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Abstract

This study aimed to investigate the effects of enriched environment (EE) on promoting angiogenesis and neurobehavioral
function in an animal model of chronic hypoxic-ischemic (HI) brain injury. HI brain damage was induced in seven day-old
CD-1H mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At six weeks of age, the mice
were randomly assigned to either EE or standard cages (SC) for two months. Rotarod, forelimb-use asymmetry, and grip
strength tests were performed to evaluate neurobehavioral function. In order to identify angiogenic growth factors
regulated by EE, an array-based multiplex ELISA assay was used to measure the expression in frontal cortex, striatum, and
cerebellum. Among the growth factors, the expression of fibroblast growth factor-2 (FGF-2) was confirmed using western
blotting. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and a-smooth muscle actin (a-SMA) were also evaluated
using immunohistochemistry. As a result, mice exposed to EE showed significant improvements in rotarod and ladder
walking performances compared to SC controls. The level of FGF-2 was significantly higher in the frontal cortex of EE mice at
8 weeks after treatment in multiplex ELISA and western blot. On the other hand, FGF-2 in the striatum significantly
increased at 2 weeks after exposure to EE earlier than in the frontal cortex. Expression of activin A was similarly upregulated
as FGF-2 expression pattern. Particularly, all animals treated with FGF-2 neutralizing antibody abolished the beneficial effect
of EE on motor performance relative to mice not given anti-FGF-2. Immunohistochemistry showed that densities of a-SMA+

and PECAM-1+ cells in frontal cortex, striatum, and hippocampus were significantly increased following EE, suggesting the
histological findings exhibit a similar pattern to the upregulation of FGF-2 in the brain. In conclusion, EE enhances
endogenous angiogenesis and neurobehavioral functions mediated by upregulation of FGF-2 in chronic hypoxic-ischemic
brain injury.
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Introduction

Hypoxic-ischemic (HI) brain injury is a major cause of damage

to fetal and neonatal brains, and results in considerable morbidity

of neurological diseases with neurodevelopmental impairment

such as cerebral palsy [1,2]. HI produces global brain damage in

the multiple regions of the hemisphere. Among the regions, the

striatum and the cerebellum are main areas involved in

maintaining motor coordination and balance. Additionally, the

brain areas do not function alone, but particularly interact with the

frontal cortex. Because there is a paucity of effective treatments

available for adults who have chronic HI brain injury, rehabili-

tative exercise with exposure to enriched environment (EE) has

been a traditional way as a potential treatment to elicit

neurorestorative effects in the frontal cortex, striatum, and

cerebellum of the brain.

In animal models, EE consisting of running wheels, novel

objects, and social interaction has been shown to enhance

proliferation of resident neural stem/progenitor cells in the

subventricular zone and promote their migration to lesions,

contributing to behavioral recovery [3]. Exposure to EE after

brain injury has also been shown to provide neuroprotective

effects, reducing lesion size and increasing dendritic outgrowth

and the production of trophic factors [4]. Exercise is also known to

change the morphology of different blood vessels along the arterial

tree [5], improving organ blood flow, and causing functional

changes [6]. Exercise induces vascular endothelial growth factor

(VEGF) [7] and neurotrophins such as nerve growth factor, brain-

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e74405



derived neurotrophic factor (BDNF), and neurotrophin-3 [8,9].

Especially, fibroblast growth factor-2 (FGF-2), a strong pro-

angiogenic factor [10], act as a mediator of the positive effects of

exercise on the brain [11]. However, the therapeutic mechanism

for how exercise affects the functional outcomes of the brain has

been largely unknown.

Therefore, we used an animal model of chronic HI brain injury

to investigate 1) whether EE could enhance functional recovery

and 2) the therapeutic mechanism by which EE exerts behavioral

changes in the multiple regions such as frontal cortex, striatum,

and cerebellum. We found that EE elicited neurorestorative effects

through the promotion of endogenous repair processes such as

angiogenesis and the upregulation of FGF-2 in the fontal cortex

and the striatum of the brain.

Materials and Methods

Neonatal hypoxic-ischemic brain injury
Permanent ischemic brain damage was induced in 7-day-old

CD-1H (ICR) mice by unilateral right carotid artery ligation under

anesthesia with ethyl ether. Hypoxic brain injury (8% O2 for

90 min) was also generated as previously described [1,2,12]. Body

temperature was maintained at 37uC while the mice were within

the hypoxic chamber (Figure S1A). One week after the HI brain

injury, a scalp incision was made in order to locate the brain lesion

in the posterolateral area of the right hemisphere.

Animals and housing
Each experimental group was raised in different conditions. EE

mice were housed in a large cage (86676631 cm), which

contained running wheels, tunnels, shelters, and toys. Standard

condition (SC) mice were housed in a standard cage

(27622.5614 cm) as a control group (Figure S1B, C). At 6 week

of age, a total of 30 CD-1H (ICR) mice were randomly assigned to

either an EE (n = 15) or standard condition (SC; n = 15) for

two months until 14 weeks of age (Figure S1D). Total 30 mice

(n = 15 each) which did not receive HI brain injury were also

recruited as no HI group to know the EE treatment effect on

normal condition and to provide a more comprehensible

understanding of the extent of recovery in the subjects [12]. All

animals were housed in a facility accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care

(AAALAC), and given food and water ad libitum with alternating

12-h light/dark cycles.

