outer skull and outer skin was
assumed, and the boundary element method (BEM) was used
to compute the gain matrix (Hamalainen and Sarvas, 1989).
The conductivities were 0.3, 0.006, 0.3 for the brain, skull and
scalp, respectively. The watershed algorithm in FreeSurfer was
used to generate the tessellations based on the MRI scan of
the participant.

The initial current distribution estimate q̂t was obtained
using dSPM with loose current dipole orientation constraints
set at 0.2, where 0.0 corresponds to fixed and 1.0 to free
orientations. The regularized (λ = 0.1) noise covariance matrix

used to calculate the inverse operator was calculated over the pre-
stimulus period. All forward and inverse calculations were done
using MNE-C and MNE-python software (Gramfort et al., 2013a;
Esch et al., 2019).

Simulation Study
A simulation study was conducted to test the performance
of CMNE in comparison to dSPM, pure LSTM prediction,
a control estimate, mixed-norm estimate (MxNE) and the
spatiotemporal Kalman approach estimate as presented in
Lamus et al. (2012). In the control estimate, 80 sequential
dSPM distributions were averaged and multiplied with the
dSPM of the following sample, thus mimicking our contextual
estimate but without the LSTM network, which used a
lookback of k = 80 samples. The gain of using LSTM
networks can thus be examined by comparing this control
estimate to CMNE. The simulations were designed to mimic
the propagation of an epileptiform discharge in the left
supratemporal cortex. The source configuration consisted
of 5,124 current dipoles placed over the cortex with free
orientations. Source space noise was added as stationary
Gaussian noise with spectral characteristics taken from EEG
readings, as described in Hunold et al. (2016). The activation
wave form that modeled the epileptiform discharge was a
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FIGURE 3 | Simulation setup. (A) Gray matter surface with five current dipoles in the superior temporal gyrus modeling epileptic foci, color-coded according to their
sequential activation pattern as shown in (B). (B) Time courses of sequentially activated dipoles (A–E) (color-coded graphs) modeling epileptiform discharges and
background activity (lower right). One epoch comprises background activity lasting for 500 ms followed by a propagating epileptiform discharge lasting for 1 s.

spike-wave complex lasting 200 ms, starting sequentially in
the posterior-anterior direction and making one simulated
epileptiform discharge lasting for a total duration of 1,000
ms (Figure 3) and was superimposed on the noise. The
spike-wave complex had an amplitude 5 times larger than
that of the background activity (10 nAm). The propagating
epileptic foci were represented by five current dipoles that were
sequentially activated from posterior to anterior locations on
the supratemporal cortex with a mutual distance of 9 mm.
A total of 250 epileptiform discharges were simulated with a
500 ms interictal period. Figure 3 shows an outline of the
dipole activations.

Performance Metrics
To evaluate the performance of CMNE and compare it to
other related source estimation methods we used the spatial
fidelity evaluation metrics presented in Samuelsson et al.

(2020); we calculated the peak localization error PE and spatial
dispersion SD,

PE = ||ri − rj||2, (22)

j = argmax
i

({∣∣x̂i
∣∣}

i
)
, (23)

SD =
∑Ns

k=1 djk|x̂k|∑Ns
k=1 |x̂k|

, (24)

djk = ||rj − rk||2, (25)

where ri is the location of the active source, rj is the location of the
peak reconstruction amplitude, djk is the distance between rj and
source k and x̂i is, as before, the estimate at source i. To evaluate
temporal fidelity, we calculated Pearson’s correlation coefficient
r in the simulation study between the true source activations
(Figure 3) and the time courses of the estimated reconstructions
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FIGURE 4 | Cross-validation of hyperparameter evaluation. (A) Loss progression: influence of the number of hidden units d in the LSTM network on the performance
with a constant look back of k = 80 samples. (B) Loss progression: influence of the look back, i.e., number of past samples k used in the LSTM network with a fixed
number of hidden units d = 1280. The bar plots depict the cross-validation testing loss after training. The whiskers denote one standard error and the center refers
to the mean loss.

that peaked at the time of the spikes x̂(t)j. We also quantified SNR
in source space as

SNR =
σ
({∣∣x̂t,i

∣∣}
i∈A, t∈S

)2

σ
({∣∣x̂t,i

∣∣}
i∈A, t/∈S

)2 , (26)

where σ is the standard deviation, A is the primary auditory
cortex A1 in the ASSR data and the entirety of the auditory cortex
in the simulations and S is the signal segment defined as the ictal
period in the simulations and as the N1 and P2 responses in the
ASSR data, i.e., the SNR is defined as the standard deviation of
the activation in the auditory cortex during the activation period
divided by standard deviation of the activation in the auditory
cortex outside of the activation period (Shahin et al., 2007).

