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A Mathematical Model to Predict HIV Virological Failure
and Elucidate the Role of Lymph Node Drug Penetration

S Sanche1*, N Sheehan1,2,3, T Mesple�de3, MA Wainberg3, J Li1† and F Nekka1†

Preventing virological failure following HIV treatment remains a difficult task that is further complicated by the emergence of
drug resistance. We have developed a mathematical model able to explain and predict HIV virological outcomes for various
compounds and patients’ drug intake patterns. Compared to current approaches, this model considers, altogether, drug
penetration into lymph nodes, a refined adherence representation accounting for the propensity for long drug holidays,
population pharmacokinetic and pharmacodynamic variability, drug interaction, and crossresistance. In silico results are
consistent with clinical observations for treatment with efavirenz, efavirenz in association with tenofovir DF and emtricitabine,
or boosted darunavir. Our findings indicate that limited lymph node drug penetration can account for a large proportion of
cases of virological failure and drug resistance. Since a limited amount of information is required by the model, it can be of
use in the process of drug discovery and to guide clinical treatment strategies.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 469–476; doi:10.1002/psp4.12200; published online 27 May 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� The in vitro potency of HIV drugs offers no guaran-

tee that in vivo outcomes will be positive. Different viro-

logical outcomes can be observed for individuals

having similar drug adherence, a perplexing situation

for clinicians on the cause of such a discrepancy.
WHAT QUESTION DID THIS STUDY ADDRESS?
� We formulated a Quantitative Systems Pharmacol-

ogy model to explain and predict the risk of virological

failure and the emergence of drug resistance, consider-

ing different antiretroviral treatments and drug adher-

ence patterns.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� Under various partial adherence scenarios, the
developed model improves predictions of virological fail-
ure with HIV treatment. The results indicate that limited
lymph node drug penetration can account for virological
failure and resistance.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The model helps delineate the role of the involved
biopharmacological mechanisms and drug adherence
in therapeutic failure. Prior to human testing, it can be
applied to help choose the right dosing of new drugs or
their combinations.

Although potent antiretroviral drugs efficaciously inhibit HIV

replication, monotherapy with these drugs has been histori-

cally associated with high rates of treatment failure due to

the development of drug resistance. This illustrates how the

in vitro potency of a drug can poorly reflect its clinical effi-

cacy. Efavirenz, a nonnucleoside reverse transcriptase

inhibitor, is a typical example for which clinical outcomes

differ from results obtained in tissue culture infection

assays. Although viral growth is significantly inhibited in

vitro when drug concentrations are similar to those

observed in the plasma of patients,1,2 resistance to efavir-

enz is frequently observed by clinicians. Accordingly, the

product monograph advises the use of efavirenz only as

part of combination therapy.3

Unfortunately, efavirenz is not an exception, and clinical

studies may be the only reliable way to provide information

about the clinical efficacy of antiretroviral treatments. Such

studies generally involve high costs that may discourage

the initiation of clinical trials with novel treatment regimens.

The resulting lack of knowledge around the efficacy of dif-

ferent treatments inevitably hampers clinical practice.

Indeed, when facing a patient experiencing treatment fail-

ure, clinicians are limited to well-known treatment options

that may be suboptimal both for the health of the patient

and economically. Risk evaluation from preliminary data

would help clinicians to anticipate the outcomes of various

treatments, thereby guiding a better choice. In addition to

clinicians, drug developers could also benefit from clinical
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predictions by helping them plan (or avoid) costly and
lengthy clinical trials.

The potential gain resulting from the predictive ability of
mathematical modeling motivated the work presented herein.
Accordingly, our objective was to formulate a model that
would assess the risk of virological failure and drug resis-
tance from antiretroviral use. As the starting point, we used
a mathematical model elaborated by Rosenbloom et al.4 The
model successfully shows how the relationship between
drug intake and virological outcomes varies for different
drugs. Unfortunately, the model falls short of explaining
issues such as the lack of efficacy of efavirenz monotherapy:
it foretells an absence of virological failure for patients having
moderate or high drug adherence, despite clinical expecta-
tions and in vivo evidence.5 We took this discrepancy as a
learning opportunity, and revisited this mathematical model.