Ethics Statement
All procedures were in accordance with the guidelines of the

National Institutes of Health’s Guide for the Care and Use of

Laboratory Animals. These regulations, notifications, and guide-

lines originated and were modified from the Animal Protection

Law (2008), the Laboratory Animal Act (2008), and the Eighth

Edition of the Guide for the Care and Use of Laboratory Animals

(NRC 2011). The experimental procedure was approved by the

Institutional Animal Care and Use Committee (IACUC) of

Yonsei University Health System (Permit Number: 2011-0191-

1). All animals were maintained in a temperature-controlled

animal care facility according to animal protection regulations.

They were sacrificed at 2 weeks or 8 weeks after treatment under

ketamine (100 mg/kg) and xylazine (10 mg/kg) anesthesia by

intraperitoneal injection. Thereafter, they were given an intracar-

dial perfusion of 4% paraformaldehyde, and the brain tissues were

harvested. All efforts were made to minimize animal suffering and

the number of animals used.

Behavioral assessment
Rotarod performance. A rotarod test was used in order to

assess motor coordination and balance. All animals received a pre-

operative performance evaluation at five to six weeks of age.

Rotarod tests using constant speeds, 48 and rpm were performed

at two-week intervals until eight weeks after treatment with EE.

The latency of the mice falling from the rod was measured twice

during each test, and individual tests were terminated at a

maximum latency of 300 sec.

Forelimb-use asymmetry test. To evaluate functional

asymmetry resulting from a unilateral brain lesion and the

resulting hemiplegia, the cylinder test and ladder walking test

were performed eight weeks after treatment. In the cylinder test,

the number of times each forelimb came into contact with the

cylinder wall while the mouse was rearing straight was counted

over a period of five minutes. The percentage of hemiplegic

forelimb use was evaluated by the following formula [12]:

fNumber of contacts with contralateral limbz
1
2

Number of contacts with both limbsð Þ
�

Number of contacts with ipsilateral limbz

Number of contacts with contralateral limbz

Number of contacts with both limbs

|100(%)

The difference (D) in the percentage of the number of cylinder

wall contacts by the contralateral limb relative to the preoperative

evaluation was calculated.

In the ladder walking test, the mice were required to walk a

distance of 1 m three times on a horizontal ladder with metal

rungs located different distances apart. The number of slips from

the transverse rungs with each forelimb was measured by

videotape analysis. The difference (D) in the percentage of slips

after treatment compared to the preoperative evaluation was

calculated by counting the number of slips on the transverse rungs

of the ladder relative to the total number of steps taken using the

hemiplegic forelimbs.

Grip strength test. A grip strength test was performed using

the SDI Grip Strength System (San Diego Instruments Inc., San

Diego, CA), which includes a push-pull strain gauge. The grip bar

was a 2-mm-diameter triangular piece of metal wire. Each animal

was held near the base of its tail and brought towards the bar until

the animal could grip the bar with its forepaw. The peak force was

automatically registered in gram-force by the apparatus. The

mean peak force of three trials was used for analysis.

Immunohistochemistry
Immunohistochemistry was performed as previously described

[12]. The brain tissues were frozen and cryosectioned at 16-mm

intervals. To confirm endogenous angiogenesis, the brain sections

of the frontal cortex and the striatum were immunostained with

capillary marker, mouse anti-PECAM-1 (1:200, Abcam) or

smooth muscle actin marker, rabbit anti- a-SMA (1:200, Abcam).

The densities (%) of PECAM-1+ and a-SMA+ cells in the frontal

cortex and the striatum (/mm2) were quantified using the

MetaMorph Imaging System (Molecular Device, Sunnyvale,

CA). PECAM-1+ cell density (%) was also measured in the

hippocampal region which has already been known to be induced

to increase FGF-2 and angiogenesis by physical exercise and EE

[11,13].

FGF-2 Induced by EE Enhances Functional Recovery
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Assessment of growth factors in the brain
To identify the growth factors that are regulated by EE, the

frontal cortex, striatum and cerebellum, main regions involved in

maintaining motor coordination and balance, were lysed in 200 ml

of cold RIPA buffer (50 mM Tris-HCl, pH 7.5, 1% Triton X-100,

150 mM NaCl, 0.1% sodium dodecyl sulfate (SDS), 1% sodium

deoxycholate) with a protease inhibitor cocktail (Sigma). Tissue

lysates were then centrifuged at 13,000 g for 15 min at 4uC. The

supernatant was harvested, and the protein concentration was

determined using a protein assay kit (Bio-Rad, Hercules, CA). An

array-based multiplex ELISA assay (Mouse QuantibodyH array,

RayBio-tech, Norcross, GA) was used to determine which of the

following 10 mouse cytokines or growth factors were detectable in

the frontal cortex: FGF-2, epidermal growth factor (EGF),

granulocyte colony-stimulating factor (G-CSF), hepatocyte growth

factor (HGF), insulin-like growth factor-1 (IGF-1), leptin (LEP),

matrix metalloproteinase-2 (MMP-2), stromal cell-derived factor-1

(SDF-1), vascular cell adhesion protein-1 (VCAM-1), and VEGF.