LSTM Network
The LSTM networks were trained on dSPM source estimates.
The available epochs were randomly divided up in one training
data set (85%) and one validation data set (15%). The training
and validation data sets were thus disjoint. The training data
were generated using overlapping sliding windows in time over
the epochs, each window containing k time steps, one for each
LSTM cell. The LSTM network predicts the subsequent dSPM
activation based on these k past time steps and the ground
truth is the actual dSPM estimate that it is trying to predict.
Prior to the training, the input (past k dSPM estimates) and
ground truth (current dSPM estimate) were standardized by
z-scoring.

We employed the mean-square error (MSE) as the loss
function and stochastic gradient descent (Adam algorithm) as
the optimization method (Kingma and Ba, 2014). The training
was organized in a minibatch setting which split the training
process into small batches comprising a small set of gradient
evaluations, the LSTM weights being updated using the anti-
gradient of the error with respect to the LSTM weights over
each minibatch. The LSTM setup, training and evaluation was

realized in CNTK/TensorFlow in combination with Keras as
the frontend API (Abadi et al., 2015; Seide and Agarwal, 2016;
Chollet, 2018).

Hyperparameter evaluation (the number of hidden units d
in the LSTM network and the number of past time steps k
used as inputs to the LSTM prediction) was done by cross-
validation on the ASSR data. In the cross-validation, the training
data sets amounted to 85% of all data points and the remaining
15% were used for testing; cross-validation was performed 10
times. The training data were grouped into 30 minibatches.
Each minibatch consisted of 30 feature representations, each
feature representation being a randomly selected window of
81 consecutive samples, 80 being used as inputs to the LSTM
network to predict the 81st sample, which is compared to the
ground truth. First, the influence of the LSTM units on the
performance was tested by varying d with a constant look
back of k = 80 samples. The training and testing results are
shown in a loss graph in Figure 4A. Second, the optimal
number of past time steps k was determined with a fixed
number of hidden units d = 1280, which is an appropriate
trade-of between prediction accuracy and training time. The
results are depicted in Figure 4B, which also offers insight
into the genericity of the length of the time window used
as input to the LSTM prediction; generally a longer time
window results in more accurate predictions but comes at a
higher computational cost in the case of the ASSR data. It is
conceivable that other brain states elicited by other stimuli could
affect these results.

Based on this evaluation, we chose a final LSTM network
topology of d = 1280 units and a window size comprising
the past k = 80 samples. The selection of the number of
hidden units was a compromise between training time and
prediction accuracy. We anticipate that a larger number of
units would further improve the network performance. The
choice of k was also a trade-off; shorter windows have fewer
LSTM cells and thus fewer weights to adjust, leading to
faster convergence, while wider time windows are more robust
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to fluctuations. k = 80 was found to be a suitable trade-off
between the two.

RESULTS

Simulation Study
In the simulation study, we trained the LSTM network with
the topology (d = 1280, k = 80) using only 100 minibatch
iterations. Each minibatch comprised 30 evaluations of 25
windows per evaluation. The windows contained 81 consecutive
source estimation samples (80 used as input and 1 as the label),
corresponding to a time window of 0.1 s, whose starting points
were randomly selected from the 212 raw training epochs.

Figure 5 shows a comparison between CMNE, dSPM, MxNE,
LSTM prediction and a control estimate applied to an average
of 20 epochs as well as the Kalman source estimation. CMNE
has the highest SNR (Eq. 26) as seen in the third column of
Figure 5. However, the LSTM prediction is not able to capture the
temporal dynamics of the neural activation patterns adequately;
the waveforms get distorted as seen in the second column of
Figure 5. The correction step that utilizes the current dSPM
estimation compensates for this; the peak of the CMNE estimate
is on time but the ripples following the spikes are suppressed.
The control estimate has a reduced SNR, significantly lower
than the SNR of CMNE, and distorts the waveforms as well as
exhibiting a high degree of spatial dispersion. The Kalman source
estimate and particularly MxNE result in focal estimates with a
low degree of spatial dispersion (column 4), although with lower
noise suppression than the CMNE estimate as evident in the
lower source space SNR.