The approach adopted herein complies with the integra-
tive vision advocated in Quantitative Systems Pharmacol-
ogy.6,7 In particular, the most up-to-date knowledge in
immune physiology, antiretroviral pharmacology, and viral
kinetics was incorporated into a model that describes the
processes linking drug use to treatment effect. Since the
current literature only partially informs these processes,
hypotheses were used to fill the knowledge gaps that pre-
vented the formulation of a comprehensive model. Notably,
the model required a conceptualization of the in vivo effect
of drugs. For this purpose, we hypothesized that the main
cause of virological failure is insufficient drug exposure in
one or more physiological compartments hosting a large
number of CD41 T-cell infections, hence allowing viral repli-
cation for some of the strains. We identified lymph nodes
as biological structures that are likely to exhibit both char-
acteristics for the antiretrovirals that are considered in this
study, namely, efavirenz, emtricitabine, tenofovir, and daru-
navir; for these drugs, concentrations in lymph node mono-
nuclear cells were consistently lower than that of peripheral
blood mononuclear cells (–66% to 299%).8 The level of
drug penetration in the lymph node along with results from
in vitro experiments were used for predictions of in vivo
drug efficacy (see Methods for details).

Once a complete model was formulated, we compared
model predictions of virological failure and resistance with
clinical observations. Our attention then turned towards the
sensitivity of model predictions to: 1) lymph node drug pen-
etration, 2) drug adherence behavior, and 3) the within-host
viral load growth rate. The latter investigation was moti-
vated by hypotheses of high model sensitivity to these
three components.

METHODS

The model inputs a specified antiretroviral treatment, poten-
tial resistance mutations, and a set of patient characteris-
tics. These characteristics, such as drug adherence
behavior, are represented by model parameters. A number
of virtual patients are generated by the model, each one
having specific parameter values sampled from population
distributions. The model outputs, at the individual patient
level, the evolution over time of the number of infected
CD41 T cells in the lymph nodes. These cells contribute to

the viral load by producing virions. It was defined that a

patient experiences virological failure when this contribution

is above a given threshold (the threshold value can vary).

The model will be further described later in this section.

Antiretroviral treatment
Three daily antiretroviral treatments were considered in the
modeling process: 1) monotherapy with 600 mg efavirenz,
2) combined therapy with 600 mg efavirenz, 300 mg tenofo-
vir disoproxil fumarate, and 200 mg emtricitabine, and
3) monotherapy with darunavir (800 mg)/ritonavir (100 mg).
This choice was driven by the availability of virological fail-
ure data5,9,10 and the required parameters for the model
(lymph node drug penetration,8 see below).

The model and parameter values
To better grasp the rationale behind the model elaboration
and detail the mathematical development, see the Supple-
mentary Material. In the following, the modeling schematic
is illustrated in Figure 1. The model was developed for the
general case of multiple patients, therapy with multiple
drugs, and multiple resistant strains. However, to help
understand the model structure, the simple case of mono-
therapy for one patient is illustrated with the assumption of
only one major resistance mutation (Figure 1).

The main model component simulates the number of
infected cells in the lymph nodes of a patient. Two types of
infected cells are discriminated depending on the specific
strain of virus having infected them (wildtype (y1) or resis-
tant virus (y2)). An initial population size for the infected
cells needs to be assigned (initial viral load (t0)). Then, for
a small time step Dt5tk112tk , the following number of
events are computed for each of the two infected cell types
(i 5 1, 2): 1) the number of productively infected cells of
each type that die (Nd ;i , Figure 1a, Eq. 1); 2) the number
of newly infected cells initiating viral production (Ninf ;i , Fig-
ure 1a, Eq. 2); 3) the number of de novo mutations leading
to cells infected by the resistant strain (Nnovo, Figure 1a,
Eq. 3); and 4) the number of latent cells activation (NA;i ,
Figure 1a, Eq. 4). Steps 1 to 4 above are repeated until
the end of the virtual trial is reached.

The simulation of the number of infected cells within the
host over time relies on the assignment of Poisson random
variable values for each of the above-mentioned processes
at each evaluated time steps. The expected value of the
random variables are given by Eqs. 1–4, with the descrip-
tion of model parameters immediately following:

E½Nd ;i �5yiðtÞð12eDtdy Þ� (1)

E½Ninf ;i �5
dy kR0i ðt2sÞyiðt2sÞDt

k1dy
P

j R0j ðt2sÞyjðt2sÞ (2)

E½Nnovo �5pNinf ;1 (3)