The expression of the angiogenic factors was detected using an

array scanner (Gene PIXTM 4000B, Axon instruments, USA).

Western blot analysis
For electrophoresis, 50 mg of extracted protein from the frontal

cortex and the striatum were dissolved in sample buffer (60 mM

Tris-HCl, pH 6.8, 14.4 mM b-mercaptoethanol, 25% glycerol,

2% SDS, and 0.1% bromophenol blue), boiled for five minutes,

and separated on a 10% sodium dodecyl sulfate (SDS) polyacryl-

amide gel. Separated proteins were then equally loaded and

transferred onto 0.45 mm invitrolonTM polyvinylidene difluoride

(PVDF) filter paper sandwich using a XCell IITM Blot Module

(invitrogen, Life Technologies, Carlsbad, CA, USA). Blots were

blocked for one hour in Tris-buffered saline (TBS) (10 mM Tris-

HCl, pH 7.5, 150 mM NaCl) plus 0.05% Tween 20 (TBST)

containing 5% non-fat dry milk (Bio-Rad, Hercules, CA, USA) at

room temperature, washed three times with TBST, and incubated

at 4uC overnight with the following antibodies; anti-FGF-2

(1:1000, Abcam, Cambridge, UK), anti-activin A (1:500, Abcam)

and anti-GAPDH (1:1000; Cell Signaling Technology, Beverly,

MA, USA) antibodies in TBST (10 mM Tris pH 7.5, 150 mM

NaCl, and 0.02% Tween 20) containing 5% non-fat dry milk. The

next day, the blots were washed three times with TBST and

incubated for one hour with horseradish peroxidase-conjugated

secondary antibodies (1:5000; Santa Cruz, CA, USA) at room

temperature. After being washed three times with TBST, the

protein was visualized with an enhanced chemiluminescence

(ECL) detection system (Amersham Pharmacia Biotech, Little

Chalfont, UK).

RNA preparation
Total RNA was extracted from mouse whole brain and regional

(basal ganglia, frontal cortex, hippocampus, and cerebrum) brain

using Trizol (Invitrogen Life Technologies, Carlsbad, CA, USA)

according to the manufacturers’ protocols. The RNA samples

were stored at 280uC until further use. For quality control, RNA

purity and integrity were evaluated by denaturing gel electropho-

resis and OD 260/280 ratio, and analyzed with an NanoDrop Lite

spectropotometer (Thermo scientific, Wilmington, DE, USA).

cDNA synthesis
For cDNA systhesis, total RNA was digested using DNase I

(Invitrogen Life Technologies, Carlsbad, CA, USA), synt using the

ReverAid first strand cDNA synthesis kit (ThermoFisher scientific,

Waltham, MA, USA) according to the manufacturer’s instructions.

The cRNA was quantified using an NanoDrop Lite spectro-

potometer (Thermo scientific, Wilmington, DE, USA).

Quantitative real-time RT-PCR
The qRT-PCR was performed in triplicate on a LightCyclerH

480 (Roche Applied Science, Mannheim, Germany) using the

LightCyclerH 480 SYBR Green master mix (Roche Applied

Science, Mannheim, Germany) and the thermocycler conditions

were as follows: amplifications were performed starting with a 300-

s template preincubation step at 95uC, followed by 45 cycles at

95uC for 10 s, 54uC for 10 s and 72uC for 10 s. The melting curve

analysis began at 95uC for 5 s, followed by 1 min at 60uC. The

specificity of the produced amplification product was confirmed by

the examination of a melting curve analysis and showed a distinct

single sharp peak with the expected Tm for all samples. A distinct

single peak indicates that a single DNA sequence was amplified

during qRT-PCR. The primers were as follows: mouse activin bA,

59-ACAGCCAGGAAGACACTGCA-39 and 59-CAGGTCACT

GCCTTCCTTGG-39 [14], mouse GAPDH, 59-AACTTTGGCA

TTGTGGAAG G-39 and 59-ACACATTGGGGGTAGGAACA-

39. GAPDH was used as the internal control. The expression of

each gene of interest was obtained using the 22DDCt method.

Infusion of FGF-2 neutralizing antibody
The mice were infused with 1 mg/ml concentration of FGF-2

neutralizing antibody (Millipore) into the ventricle using AlzetH
micro-osmotic pump (model 1002, 0.25 ml/h, 2 weeks; Durect

Corporation, Cupertino, CA, USA) so as to inhibit FGF-2 in

response to EE or SC. The osmotic pump was changed at 2 week

interval until 8 weeks after EE treatment. Mice received HI brain

injury at 1 week of age were randomly assigned to either SC/anti-

FGF-2 (n = 3) or EE/anti-FGF-2 (n = 4) at 6 weeks of age.

