
 International Journal of 

Molecular Sciences

Article

A Toxicity Prediction Tool for Potential
Agonist/Antagonist Activities in Molecular
Initiating Events Based on Chemical Structures

Kota Kurosaki, Raymond Wu and Yoshihiro Uesawa *
Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose,
Tokyo 204-8588, Japan; d196955@std.my-pharm.ac.jp (K.K.); rwu.academic@gmail.com (R.W.)
* Correspondence: uesawa@my-pharm.ac.jp; Tel.: +81-(0)42-495-8983

Received: 31 July 2020; Accepted: 21 October 2020; Published: 23 October 2020
����������
�������

Abstract: Because the health effects of many compounds are unknown, regulatory toxicology must
often rely on the development of quantitative structure–activity relationship (QSAR) models to
efficiently discover molecular initiating events (MIEs) in the adverse-outcome pathway (AOP)
framework. However, the QSAR models used in numerous toxicity prediction studies are publicly
unavailable, and thus, they are challenging to use in practical applications. Approaches that
simultaneously identify the various toxic responses induced by a compound are also scarce.
The present study develops Toxicity Predictor, a web application tool that comprehensively identifies
potential MIEs. Using various chemicals in the Toxicology in the 21st Century (Tox21) 10K library,
we identified potential endocrine-disrupting chemicals (EDCs) using a machine-learning approach.
Based on the optimized three-dimensional (3D) molecular structures and XGBoost algorithm,
we established molecular descriptors for QSAR models. Their predictive performances and
applicability domain were evaluated and applied to Toxicity Predictor. The prediction performance
of the constructed models matched that of the top model in the Tox21 Data Challenge 2014.
These advanced prediction results for MIEs are freely available on the Internet.

Keywords: machine learning; nuclear receptor; stress response pathway; prediction model;
molecular descriptor

1. Introduction

Quantitative structure–activity relationship (QSAR) analysis is a technique used to predict the
physiological activity of low-molecular-weight compounds based on their molecular structure [1,2].
In the field of toxicology, QSAR methodology is used for quantitative structure–toxicity relationship
(QSTR) modeling using complex toxicity and adverse effect onset mechanisms that are objective
variables [3,4].

An in silico approach, such as QSTR, is time and cost-effective for the detection of the potential
toxicity of compounds in the early phases of drug development and pharmacovigilance, satisfying global
ethical requirements regarding the 3R rules [5–7]. QSTR has therefore been extensively applied to
regulatory toxicology. Recently, the critical application issue of realizing the implementation of toxicity
prediction models extensively and of putting them to practical use has emerged. However, currently,
one missing but desirable functionality in the practical use of QSTR prediction is that resources, such as
the toxicity prediction models, should be distributed as highly convenient public software. Therefore,
these toxicity prediction models should be published so that users can access QSTR prediction models
for various toxicity targets [8–10].

The Toxicology in the 21st Century (Tox21) program is a consortium constituted by the National
Institute of Health, the US Environmental Protection Agency, the National Toxicology Program,
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the National Center for Advancing Translational Sciences, and the Food and Drug Administration [11].
This project develops and evaluates novel efficient methods for toxicity assessments and mechanistic
insights in addition to reducing time, costs, and animal usage [11,12]. Furthermore, in the ToxCast
and Tox21 programs, for potentially molecular initiating event (MIE) targets for adverse outcome
pathways [13,14], the in vitro quantitative high-throughput screening (qHTS) of approximately
10,000 compounds was performed [15]. These targets include nuclear receptors (NRs) and stress
response (SR) pathways. Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system
by interacting with NRs and SR pathways and engender myriad adverse developmental, reproductive,
neurological, and immunological effects in both humans and wildlife [16,17]. Therefore, identifying
potential EDCs is of specific interest for the Tox21 program and environmental chemical hazard
screening in general.