Figure 6 shows the source reconstruction by dSPM, CMNE,
MxNE, and the Kalman approach at the time of maximal
activation along with the ground truth. The localization error
PE was lower with CMNE as compared to dSPM for all dipole
activations. While MxNE had zero localization error for dipoles
B and D, and the Kalman approach resulted in marginally
lower localization error than CMNE for dipole activations A
and B, CMNE showed a consistent small localization error,
being no larger than 4.5 mm for any activation, whereas the
other spatiotemporal methods showed a highly variant result,
particularly MxNE that resulted in localization errors varying
between 0 and 25 mm. We also notice that while dSPM and the
Kalman approach do not manage to reconstruct the amplitudes
of dipoles C, D, and E, CMNE maintains an adequate amplitude
reconstruction for all active vertices. Furthermore, CMNE
does not result in spurious activations during interstimulus
periods. However, while the activation signals are relatively well
reconstructed with dSPM as measured by the relative amplitude
of the damped oscillations to the peak value, CMNE concentrates
most of the signal energy around the peak activation timepoint,
resulting in a less authentic temporal reconstruction, quantified
in the Pearson’s correlation coefficient which is higher for dSPM
than CMNE for all activations except one. This is, however,
a drawback that CMNE shares with the other spatiotemporal
methods; while MxNE and the Kalman approach adequately
reconstruct the activation in some cases, the reconstruction

is completely off in other activations resulting in a very low
correlation coefficient.

Auditory Steady State Response
The same LSTM network topology was used for processing
of the ASSR data (d = 1280, k = 80) and the results were
compared with dSPM, MxNE, the Kalman approach and the
LSTM prediction alone as well as the control estimate, as was
done in the simulation study. The training was performed
with 250 minibatch iterations each comprising 30 evaluations
containing 20 windows per evaluation. The windows contained
81 subsequent source estimation samples, which were randomly
selected from the 1,405 artifact-free epochs used for training.
Validation was made based on the remaining 248 epochs that
were not used in the training.

Figure 7 shows the results where the estimates have been
found from 20 averaged ASSR epochs. The label A1 marks the
primary auditory cortex. The spatial dispersion of CMNE is
lower than that with dSPM and results in higher SNR (Eq. 26).
The MxNE does not reconstruct any activation in the primary
auditory cortex, likely because the input SNR was too low. The
Kalman estimate shows higher spatial dispersion than CMNE and
does not seem to be able to capture the N1 and P2 responses well.
The control estimate resulted in a very inadequate reconstruction,
showcasing the added benefit of the LSTM prediction.

DISCUSSION

The contextual nature of brain activity as evidenced by
intracranial electrophysiology and functional connectivity
studies (Bullock et al., 1995; Destexhe et al., 1999; Leopold
et al., 2003) in addition to the recent advances in employing
RNN for processing data with a temporal structure, e.g., natural
language processing, inspired the use of LSTM networks in
the M/EEG inverse problem for predicting and correcting
M/EEG source estimates based on their context. In this study,
we developed this technique and applied it to dSPM estimates,
naming the implementation CMNE. The approach presented
here thus constitutes a novel spatiotemporal inverse method
where M/EEG estimates are filtered based on their context
without too strong and explicit a priori assumptions of their
spatiotemporal dynamics.