Behavioral assessments of these mice were made as described

above.

Statistical analysis
All data were expressed as means 6 SEM. To evaluate the

effects of EE on the endogenous repair process and functional

recovery, statistical analyses were conducted using the Statistical

Package for Social Sciences (SPSS) version 20.0. Student’s t-test or

one-way analysis of variance (ANOVA) was used for the

comparison of the variables between EE and SC groups at

2 weeks and 8 weeks following the treatment. A P-value ,0.05

was considered statistically significant.

Results

EE improved rotarod locomotor performance
We first determined whether EE could restore neurobehavioral

function using the behavioral rotarod test at two week intervals

after the HI brain injury at constant speeds, 48 rpm and 56 rpm.

The rotarod results prior to EE showed no differences among the

experimental groups. There was a significant improvement in the

rotarod performance of the EE mice compared with the SC

controls at the constant 48 rpm speed four weeks after treatment

(t = 2.287, p = 0.032) (Figure 1A) and at the constant 56 rpm speed

six weeks after treatment (t = 2.379, p = 0.031) (Figure 1B). This

significant neurobehavioral improvement was maintained

throughout the study period up to post-treatment 8 weeks

(t = 2.703, p = 0.014 at 48 rpm; t = 2.781, p = 0.014 at 56 rpm)

(Figure 1A, B).

When we evaluated the rotarod performance in mice with no

HI brain injury to know the EE-induced effect on normal

condition, they promoted locomotor function 8 weeks after EE

FGF-2 Induced by EE Enhances Functional Recovery
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treatment in a similar manner (t = 1.717, p = 0.099) (Figure 1C).

Analysis among four groups demonstrated that EE mice with or

without brain injury significantly improved 48 rpm rotarod

performance relative to those in SC mice with HI brain injury

(one-way ANOVA, F = 3.432, p = 0.023). In addition, the EE mice

with HI brain injury (132.11635.29 sec) almost reached to the

ability of the undamaged EE mice (137.50635.96 sec), showing

the 96.08% of the locomotor function. On the other hand, the

rotarod performance of the SC mice after HI brain injury

(29.50614.0 sec) demonstrated only 45.48% of the locomotor

function of the SC mice with no HI brain injury

(64.87622.27 sec).

EE attenuated forelimb-use asymmetry
To evaluate whether an EE can ameliorate the asymmetry

caused by unilateral brain damage, both cylinder and ladder-

walking tests were performed at 8 weeks after treatment. In the

cylinder test, the percentage of cylinder wall contacts with the

hemiplegic forelimb was not statistically different between the EE

and SC groups, although the EE mice showed more symmetric

pattern of forelimb-use than SC controls (Figure 1C). In the ladder

walking test, the percentage of slips on the transverse rungs of the

ladder relative to the total number of steps by the hemiplegic

forelimbs was significantly decreased in the EE mice

(24.0960.95%) compared to the SC controls (2.0760.75%)

(t = 5.099, p,0.001) (Figure 1D).

EE tended to improve grip strength
As motor power is characteristically weakened by unilateral

ischemic brain damage, we next evaluated whether EE can

increase motor strength by measuring grip strength at 8 weeks

after treatment. Although there was no statistically significant

difference in grip power relative to pre-treatment evaluation

between two groups, EE tended to improve the grip strength

(35.3369.37 gram 6 force) compared to the SC controls

(15.1068.79 gram 6 force) (t = 1.693, p = 0.090) (Figure 1E).

Effects of EE strongly correlate with upregulation of
FGF-2

In order to identify the angiogenic growth factors associated

with the repair processes and functional recovery induced by EE,

we measured the levels of ten specific candidate factors using an

array-based multiplex ELISA assay at both 2 week and 8 weeks

after treatment. Among these factors, the level of FGF-2 in the

frontal cortex was significantly elevated in mice exposed to an EE

(566.06262.81 pg/ml) compared with SC mice (211.066

19.47 pg/ml) at 8 weeks after treatment (t = 2.178, p = 0.043)

(n = 5 each). Analysis among the groups demonstrated that only

EE for 8 weeks significantly increased the level of FGF-2 in the

frontal cortex compared with the other groups (one-way ANOVA,

F = 5.362, p = 0.004) (Figure 2A). However, other factors such as

EGF, G-CSF, HGF, IGF-1, LEP, MMP-2, SDF-1, VCAM-1, and

VEGF were not elevated in EE mice compared to the levels in the

SC controls (Figure S2). On the other hand, the level of FGF-2 in

the cerebellum was upregulated in EE mice compared with SC

mice (317.38614.44 pg/ml versus 258.08620.75 pg/ml at

2 weeks after treatment, t = 2.346, p = 0.057; 321.9568.0 pg/ml

versus 185.49627.58 pg/ml at 8 weeks after treatment, t = 4.785,

p = 0.003) (n = 4 each). Analysis among the groups also showed

that EE for 2 weeks and 8 weeks significantly increased the level of

FGF-2 in the cerebellum (F = 11.222, p = 0.001) (Figure 2C).