However, the in vitro qHTS assay is insufficient to screen all classes of chemicals, such as those
still in the molecular development and optimization phase and, thus, cannot provide an accurate
evaluation of the potential toxicity of chemicals in humans and the environment [18]. Therefore,
a growing interest exists in a comprehensive in silico approach to detect the potential toxicity of
chemicals. The literature presents the results of successful examples of alternative in silico toxicity
screening methods and their applications using the Tox21 10K library [19–21]. However, even though
there are 59 types of well-confirmed assay results of agonist/antagonist activities for toxicity targets in
the Tox21 10K library, several studies have built models for only a small number of toxicity targets.
There is still no comprehensive approach. Furthermore, because these models had not been opened,
other researchers could not access the available constructed models. Therefore, users have found it
challenging to perform and reuse the prediction of MIEs.

In this study, we overcame this problem by extensively collecting and processing databases of
59 types of assay targets based on the Tox21 10K library and constructed in silico toxicity prediction
models for each assay target using XGBoost [22], which is a gradient-boosting algorithm with multiple
uses for toxicity predictions [23]. The predictive performance of all models was validated and published
on the web application. Using the prediction models constructed in this study, the screening of the
potential toxicity of chemicals to various toxicity targets is possible.

2. Results and Discussion

2.1. Distributions of Active and Inactive Compounds

The PubChem activity scores were normalized between 0 and 100 using the following equation:
activity = ((Vcompound − VDMSO)/(Vpos − VDMSO)) × 100, where Vcompound, VDMSO, and Vpos denote
the compound-well value, the median value of the DMSO-only wells, and the median value of the
positive-control well, respectively [24]. The most active and inactive results have scores close to
100 and 0, respectively. In the PubChem documentation, all inactive compounds have a score of 0,
active compounds have scores between 40 and 100, and inconclusive compounds have scores between
5 and 30. To implement the binary classification models, the binary teacher labels of active or inactive
compounds were defined in two ways. In one definition, active compounds were scored 40 or higher;
in another definition, active compounds were assigned scores of 1 or higher.

We converted PubChem activity scores to binary labels using the two definitions of a criterion of
40 and a criterion of 1 to implement binary classification models for 59 toxicity targets. Figure 1a shows
the number of active and negative compounds based on the definition of a criterion of 40, and Figure 1b
shows that of a criterion of 1. For all toxicity targets, when we converted PubChem activity scores
to binary labels with the definition of a criterion of 40, the mean ratio of active compounds to all
compounds was 4.7% ± 4.0% and that of a criterion of 1 was 18.1% ± 11.0%. Lowering the criteria
from 40 to 1 increased the mean ratio of active compounds by approximately 13.4%. However,
when annotated with the criteria of 40, the ratio of active compounds in VDR_ago (PubChem activity
score ID (AID): 743241), NFkB_ago (AID: 1159518), and TGFb_ago (AID: 1347035) were lower than 1%.
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Figure 1. Activity distribution of 59 molecular initiating events (MIEs) in the Tox21 10K library: (a) the
number of chemical compounds in the case of criteria 40 and (b) the number of chemical compounds in
the case of criteria 1. Orange and blue show active and inactive chemicals, respectively.

2.2. Models and Performances

For the 59 individual targets, 10% of all compounds was assigned to the test set. The other
90% of the compounds was used for the optimization, training, and validation of models in the
validator, as shown in Section 3.5. The predictive performances of the constructed models were
evaluated based on the area under the curve (AUC) of the receiver operating characteristic (ROC)
curve in the test set. Optimal thresholds to convert the prediction probability to a binary class output
were calculated using the Youden index gained from the ROC curve in the test set. Using these
thresholds, predictive performances in the test set were evaluated. Table 1 shows the results of the
test set. Model performances in the test set were evaluated using the metrics of AUC, sensitivity (SE),
specificity (SP), accuracy (ACC), balanced accuracy (BAC), and the Matthews correlation coefficient
(MCC). Figures 2 and 3 show the ROC curves for all toxicity targets in the test set in the cases of criteria
40 and 1, respectively. In both cases in which the active labels were annotated with a criterion of
40 and 1, Table 2 summarizes the averages of predictive performances in the test set. Good predictive
performances were observed for the models regardless of the criteria. However, for VDR_ago (AID:
743241), HIF1_ago (AID: 1224894), and Shh ago (AID: 1259390), which were annotated by a criterion of
40, the ratios of active compounds in the test set were 0%, 0.42%, and 0.62% and the AUC values were
N.D., 0.556, and 0.571, respectively.