We tested CMNE on simulated epileptiform and recorded
ASSR data, showing that in the cases tested here, the CMNE
estimates exhibited a higher SNR in source space (Figures 5, 7),
less spatial dispersion (Figure 7) and smaller localization error
(Figure 6), thus implying a higher degree of spatial fidelity,
than the unfiltered dSPM estimates. The other spatiotemporal
methods tested in this study was the Kalman approach proposed
by Lamus et al. (2012) and MxNE. While MxNE and the
Kalman approach showed a high degree of spatial fidelity in
some cases, manifested in very low localization error for some
activations and low spatial dispersion in the simulation study,
the simulation also showed that their performance was highly
variant, e.g., the reconstruction error with MxNE varied between
0 and 25 mm. In comparison to the other spatiotemoral methods,

Frontiers in Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 552666

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-552666 March 3, 2021 Time: 17:21 # 9

Dinh et al. Contextual Minimum-Norm Estimate (CMNE)

FIGURE 5 | Source estimations based on simulated data (20 averaged epochs) are shown in the source space column. The second column from the left shows the
time traces of the estimated dipole with maximal amplitude within the marked area A as depicted in the first column. The third column shows the estimated SNR of
the respective source reconstruction method (Eq. 26) and the fourth column shows the spatial dispersion of the estimates (Eq. 24). The tested source estimation
methods are divided into rows: (a) dSPM estimate q̂t, (b) LSTM network prediction b̄

(
q̂t
)
, (c) CMNE estimate b

(
q̂t
)
, (d) control estimate, which averages the 80

previous estimates and uses that average to correct the current dSPM estimate based on the average of 20 epochs, (e) Kalman estimate, (f) MxNE estimate. All
estimates were rectified and normalized to their peak value.
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FIGURE 6 | Source activation (first row), dSPM estimate (second row), CMNE estimate (third row), Kalman estimate (fourth row) and MxNE (fifth row) of simulated
data displayed over an inflated cortex at the time of peak activations of dipoles (A-E) along with the time traces of the reconstructured dipoles that had the largest
amplitudes at the time of peak activations (marked A-E). The results are based on an average of 20 epochs. All estimates were rectified and normalized to their peak
value.
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FIGURE 7 | Source estimates (first column) of ASSR data based on averages of 20 epochs, time courses (second column) of the source dipole in A1 with the
greatest amplitude over the evoked response, SNR (Eq. 26, third column) and spatial dispersion (Eq. 24, fourth column) of the estimates. The green segments in the
time courses mark the N1 and P2 responses that were used in the calculation of SNR (Eq. 26). The rows correspond to dSPM (a), LSTM prediction (b), CMNE (c),
control estimate (d), Kalman estimate (e), and MxNE (f). All estimates were rectified and normalized to their peak value.

CMNE thus showed a more consistent performance. That was
also observed in the temporal fidelity comparison which showed
that CMNE had a Pearson’s correlation coefficient consistently
above 0.78 with the true activation signal while the Kalman

and mixed norm approaches resulted in a correlation varying
between 0.06 and 0.96. Furthermore, the assessed source space
SNR was significantly higher with CMNE than in any of the other
approaches tested here because of the temporal sparsity. This
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ability of CMNE to extract the signal from noisy data could be the
reason for the superior performance on the ASSR data, where the
Kalman and MxNE approaches performed substantially worse
than CMNE in spite of the steady local activity in the auditory
cortex that occurs during ASSR where one might think the
Kalman and MxNE approaches would do better.

However, the reconstructed time courses of the sources
as predicted by the LSTM network were not always able to
follow steep ascends, which relates to a lowpass characteristic
(Figures 5, 6). Correcting the prediction with the dSPM estimate
based on the sensor data resulted in a higher degree of temporal
fidelity than the LSTM prediction. Even after the correction,
however, the damped oscillations following the spikes in the
simulation study were not faithfully reconstructed. The CMNE
filtering thus resulted in a distortion of the waveform following
the spike, which does not take place to the same extent with
dSPM. This highlights a drawback of CMNE; although we
can achieve enhanced spatial fidelity, the fact that we have a
spatial filter that changes over time can introduce a temporal
phase shift which could distort the waveform reconstruction.
This is, however, a characteristic that CMNE shares with other
spatiotemporal methods and they must therefore be used with
caution when doing temporal analysis, e.g., examining frequency
bands or performing phase synchrony analysis. How to introduce
a zero-phase shift spatial filter based upon spatiotemporal
information without explicit a priori assumptions, such as the
technique presented here, should be the topic of a future study.