Figure 1. Environmental enrichment improved neurobehavioral function. (A, B) Rotarod tests were performed at 2-week intervals. Rotarod
tests at constant speeds (48 rpm and 56 rpm) showed that the rotarod performance of mice treated with EE (HIE-EE) was significantly improved
compared to those of HIE-SC until 8 weeks after exposure to EE (*p,0.05, n = 15 each). (C) Rotarod performance in mice with no HI brain injury also
promoted locomotor function 8 weeks after EE treatment, demonstrating that EE mice with or without brain injury significantly improved 48 rpm
rotarod performance relative to the SC mice with HI brain injury (*p,0.05, n = 15 each). Other behavioral tests such as the cylinder (D), ladder walking
(E) and grip strength tests (F) were performed before EE and at 8 weeks after EE. Ladder walking test showed that percentage of slip late was
significantly decreased in the EE mice (*p,0.05, {p,0.1, n = 10 each). HIE: hypoxic-ischemic encephalopathy, EE: enriched environment, SC: standard
cages.
doi:10.1371/journal.pone.0074405.g001
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Western blotting confirmed this FGF-2 upregulation in the

striatum at 2 weeks after exposure to EE (1.70-fold, t = 2.419,

p = 0.036) (Figure 3A). The FGF-2 in the cerebellum is also highly

expressed 1.44-fold at 2 weeks (t = 1.403, p = 0.180) and 1.38-fold

at 8 weeks after EE treatment (t = 1.832, p = 0.089) (Figure 3B).

On the other hand, FGF-2 in the frontal cortex significantly

increased at 8 weeks after exposure to EE (1.62-fold, t = 3.118,

p = 0.011). Analysis among the groups also demonstrated that only

EE for 8 weeks significantly increased the level of FGF-2 in the

frontal cortex compared with the other groups (F = 7.042,

p = 0.002) (Figure 3C). Taken together, this result suggests that

FGF-2 expression in the striatum started to be upregulated earlier

than in the frontal cortex. The upregulation of FGF-2 in the

frontal cortex, striatum, and cerebellum at 8 weeks post-treatment

may have a key role in neurorestorative effect when functional

outcomes were maximized in mice with EE.

EE enhances activin A, a downstream factor for FGF-2
Based on a report showed that FGF-2 strongly enhanced the

induction of activin A which is essential for the effects of FGF-2 in

brain injury [15], we performed real-time PCR and western

blotting analysis to check whether expression of activin A was

similarly upregulated as a FGF-2 expression pattern. Real-time

PCR demonstrated that mRNA of activin A was elevated in

cerebral hemisphere at 8 weeks after treatment compared with SC

mice (1.72-fold, t = 2.077, p = 0.057). When the activin A was also

assessed in regional brain using western blotting analysis, it

confirmed that activin A was upregulated in striatum (1.74-fold,

t = 3.105, p = 0.025), cerebellum (2.15-fold, t = 1.643, p = 0.131) at

2 weeks after treatment, and in frontal cortex (3.15-fold, t = 3.422,

p = 0.009) at 8 weeks after exposure to EE (Figure 4A–C). These

esults suggest that EE enhances the expression level of activin A in

a same pattern as the EE-induced upregulation of FGF-2, which

may have a key role in neurorestorative effect by exposure to EE.

Infusion of FGF-2 neutralizing antibody reverses
functional recovery

To confirm the relationship between EE-induced FGF-2

upregulation and behavioral benefits, we assessed the effects of

EE while simultaneously inhibiting FGF-2. Subgroups of EE and

SC mice with HI brain injury were infused chronically with a

FGF-2 neutralizing antibody. We demonstrated that all animals

treated with anti-FGF-2 abolished the beneficial effect of EE on

motor performance when evaluated with mice not given anti-FGF-

2. Namely, mice treated with EE/anti-FGF-2 exhibited the same

rotarod latency (47.6610.8 sec) as those of SC (29.50614.0 sec)

and SC/anti-FGF-2 (52.4611.9 sec) whereas rotorod latency in

EE mice not given anti-FGF-2 (132.11635.29 sec) was signifi-

cantly increased compared to the other groups 8 weeks after

treatment (one-way ANOVA, F = 4.345, p = 0.009) (Figure 5A).

Additionally, mice treated with EE/anti-FGF-2 showed the

decreased grip strength (7.7863.76 gram 6 force) as those of

SC (15.168.79 gram 6 force) and SC/anti-FGF-2 (4.4463.62

gram 6 force) whereas grip strength of EE mice not given anti-

FGF-2 (35.3369.37 gram 6 force) was significantly increased

compared to the other groups 8 weeks after treatment (F = 2.917,

p = 0.038) (Figure 5B).