E ½NA;i �53000Dtfiðp; sÞ (4)

where R0i ðtÞ5 R0ð12si Þ

11
Cp ðtÞ

qi IC0
50

kl kp

� �mð11ri Þ
and where fi ðp; sÞ is the

expected fraction of the infected cell population that would

be of type i, in the absence of drug.
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Within-host infection parameters are required (Figure 1b).
A viral setpoint (maximum viral load) is assigned to the
patient. The setpoint value is related to the rate of entry of
new CD41 T cells (k).4 One random value for k is generated
from a distribution suggested in Rosenbloom et al.4 A value of
the basic reproduction number (R0) is also attributed to the
patient. The reproduction number characterizes the growth
rate of the wildtype virus infection within the host in the
absence of antiretroviral. As this can significantly vary
between individuals due to immunity and quasispecies differ-
ences, the attributed R0 is sampled from random distributions,
which are reported for patients in the acute (primary infection,
higher viral growth rate) and chronic (a few months after pri-
mary infection) phases.11,12 For the resistant strain, growth is
hampered by a nonzero fitness cost (s), which value depends
on the considered mutation, and is reported for multiple strains
in Sampah et al.13 A newly infected cell starts producing new
virions after an eclipse period of 1 day (s) and for a median
period of 1 day (dy).

14,15 The newly produced virions can differ

from the originating wildtype strains due to mutation. This
occurs with probability P.4,16

Drug concentrations have an effect on the growth rate of
the wildtype and resistant viruses (Figure 1c). Hill functions
are shown to reflect the relationship between drug concen-
tration and drug efficacy in vitro.1 The effect of the drug is
accounted in the model using the drug concentration inhibit-
ing 50% of the infection growth in vitro in a medium con-
taining no plasma protein content (IC0

50) and using the Hill
curve coefficient (m). The former is taken from a random
distribution since significant quasispecies differences in
IC50 are commonly reported.17 For the treatments investi-
gated herein, these parameters were obtained from the
product monographs3,18–20 and from results of in vitro
experimentations.1,13 For the resistant strain, the model
uses the fold-change in IC50 (q) and the correction factor
for the Hill coefficient (r).4,13 If multiple drug treatment are
considered, an algorithm for the combined effect is used.21

The in vitro to in vivo extrapolation of drug effect needed to

Figure 1 Simplified model algorithm and parameters: the special case of monotherapy for one patient with the assumption of only one
major resistance mutation. Index k goes from 0 to the number of evaluated time steps. Index i takes a value of 1 for the wildtype strain
and 2 for the resistant strain.
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account for the plasma protein binding effect on the IC50

(kp), and for lymph node drug penetration (kl).
8,22

The simulation of drug concentrations is based on patient
specific characteristics of adherence and drug disposition.
The patient is assigned parameters representing the adher-
ence behavior (Figure 1d, first two boxes). The first param-
eter is the general adherence level, defined as the fraction
of the prescribed pills that are expected to be taken over
the investigated period. The second parameter is the prob-
ability of dose intake following a missed dose (PIM), related
to the tendency of the patient for long periods of nonadher-
ence (drug holidays). For an outpatient taking medication
for chronic conditions, it was shown that these two values
are required to reproduce the recorded distribution of the
length of time separating consecutive dose intakes.23,24

Using the two parameters mentioned above (general adher-
ence, PIM), we simulate a sequence of zeros (missed
dose) and ones (correct dose intake) which are then trans-
formed in time sequences according to the treatment regi-
men (e.g., once daily).

We then use population pharmacokinetic models to com-
pute the expected drug concentrations in the plasma of the
patient (CpðtÞ) from drug intake (Figure 1d, last two boxes).
This requires the random assignment of pharmacokinetic
parameters whose distributions are obtained from the
reported pharmacokinetic models (see Supplementary Mate-
rial for a brief description of these models). For the considered
treatments, pharmacokinetic drug parameters were taken
from reported studies.25–28 For therapy combining efavirenz,
emtricitabine, and tenofovir DF, we did not consider medica-
tion interactions in absorption or elimination; efavirenz is
mostly eliminated by the liver, while the other two medications
are eliminated by the kidneys without noticeable interaction.29