In the simulation study, the activation pattern was in the
form of dipoles at different locations activated subsequently.
This activation pattern should be predictable and the CMNE
estimation should therefore give better results over time as
progressively more information on past activity is gathered since
the internal cell state of each LSTM cell is passed forward to
the next cell in the chain. This is indeed the case, as it can
be seen from Figure 6 that while the dSPM estimate exhibited
an increasingly higher degree of spatial dispersion, the CMNE
estimate maintained an adequate amplitude reconstruction. It
should also be noted that we here used the same source mesh
and field computation method in the forward modeling as in the
inverse modeling, which resulted in low localization errors for
some of the inverse methods.

There is no definite rule how to select the number of neurons
in each neural network layer d and the number of LSTM
cells k; cross-validation is normally employed to select these
hyperparameters. Due to limitations in computational resources
and the difficulties in presenting results for many different
hyperparameter values, we resorted here to the conventional
approach of evaluating hyperparameters by cross-validation first
and then employing these hyperparameters throughout the study.
Further evaluation of how the choice of network topology could
influence the result should be explored in future studies. How
well these hyperparameters will generalize to unseen data, such
as a new subject or measurement system or evoked response, will
depend upon the spatiotemporal distribution of the new data.

The distributed source estimates found with dSPM that we use
as inputs to the network makes the input data somewhat more
invariant across subjects and measurement systems than if we had

used sensor space data, which would likely not have generalized
well across measurement systems. However, different subjects,
evoked responses and measurement systems might still require
new training of a subset of the weights. It is also possible that
this spatial and temporal variability could be addressed by using
a larger k and d to account for temporal and spatial variability,
respectively. Larger LSTM networks with a high dropout rate
(>0.7) might thus improve the generalization of CMNE by
increasing the complexity of the model and letting a high dropout
rate mitigate overfitting. This would, however, also increase the
computational complexity of the training which is already quite
high (∼8–12 h on a conventional workstation with dual XEON
E5-2687W, 64 GB RAM, and NVIDIA Quadro 4000). Efficient
transfer learning schemes with automatic hyperparameter search
could potentially be employed as an alternative (Yogatama and
Mann, 2014). It would also be of great interest to see how
the weights in the LSTM network differs in different evoked
responses. It is conceivable that the internal cell states that are
modulated by the weights carry information about the active
brain state. How these are modulated in different tasks that
activate different functional networks is an interesting aspect of
this technique that needs further investigation.

Another aspect that warrants further investigation is
combining the CMNE approach used here with other
spatiotemporal source estimates. For instance, this approach
could be combined with Kalman filtering, e.g., where a Kalman
or extended Kalman filter could be used to update the weights in
the LSTM network, instead of backpropagation.

Finally, there is a wide variety of neural networks and it is
hard to predict, without empirical testing, which implementation
and combination of networks that would yield the optimal
performance given a measure of goodness. It is conceivable that,
for instance, bi-directional LSTM networks using both past and
future estimates would capture the temporal dynamics better
than the unidirectional LSTM network implemented in this
study, or that convolutional neural networks (CNN), commonly
used in computer vision, could be used to increase the spatial
fidelity even further. A fundamental issue with implementing
machine learning methods in M/EEG source estimation is the
lack of ground truth data. It also remains unclear to what degree
the networks can be trained on a variety of subjects and tasks or
if they should be trained separately as was done here. Addressing
these questions will be critical for the future of machine learning
in M/EEG source estimation.

CONCLUSION

A novel technique was introduced where a spatiotemporal LSTM
network is used to predict the source estimate following a
sequence of past estimates. The prediction is then used as a spatial
filter to correct the estimate, which is context dependent since
it is a function of past estimates. Because this technique can be
used in conjunction with any source estimation method that has
a temporal sequence and does not rest on strong and explicit
a priori modeling assumptions, any source estimation method
can be turned into a spatiotemporal method using the technique
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presented here. We tested an implementation of this technique
on dSPM estimates, naming it CMNE, and benchmarked it on
simulations of ictal events and recorded M/EEG data from an
ASSR experiment, showing that it can result in a higher degree
of spatial fidelity as compared to the unfiltered, non-contextual
estimates. We conclude that the results shown here indicate
promise for the emerging field of the application of machine
learning in M/EEG source estimation and warrant more studies
on different network configurations and training procedures.
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