EE enhances endogenous angiogenesis
The effect of treatment with EE in inducing endogenous

angiogenesis in the frontal cortex, striatum, and hippocampus was

assessed immunohistologically by quantifying the densities of a-

SMA+ and PECAM-1+ cells at both 2 week and 8 weeks after

treatment (n = 5 each) (Figure 6 and Figure 7). Two weeks after

treatment, the group treated with EE started to show an increase

in PECAM-1+ angiogenesis in the frontal cortex (0.02560.007%,

t = 2.238, p = 0.046) compared with the SC controls

(0.00760.003%) (Figure 6J). Eight weeks post-treatment, the

densities of a-SMA (0.04560.012%, t = 2.105, p = 0.050) and

PECAM-1 (0.03760.008%, t = 3.619, p = 0.004) in the frontal

cortex were significantly increased in the EE mice compared with

the SC controls (0.01760.005%, 0.00760.002% respectively)

(Figure 6I, J). Analysis among the groups also showed that EE for

2 weeks and 8 weeks significantly increased the densities of

PECAM-1 in the frontal cortex (one-way ANOVA, F = 6.522,

p = 0.001) (Figure 6J).

In the striatum, the densities of a-SMA (0.14560.030%,

t = 2.083, p = 0.052) and PECAM-1 (0.238 6 0.060%, t = 2.495,

p = 0.023) were also increased in the EE mice compared with the

SC controls (0.06960.021%, 0.07660.025% respectively) at

2 weeks after treatment (Figure 6S, T). Likewise, the densities of

PECAM-1 (0.16960.033%) in the striatum were significantly

increased in the EE mice at 8 weeks after treatment, compared

with the SC controls (0.03760.007%) (t = 3.920, p = 0.003)

(Figure 6T). Analysis among the groups demonstrated that EE

for 2 weeks significantly increased the striatal densities of a-SMA

(F = 5.257, p = 0.004) and PECAM-1 (F = 6.186, p = 0.002)

(Figure 6S, T). Additionally, the capillary count was increased in

the dentate gyrus of the hippocampus at 8 weeks following the

exposure to EE (Figure 7A). In particular, the densities of

PECAM-1 (0.536360.133%) in the EE mice were significantly

higher than those in the SC controls (0.24060.041%) (t = 2.132,

p = 0.047) (Figure 7B). Taken together, the histological findings of

this study exhibit a similar pattern to the upregulation of FGF-2 in

the brain.

Discussion

Previous studies have demonstrated the beneficial effects of

exercise in improving balance, muscle strength, ambulatory

function, and cardiovascular fitness in patients with stroke and

Parkinson’s disease [16,17]. In addition with effects on physical

outcomes, EE significantly improves brain plasticity and functional

outcomes with expression of neurotrophic factors and neurogen-

esis in animal models of ischemic stroke [3,4,18], Huntington’s

disease [19], and Alzheimer’s disease [20]. Several studies have

reported that EE can enhance learning and memory, neurogenesis

in the dentate gyrus [21,22], gliogenesis [23], neurite branching

[23,24], and increase the levels of growth factors and neurotrans-

mitters in the cortex and hippocampus [25,26]. Exercise also

upregulates neurotrophic factors including BDNF and IGF-1,

which may render brain tissue resistant to degenerative events

[27]. Animals that exercise after brain injury show an increase in

the expression of neurotrophic factors, such as BDNF, HGF, and

FGF-2, which regulate neuronal survival and differentiation,

synaptic plasticity, as well as angiogenesis in the brain [28,29].

In this study, we examined the restorative effects of EE

consisting of running wheels, novel objects, and social interaction

at five weeks after neonatal HI brain injury, the equivalent of six-

week adult age. The main purpose of our study was to verify the

therapeutic mechanism by which EE induces functional recovery

in an animal model of chronic HI brain injury. We demonstrated

that, eight weeks after treatment with EE, neurorestorative effects

and maximal functional outcomes were seen in various behavioral

assessments such as rotarod performance and ladder walking tests.

The grip strength test also revealed that EE could systemically

improve bilateral grip strength. In particular, the expression of
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FGF-2 among various angiogenic growth factors was enhanced in

the frontal cortex of EE mice at post-treatment eight weeks when

significant functional recovery was disclosed.

Multiplex ELISA demonstrated that only FGF-2, but not other

factors, was significantly elevated in mice exposed to EE compared

with SC mice. Therefore, the upregulation of FGF-2 might be an

important factor in functional recovery.