The classification performance of models tends to deteriorate because of class distribution
imbalance [25]. A between-class imbalance degrades the prediction performance because of the bias
in the prediction results toward the majority class, leading to more prediction errors in the minority
class [26]. Figure 1 shows a sparser distribution of active compounds and an imbalance in the case of
using a criterion of 40 compared to a criterion of 1. In this study, as shown in Figure 1 and Table 1,
because of the between-class imbalance caused by the criteria of 40, constructing and evaluating some
toxicity prediction models was impossible. We managed this problem by lowering the criteria from
40 to 1, and with this, we could evaluate the constructed models.

When using labels annotated by the criteria of 1, all compounds were treated as active, except those
ensured to be inactive, which had a PubChem activity score of 0. Therefore, using the criterion of
1 in order to develop the models, we concluded that we developed criterion 1 models that accurately
learned the inactive compounds compared with criterion 40 models. On the other hand, Judson et al.
reported that a phenomenon called cytotoxicity-associated “burst” was observed for tests conducted on
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the Tox21 program [27]. Many chemicals show the activation of large numbers of assays over a narrow
range of concentrations in which cell stress and cytotoxicity are also observed. Therefore, some of
the assay activity in this concentration range may represent nonintentional chemical effects, such as
cytotoxicity. Judson et al. [27] showed that the Tox21 10K library contains false positive responses
induced by the burst phenomenon.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 22 

 

 

Figure 2. Receiver operating characteristic (ROC) curves with the test set in the case of criteria 40. Figure 2. Receiver operating characteristic (ROC) curves with the test set in the case of criteria 40.

The quality of a machine learning model depends on that of the experimental data being fed
into it. Ideally, machine learning models should be provided with reliable data for both active and
inactive compounds during training; however, the current concern is that this decreases the number
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of active compounds being trained and increases the between-class imbalance in the data set being
fed into the model. Consequently, the identification of burst compounds in our models has not yet
been examined. Therefore, our models are still limited in terms of their ability to successfully feed the
training data; particularly, their ability to exactly identify real active compounds remains a challenge.
Importantly, the active compounds identified using our predictive models may actually be inactive.
However, our models have learned nontoxic compounds more exactly than other approaches, and the
ability to identify real negative compounds could be promising. A toxicity prediction model in the
field of drug discovery must determine nontoxic compounds as well as must be capable of accurately
determining toxic compounds; thus, our tool could practically aid in toxicity assessment application.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 22 

 

 

Figure 3. Receiver operating characteristic curves with the test set in the case of criteria 1Figure 3. Receiver operating characteristic curves with the test set in the case of criteria 1.
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Table 1. Predictive performances in the test set for each target.