Simulations
Using this model, three reported clinical studies were repro-
duced with the associated virological failure and resistance
data.5,9,10 For the study of efavirenz monotherapy, a viral
load of 50 copies/mL or more at the end of the trial was
considered a virological failure. The mutations that were
considered were SNPs K103N, Y181C, G190S, M184V,
and K65R. Virological failure could occur without resistance
mutations or with resistance-associated mutations when at
least 20% of the viral load has major resistance mutations.
For the combination therapy, HIV patients were followed for
a period of 12–18 months, with blood samples taken
approximately every 3 months.9 Patients differed in their
level of drug adherence, measured using pharmacy refill
records. Virological failure was defined as two consecutive
viral loads of 200 RNA copies/mL or above throughout the
course of the trial. We replicated this experiment in silico.
For this simulation, the same mutations (K103N, Y181C,
G190S, M184V, and K65R) were considered. Finally, we
used our model to predict virological failure with darunavir/
ritonavir therapy for 48 weeks. No mutation was consid-
ered, since darunavir was shown to possess a high genetic
barrier against resistance and because we considered a
short trial in virologically suppressed patients.30

We used a stratified random sample to investigate the
sensitivity of model predictions to the components

mentioned above: drug adherence, and the within-host viral

load growth rate. Simulations were run by groups of 300

individuals characterized by the same drug intake behavior,

represented by the general level of adherence and the PIM

(probability of drug intake following a missed dose), and

being in the same infection phase (acute or chronic). The

general level of adherence could take values from 10–

100% by 10% increments. The PIM could take values from

5% to a maximum mathematically allowable value deter-

mined by the general level of adherence, by 5% incre-

ments. For each drug or drug combination, we simulated

the virological outcomes of 1,200–12,000 virtual individuals

per general level of adherence. The risk of virological out-

come for each adherence group was computed using a

weighted average. The corresponding weights were chosen

based on the assumption of a stratified random sample

from a patient population (see Supplementary Material for

the specific values). In order to evaluate the extent of the

variation in the percentage of virtual patients experiencing

virological failure between trials, the minimum and maxi-

mum values were obtained for each adherence groups and

are displayed in Figures 6, 7.
An alternative model was used for the impact of lymph

node drug penetration. The model was identical to the

model described above, with the exception that the intracel-

lular drug concentration of CD41 T cells located in the

lymph node was set equal to that of peripheral blood mono-

nuclear cells (kl 5 1).
All models were numerically implemented and simula-

tions were carried using MatLab 2014a.21

RESULTS

Using the model that accounts for incomplete lymph node

penetration (the main model, not the alternative model), we

obtained the virological outcomes for efavirenz monother-

apy and efavirenz, emtricitabine, and tenofovir combination

therapy (Figures 2, 3). For efavirenz monotherapy, a major-

ity of virtual patients having a general level of adherence of

Figure 2 Probability of virological outcomes as a function of
adherence under efavirenz monotherapy. The proportion of indi-
viduals without virological failure (green), with virological failure
and resistance mutations (red), and with virological failure and
no resistance mutations (blue) are represented.
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20% or more had virological failure with resistance at the
end of 48 weeks. In comparison, two out of three maca-
ques having plasma drug concentrations similar to those of
simulated patients had high viral loads and significant resis-
tance within the first 42 weeks of therapy.5 For the treat-
ment combination, predictions of virological failure (green
bars) are displayed along a regression curve that is based
on clinical data.9 Compared to the regression curve, more
virtual patients having an adherence level between 20% and
60% experienced virological success. The opposite is true
for patients with a level of drug adherence of 10% or 70%
and above. For treatment with darunavir/ritonavir, simulation
results are only reported for those with full adherence
(100%), as no comparative data were found for the case of
low adherence. The results were sensitive to small changes
in the level of lymph node drug penetration kl, as confirmed
by a sensitivity analysis with kl varying from 0.5–2.0% (the
reported value was 1%8). Virological failure was obtained for
13–48% of individuals, depending on the value of kl that was
used, compared to a reported value of 14%.10

Results from the alternative model (complete lymph node
drug penetration from the plasma) for efavirenz

monotherapy and the combination therapy are displayed in

Figures 4 and 5, respectively. No virological failure was pre-

dicted by this model for darunavir/ritonavir therapy. In com-

parison with the model accounting for incomplete lymph

node drug penetration, a smaller number of cases of virolog-

ical failure was obtained using the alternative model.
Within each adherence group, model predictions signifi-

cantly differed in terms of PIM and infection phase (Fig-

ures 6, 7). The lower and higher limit for the green bar

represent patients in the acute infection phase who have

the lowest PIM and in the chronic infection phase who have

the highest PIM, respectively.