Housing animals in an EE several weeks before brain injury

results in a 50% increase in the expression of FGF-2 and

attenuates functional deficits [30]. Moreover, forced use of one

forelimb by constraining the other forelimb upregulates the

expression of FGF-2 [31]. FGF-2 is also a potent chemotactic

factor for endothelial cells [32], and it plays a role in modulating

recovery from cerebral injury [33,34]. FGF-2 was found to

improve sensorimotor deficits and to reduce infarct size following

Figure 2. Environmental enrichment strongly upregulated FGF-2 level. (A-D) Two and 8 weeks after exposure to EE, the frontal cortex and
cerebellum were lysed, and the levels of various angiogenic growth factors including FGF-2 were determined by multiplex ELISA assay (QuantibodyH
array). (A) FGF-2 level significantly increased in HIE-EE mice at 8 weeks after treatment (*p,0.05, n = 5 each). (B) Representative images of FGF-2 in the
frontal cortex using the multiplex ELISA assay. (C) On the other hand, the level of FGF-2 in the cerebellum was upregulated in EE mice at 2 weeks and
8 weeks after treatment (*p,0.05, n = 4 each). (D) Representative images of FGF-2 in the cerebellum using the multiplex ELISA assay. HIE: hypoxic-
ischemic encephalopathy, EE: enriched environment, SC: standard cages, (+): positive controls.
doi:10.1371/journal.pone.0074405.g002

Figure 3. Western blot analysis confirmed FGF-2 upregulation in the brain. (A–C) Analysis of FGF-2 level in the striatum, cerebellum, and
frontal cortex using western blotting. (A) FGF-2 significantly increased in the striatum at 2 weeks after exposure to EE (*p,0.05, n = 3 each). (B) The
FGF-2 in the cerebellum is also highly expressed at 2 weeks and 8 weeks after EE treatment (n = 3 each). (C) On the other hand, the FGF-2 was
significantly upregulated in the frontal cortex at 8 weeks after exposure to EE (*p,0.05, n = 3 each). HIE: hypoxic-ischemic encephalopathy, EE:
enriched environment, SC: standard cages.
doi:10.1371/journal.pone.0074405.g003
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cerebral ischemia in adult rats [35], and neutralizing antibodies to

FGF-2 blocks recovery from motor cortex lesions [36]. The role of

FGF-2, which was significantly upregulated in the present study, as

a mediator of the effects of exercise on the brain is supported by

demonstrations that FGF-2 is not only a strong pro-angiogenic

factor [10], but is also a neurotrophic factor in the adult brain

[34,37]. FGF-2 can be induced by physical exercise and regulated

in an activity-dependent fashion, which increases the possibility

that FGF-2 is involved in behavioral function [11].

As a therapeutic mechanism, exercise induces angiogenesis in

motor cortex of the rat [38,39]. Treadmill exercise has been

demonstrated that it could induce striatal angiogenesis and reduce

neurologic deficits in ischemic rats [40]. The exercise-induced

angiogenesis is specific to areas activated by the training [39].

Voluntary physical activity also improves long-term stroke

outcome related with augmentation of angiogenesis and cerebral

blood flow within the ischemic striatum [41]. In patients with

ischemic stroke, the higher cerebral blood vessel counts correlated

with longer survival [42]. Collateral growth and new capillaries

support restored perfusion in the ischemic border after stroke and

promote functional recovery [43].

The present study showed that the densities of PECAM-1+ and

a-SMA+ cells in the frontal cortex and the striatum of EE mice

were significantly increased after treatment, demonstrating a

similar pattern to the upregulation of FGF-2. However, the newly

generated vessels were not shown in the frontal cortex and the

Figure 4. Western blot analysis also confirmed activin A upregulation in the brain. (A–C) Analysis of activin A level in the striatum,
cerebellum, and frontal cortex using western blotting. (A) Activin A was significantly upregulated in the striatum at 2 weeks after exposure to EE
(*p,0.05, n = 3 each). (B) The activin A in the cerebellum is also highly expressed at 2 weeks after EE treatment (n = 3 each). (C) On the other hand,
activin A significantly increased in the striatum at 8 weeks after exposure to EE (*p,0.05, n = each). HIE: hypoxic-ischemic encephalopathy, EE:
enriched environment, SC: standard cages.
doi:10.1371/journal.pone.0074405.g004

Figure 5. Infusion of FGF-2 neutralizing antibody reversed functional recovery. (A, B) To confirm the relationship between EE-induced
FGF-2 upregulation and behavioral benefits, subgroups of EE and SC mice with HI brain injury were randomly assigned to either SC/anti-FGF-2 (n = 3)
or EE/anti-FGF-2 (n = 4). (A) All animals treated with anti-FGF-2 abolished the beneficial effect on motor performance relative to EE mice not given
anti-FGF-2 at 8 weeks after treatment (*p,0.05). (B). Mice treated with EE/anti-FGF-2 also showed the decreased grip strength whereas grip strength
of EE mice not given anti-FGF-2 was significantly increased compared to the other groups (*p,0.05).
doi:10.1371/journal.pone.0074405.g005
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striatum, when stained with PECAM-1 and a-SMA, and

bromodeoxyuridine (BrdU) in an additional group of subjects

received an i.p. injection of BrdU (50 mg/kg) once a day for

12 days beginning one day after exposure to an EE (Figure S3).