No. AID Abbreviation
Criteria 40 Criteria 1

AUC SE SP ACC BAC MCC AUC SE SP ACC BAC MCC

1 720516 ATAD5_ind 0.840 0.750 0.843 0.840 0.796 0.272 0.845 0.744 0.847 0.839 0.795 0.395
2 720552 p53_ago 0.899 0.824 0.830 0.830 0.827 0.356 0.845 0.804 0.793 0.794 0.799 0.458
3 720637 MMP_disr 0.919 0.845 0.846 0.846 0.845 0.501 0.795 0.698 0.788 0.758 0.743 0.475
4 720719 GR_ago 0.783 0.600 0.931 0.923 0.766 0.300 0.841 0.754 0.807 0.800 0.780 0.416
5 720725 GR_ant 0.808 0.577 0.905 0.888 0.741 0.328 0.827 0.801 0.721 0.743 0.761 0.471
6 743053 Arlbd_ago 0.878 0.765 0.947 0.941 0.856 0.481 0.766 0.582 0.843 0.806 0.712 0.357
7 743054 ARfull_ant 0.774 0.750 0.681 0.683 0.716 0.169 0.833 0.841 0.700 0.734 0.770 0.468
8 743063 Arlbd_ant 0.844 0.786 0.791 0.790 0.788 0.338 0.833 0.805 0.724 0.745 0.765 0.469
9 743067 TR_ant 0.783 0.511 0.924 0.906 0.718 0.306 0.829 0.740 0.825 0.796 0.782 0.555
10 743077 ERlbd_ago 0.782 0.536 0.961 0.938 0.748 0.457 0.735 0.600 0.843 0.812 0.722 0.362
11 743078 ERlbd_ant 0.810 0.815 0.684 0.691 0.750 0.237 0.805 0.696 0.789 0.767 0.743 0.444
12 743091 ERfull_ant 0.826 0.872 0.699 0.705 0.785 0.235 0.862 0.730 0.870 0.842 0.800 0.555
13 743122 AhR_ago 0.888 0.713 0.907 0.887 0.810 0.513 0.749 0.728 0.695 0.702 0.711 0.359
14 743139 Arom_ant 0.801 0.892 0.598 0.608 0.745 0.186 0.807 0.825 0.661 0.704 0.743 0.429
15 743140 PPARg_ago 0.813 0.750 0.823 0.821 0.786 0.238 0.832 0.735 0.819 0.805 0.777 0.457
16 743199 PPARg_ant 0.829 0.786 0.798 0.798 0.792 0.290 0.810 0.824 0.645 0.682 0.734 0.383
17 743219 ARE_ago 0.785 0.794 0.652 0.672 0.723 0.317 0.795 0.770 0.715 0.733 0.742 0.461
18 743226 PPARd_ant 0.681 0.600 0.885 0.884 0.743 0.111 0.811 0.764 0.749 0.751 0.756 0.374
19 743227 PPARd_ago 0.812 0.615 0.954 0.949 0.785 0.296 0.796 0.705 0.790 0.780 0.747 0.356
20 743228 HSR_act 0.788 0.576 0.922 0.910 0.749 0.315 0.790 0.667 0.808 0.789 0.737 0.370
21 743239 FXR_ago 0.775 0.727 0.836 0.835 0.782 0.163 0.817 0.689 0.834 0.825 0.762 0.325
22 743240 FXR_ant 0.757 0.933 0.565 0.577 0.749 0.178 0.843 0.788 0.799 0.798 0.794 0.481
23 743241 VDR_ago N.D N.D N.D N.D N.D N.D 0.826 0.769 0.727 0.730 0.748 0.297
24 743242 VDR_ant 0.716 1.000 0.399 0.403 0.699 0.066 0.701 0.630 0.689 0.678 0.660 0.258
25 1159518 NFkB_ago 0.780 0.667 0.846 0.846 0.756 0.081 0.871 0.692 0.912 0.900 0.802 0.427
26 1159519 ERsr_ago 0.638 0.857 0.441 0.445 0.649 0.052 0.801 0.655 0.833 0.816 0.744 0.349
27 1159523 ROR_ant 0.828 0.789 0.764 0.766 0.777 0.323 0.695 0.523 0.819 0.703 0.671 0.359
28 1159528 AP1_ago 0.777 0.553 0.877 0.851 0.715 0.319 0.799 0.765 0.722 0.729 0.743 0.372
29 1159531 RXR_ago 0.532 0.235 0.964 0.951 0.600 0.135 0.725 0.527 0.841 0.756 0.684 0.374