DISCUSSION

The main objective of this study was to develop a model able

to reproduce the expected or observed relationships between

patients’ drug use and clinical outcome for several treat-

ments: efavirenz monotherapy, efavirenz/tenofovir disoproxil

fumarate/emtricitabine combination therapy, and boosted

Figure 3 Probability of virological success as a function of
adherence under efavirenz, tenofovir disoproxil fumarate, and
emtricitabine combination therapy. The model prediction for viro-
logical success is illustrated by the green bars and compared to
a regression curve fitting clinical data (green line).30

Figure 4 Probability of virological outcomes as a function of
adherence under efavirenz monotherapy with complete lymph
node penetration. The proportion of individuals without virological
failure (green), with virological failure and resistance mutations
(red), and with virological failure and no resistance mutations
(blue) are represented.

Figure 5 Probability of virological success as a function of adher-
ence under efavirenz, tenofovir disoproxil fumarate, and emtricita-
bine combination therapy: results from the model assuming
complete lymph node penetration for all drugs. The model predic-
tion for virological success is illustrated by the green bars and
compared to a regression curve fitting clinical data (green line).9

Figure 6 Interindividual variability in the probability of virological
outcome under efavirenz monotherapy as a function of adherence.
The impact of model variability in adherence patterns and infec-
tion phase is displayed using whiskers on the graph. The propor-
tion of individuals without virological failure (green), with virological
failure and resistance mutations (red), and with virological failure
and no resistance mutations (blue) are represented.
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darunavir (ritonavir) monotherapy. The effect of three model
components on virological failure predictions were also inves-
tigated: lymph node drug penetration, the PIM, and the viral
load growth rate through a distinction of the acute and
chronic infection phases.

The approach used in this study enabled the evaluation of
hypotheses regarding the pathogenesis of virological failure.
Indeed, since the parameter values used in the current model
are fully supported by independent studies, an observed dis-
crepancy between predictions and observations puts into
question the veracity of at least one of the model assumptions.
However, a satisfactory clinical prediction under various thera-
peutic contexts using a specific set of hypotheses suggests
both the plausibility of model assumptions and the potential
utility of the model in evaluating the risk of virological failure
and resistance in patients.

The model we developed has significantly increased the
accuracy of predictions for efavirenz monotherapy. Indeed,
a previous model predicted virological success for all adher-
ent patients under the regimen, a result that is inconsistent
with a reported animal study.4,5 For the combination treat-
ment, there was a high level of agreement between the
regression fit of the observed clinical data and model pre-
dictions. However, for those who were less adherent, the
model underestimated the number of cases of virological
failure. A possible explanation for the discrepancy could
originate from the lack of precision in the obtained PIM dis-
tribution due to a smaller sample size for those with very
low drug adherence (see Supplementary Material). Those
with a lower PIM tended to have less virological success
(Figures 6, 7), hence it is possible that those with a low
level of adherence are more likely to take long drug holidays
than what was estimated. Furthermore, it was not possible
to assess the proportion of patients from the reported trial
who were in the acute infection phase. We assumed that the
great majority (90%) were in the chronic infection phase, but
predictions may have been impacted by deviations from this
assumption. For treatment with darunavir/ritonavir, the intra-
cellular concentration ratio between mononuclear cells from
lymph nodes and peripheral blood was very small for this
drug and estimated to be 1%.8 When kl is small, its variation
can have a significant impact on the predicted lymph node

drug concentration (compared to the reported 1% drug pen-
etration for darunavir, a value of 0.5% leads to a decrease of
50% in drug concentration, while a value of 2% doubles the
drug concentration). Model predictions coincided with the
clinically observed proportion of virological failure when this
ratio was assumed to be 1.9%.8

The results suggest that low drug penetration in lymph
nodes can account for a large proportion of cases of virological
failure. It can also account for a significant number of cases
that could not be solely explained by plasma drug exposure.
Whether or not this means that lymph node drug exposure is
responsible for these cases is debatable. However, we argue
that higher drug concentrations in these biological structures
are likely to have a significant impact on viral loads. Since the
action of most antiretrovirals is centered around preventing the
infection of healthy T cells, an underlying condition for this
hypothesis would be that a large number of cell infection
events occur there, as suggested by the following. Indeed,
there is evidence that virus producing T cells mainly infect cells
located in their vicinity,32 therefore a sufficient number of virus-
producing and healthy cells are required in lymph nodes in
order for infection events to occur locally. Lymphatic tissues,
including lymph nodes, are major sites where the viruses are
produced.32,33 Whether the infection occurred in the same bio-
logical structure or in different tissues is unknown (lympho-
cytes exhibit complex homing and recirculation dynamics).34