This result suggests that endogenous angiogenesis might be

mediated by capillary sprouting, bridging, and intussusception

from pre-existing vessels rather than the newly generated vessel

formation after the EE treatment. Because vascular smooth muscle

cells play critical roles in vascular maturation and arteriogenesis

while endothelial cells can initiate angiogenesis [44,45], overex-

pression of both endothelial cell marker PECAM-1 and smooth

muscle cell marker a-SMA shown in this study suggests that EE

enhances the process from angiogenic initiation to vascular

maturation.

Taken together, EE enhances endogenous angiogenesis and

neurobehavioral functions mediated by the mechanism of

upregulation of FGF-2. Interestingly, FGF-2 in the striatum

significantly increased at 2 weeks after exposure to EE earlier than

the increment at 8 weeks after treatment in the frontal cortex. The

striatum is strongly connected with the cerebral cortex, and are

associated with a variety of functions, including posture and motor

control, coordination, locomotion, procedural learning, and

cognitive and emotional functions [46,47]. This study suggests

that the striatum is sensitively affected by EE which contains a

complex of physical, cognitive, and social stimuli. The area in the

brain may play an important role in functional recovery by

rehabilitative exercise [48].

Figure 6. Environmental enrichment enhanced endogenous angiogenesis in the frontal cortex and striatum. (A–H, K–R) Two and
8 weeks after exposure to EE, the densities of a-SMA+ cells and PECAM-1+ cells were quantified using the MetaMorph Imaging System. Scale bar
50 mm. (I) The density of a-SMA+ cells was significantly higher in frontal cortex of EE mice than SC controls 8 weeks after treatment (*p,0.05, n = 5
each). (J) The HIE-EE mice also showed an increase in PECAM-1+ angiogenesis 2 weeks and 8 weeks after treatment (*p,0.05, n = 5 each). (S, T) The
densities of a-SMA+ cells (S) and PECAM-1+ cells (T) were higher in the striatum of EE mice than SC controls at 2 weeks after treatment (*p,0.05,
{p,0.1, n = 5 each). (T) The densities of PECAM-1+ cells were also significantly increased at 8 weeks following the EE treatment (*p,0.05, n = 5 each).
HIE: hypoxic-ischemic encephalopathy, EE: enriched environment, SC: standard cages.
doi:10.1371/journal.pone.0074405.g006

Figure 7. Environmental enrichment also enhanced endogenous angiogenesis in the hippocampus. (A, B) After exposure to EE, the
capillary count and densities of PECAM-1+ cells were quantified using the MetaMorph Imaging System. Scale bar 150 mm. (A) Capillary count was
increased in the dentate gyrus of the hippocampus at 8 weeks following the exposure to EE. (B) In particular, the densities of PECAM-1 in the EE mice
were significantly higher than those in the SC controls at 8 weeks after treatment (*p,0.05, n = 5 each). HIE: hypoxic-ischemic encephalopathy, EE:
enriched environment, SC: standard cages.
doi:10.1371/journal.pone.0074405.g007
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Conclusion

The upregulation of FGF-2 induced by EE promoted functional

recovery through enhanced angiogenesis in an animal model of

chronic HI brain injury. Our data confirmed the established link

between neurobehavioral/histological outcomes and the upregula-

tion of FGF-2 following EE. Taken together, our results suggest

that a rehabilitative strategy with EE could be effective for the

treatment of CP, and that it may also be applied to the treatment

of other neurological diseases including adult ischemic stroke.

Supporting Information

Figure S1 Experimental design. (A) After ischemic brain

damage was induced by unilateral right carotid artery ligation in

7-day-old CD-1H (ICR) mice, hypoxia was induced at 8% O2 for

90 min using nitrogen gas (N2) and monitored using oximetry.

After, at postnatal week 6 (P42), mice were housed in (B) standard

cage (27622.5614 cm) or (C) enriched environment (866766
31 cm) including tunnels, shelters, toys, running wheels for

voluntary exercise, and social interaction. (D) Schematic timeline

of the experimental procedures.

(EPS)

Figure S2 Angiogenic growth factor expression in the
frontal cortex. (A–I) Two and 8 weeks after exposure to EE, the

frontal cortex was lysed, and the levels of various angiogenic

growth factors were determined by multiplex ELISA assay

(QuantibodyH array). However, EE did not upregulated various

growth factors except the FGF-2. HIE: hypoxic-ischemic enceph-

alopathy, EE: enriched environment, SC: standard cages.

(EPS)

Figure S3 Environmental enrichment did not generate
new vessels. (A, B) When stained with PECAM-1 and a-SMA,

and bromodeoxyuridine (BrdU) in an additional group of subjects

received an i.p. injection of BrdU (50 mg/kg) once a day for

12 days beginning one day after exposure to an EE, the newly

generated vessels were not shown in the frontal cortex and the

striatum, suggesting that endogenous angiogenesis might be

mediated by capillary sprouting, bridging, and intussusception

rather than the newly generated vessel formation after the

treatment.

(EPS)
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