30 1159555 RAR_ant 0.831 0.800 0.742 0.746 0.771 0.308 0.683 0.740 0.511 0.601 0.626 0.249
31 1224892 CAR_ago 0.889 0.826 0.808 0.810 0.817 0.455 0.847 0.684 0.889 0.845 0.787 0.556
32 1224893 CAR_ant 0.809 0.652 0.880 0.874 0.766 0.239 0.793 0.700 0.768 0.746 0.734 0.448
33 1224894 HIF1_ago 0.556 0.250 1.000 0.997 0.625 0.499 0.854 0.769 0.829 0.824 0.799 0.395
34 1224895 TSHR_ago 0.872 0.750 0.880 0.874 0.815 0.355 0.838 0.692 0.831 0.816 0.762 0.389
35 1224896 H2AX_ago 0.834 0.696 0.892 0.880 0.794 0.394 0.779 0.605 0.842 0.814 0.724 0.354
36 1259247 Arfulls_ant 0.856 0.857 0.733 0.747 0.795 0.401 0.824 0.788 0.767 0.774 0.778 0.534
37 1259248 Erfulls_ant 0.835 0.850 0.702 0.711 0.776 0.283 0.793 0.668 0.798 0.770 0.733 0.416
38 1259387 ARant_ago 0.852 0.727 0.946 0.939 0.837 0.460 0.712 0.494 0.872 0.841 0.683 0.275
39 1259388 HDAC_ant 0.897 0.783 0.888 0.883 0.835 0.407 0.868 0.768 0.879 0.871 0.824 0.447
40 1259390 Shh_ago 0.571 1.000 0.219 0.223 0.609 0.042 0.724 0.609 0.913 0.905 0.761 0.266
41 1259391 ERaant_ago 0.934 0.850 0.959 0.956 0.904 0.493 0.782 0.551 0.898 0.880 0.725 0.299
42 1259392 Shh_ant 0.829 0.809 0.718 0.731 0.764 0.379 0.758 0.642 0.745 0.705 0.693 0.383
43 1259393 TSHR_agoant 0.834 0.750 0.875 0.874 0.812 0.120 0.669 0.727 0.681 0.682 0.704 0.093
44 1259394 ERb_ago 0.980 0.923 0.973 0.972 0.948 0.531 0.729 0.444 0.937 0.900 0.691 0.348
45 1259395 TSHR_ant 0.865 0.933 0.715 0.721 0.824 0.244 0.850 0.800 0.807 0.807 0.804 0.381
46 1259396 Erb_ant 0.825 0.677 0.863 0.851 0.770 0.352 0.798 0.743 0.763 0.758 0.753 0.462
47 1259401 ERRPGC_ant 0.843 0.698 0.843 0.837 0.770 0.290 0.751 0.595 0.793 0.723 0.694 0.390
48 1259402 ERRPGC_ago 0.840 0.650 0.937 0.925 0.794 0.415 0.805 0.734 0.777 0.768 0.756 0.444
49 1259403 ERR_ant 0.812 0.653 0.856 0.835 0.755 0.392 0.819 0.696 0.826 0.786 0.761 0.510
50 1259404 ERR_ago 0.884 0.880 0.814 0.816 0.847 0.274 0.803 0.680 0.820 0.777 0.750 0.491
51 1347030 TRHR_ago 0.748 0.833 0.637 0.638 0.735 0.077 0.751 0.593 0.853 0.846 0.723 0.201
52 1347031 PR_ant 0.892 0.880 0.794 0.804 0.837 0.473 0.831 0.757 0.821 0.802 0.789 0.550
53 1347032 TGFb_ant 0.809 0.750 0.765 0.764 0.757 0.273 0.860 0.780 0.824 0.817 0.802 0.493
54 1347033 PXR_ago 0.851 0.759 0.817 0.805 0.788 0.517 0.838 0.745 0.817 0.790 0.781 0.556
55 1347034 CaspH_ind 0.870 0.791 0.852 0.849 0.821 0.348 0.858 0.773 0.856 0.848 0.814 0.452
56 1347035 TGFb_ago 0.968 1.000 0.938 0.938 0.969 0.174 0.900 0.818 0.937 0.936 0.878 0.311
57 1347036 PR_ago 0.943 0.833 0.989 0.986 0.911 0.701 0.799 0.537 0.986 0.967 0.761 0.564
58 1347037 CaspC_ind 0.884 0.850 0.785 0.786 0.817 0.216 0.863 0.771 0.882 0.878 0.827 0.351
59 1347038 TRHR_ant 0.822 0.700 0.841 0.840 0.771 0.148 0.828 0.870 0.701 0.709 0.785 0.260