Unfortunately, little information is available regarding the
dynamics of healthy CD41 T cells within human organs. T
cells migrate from the blood to many organs. They spend a rel-
atively short amount of time circulating in the blood of healthy
subjects (average of 2.3 h).35 Furthermore, it was estimated
that, at any given moment, only 5.5% of CD41 T cells capable
of trafficking to peripheral blood are located therein.35 In
healthy mice, CD41 T cells passage in the lungs and liver has
been estimated to be quite rapid (less than a minute), com-
pared to their passage in the spleen (�2 h), or in lymph nodes
or gut (10 hours).36 It is also known that CD41 T cells are
depleted from the gut of patients upon infection.37 In SIV-
infected macaques, this phenomenon is observed at all stages
of infection.38 These arguments suggest that healthy CD41 T
cells likely reside in lymph nodes for a long period compared to
other secondary lymphoid organs, increasing the likelihood of
infection events occurring in these structures.

From these considerations, a high drug concentration
inside lymph node T cells is desirable, but not observed for
many drugs.8 However, we argue against changes in drug
formulation or therapeutic administration that would solely
favor lymph node penetration without providing therapeutic
plasma concentrations. Indeed, other physiological compart-
ments could host a large number of cell infection events
(e.g., spleen). We assumed that, in such compartments, cell
infection activity is either suppressed by the drugs during
treatment, occurs concomitantly with lymph node activity, or
occurs at a small scale without altering the predicted out-
come. This consequently allowed model predictions to be
solely based on the evolution of the viral population in lymph
nodes. If, however, therapeutic drug concentrations for all
viral strains are observed in the lymph nodes but not in a dif-
ferent compartment, then new cell infections in the latter may
become responsible for rebounds and the selection of

Figure 7 Interindividual variability in the probability of virological
success under efavirenz, tenofovir disoproxil fumarate, emtricita-
bine combination therapy as a function of adherence. The impact
of model variability in adherence patterns and infection phase is
displayed using whiskers on the graph.
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resistance mutations. We believe model predictions of viro-
logical failure could still be performed in such cases by
replacing the parameter value associated with lymph node
drug penetration with its respective value in the new drug-
limited compartment.

Additional HIV compounds and combinations could be
investigated using the developed model. Trial predictions can
be performed by modifying model parameters according to
drug pharmacokinetics, in vitro efficacy curves, and the intra-
cellular concentration in peripheral blood mononuclear cells
and mononuclear cells located in various secondary lymphoid
tissues. Even though the model focuses on predicting the
outcome of groups of patients, individualized risk evaluation
can be performed. The procedure involves simulating virolog-
ical outcomes for a group of virtual patients having common
characteristics, such as adherence behavior, drug disposition,
and the rate of viral load growth during rebounds. The utility
of individualized predictions is highlighted by the impact of
interindividual variability in PIM and viral load growth rate
(Figures 6 and 7). However, a full individualization still
depends on our capacity to gather patient-specific data.

The scope of the model can be extended to predict other
virological outcomes and tackle more complex therapeutic
cases. Modifications to the structural model, however, could
be required. Indeed, the model predicts virological failure
and resistance both based on threshold values applied to a
viral load. Accurate viral load predictions would likely require
simulating the dynamics of viral populations and drug effect
in all of the important compartments concomitantly. Further-
more, many components of the immune system (CD81, fol-
licular dendritic cells)39 as well as the processes governing
latent cells activation were not explicitly modeled; this may
impact the ability of the model to predict virological failure
over more extended periods or in the case of patients suffer-
ing from AIDS. The model would also benefit from a better
understanding of the pharmacokinetics of drugs in specific
body compartments: so far, it was assumed that there is
rapid equilibrium in drug concentrations between all relevant
compartments, which may not be a good approximation for
all drugs. Overall, the current model can be used as a back-
bone for the investigation of diverse situations.

In summary, the translational approach adopted here is in
line with the increasingly popular Quantitative Systems Phar-
macology. It suggests that antiretroviral drug outcomes, such
as virological failure and the development of resistance, can
be demystified by integrating current scientific knowledge.
We consider that the model developed herein is a promising
step forward to clinical prediction and to the understanding
of the pathogenesis of virological failure in vivo.
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