AID means PubChem assay IDs. Predictive performances were evaluated using the following metrics: area under
the curve of receiver operating characteristic curve (AUC), sensitivity (SE), specificity (SP), accuracy (ACC), balanced
accuracy (BAC), and Matthews correlation coefficient (MCC). N.D. shows no data.
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Table 2. Mean predictive performances for all assay targets.

Metrics Criteria 40 Criteria 1

AUC 0.817 ± 0.088 0.802 ± 0.051
SE 0.750 ± 0.151 0.705 ± 0.094
SP 0.809 ± 0.149 0.801 ± 0.082

ACC 0.807 ± 0.144 0.788 ± 0.069
BAC 0.780 ± 0.069 0.753 ± 0.045
MCC 0.307 ± 0.141 0.402 ± 0.096

Each value of performances evaluated by six metrics were shown as mean ± standard error. n = 58 (criteria 40),
n = 59 (criteria 1).

2.3. Comparison with the Tox21 Data Challenge 2014

For further validation of the predictive performance of the models established in this study,
we compared their performance with the predictive models built in the Tox21 Data Challenge. The Tox21
Data Challenge 2014 was designed to understand the interference of the chemical compounds derived
from the Tox21 10K library in the biological pathway using a crowd-sourced data analysis conducted
by independent researchers. This challenge used data generated from seven NR and five SR signaling
pathway assays to construct prediction models for QSARs [28].

There were 10 duplicate AIDs in the dataset used for in this challenge and in this study:
AhR_ago (AID: 743122), Arlbd_ago (AID: 743053), ERlbd_ago (AID: 743077), Arom_ant (AID: 743139),
PPAR-γ_ago (AID: 743140), ARE_ago (AID: 743219), ATAD5_ind (AID: 720516), HSR_act (AID: 743228),
MMP_disr (AID: 720637), and p53_ago (AID: 720552). For construction of a model for each of these
toxicity targets, the compounds used in this work overlapped with those used in the Tox21 Data
Challenge. Moreover, the active and inactive compounds used in this work were defined using the
annotation method based on the criteria of 40 and showed a 98.7% ± 0.7% match with the active and
inactive compounds used in the challenge and showed strong concordance overall.

The allocations of the test sets used in the Tox21 Data Challenge were different from those used
in this study. Therefore, a simple comparison using the predictive performance of the models used
in the Tox21 Data Challenge and that constructed in this study is impossible. However, in this
study, we established predictive models for the 10 duplicate toxicity targets using the equivalent
compounds and teacher labels to those of the challenge. Therefore, the results of this challenge could
be a performance benchmark to discuss the predictive performance of models built for the same targets
in this study.

The AUC has been adopted as a primary metric for ranking model performance in the Tox21 Data
Challenge; therefore, the predictive models in the Tox21 Data Challenge have been ranked based on
the AUC [29]. The AUCs in the test set validated in this study are shown in Figure 4. Although the
predictive performances of models for four toxicity targets, i.e., models for AhR_ago (AID: 743122),
ERlbd_ago (AID: 743077), MMP_disr (AID: 720637), and HSR_act (AID: 743228), achieved over an
AUC of 0.750 and an accuracy score of over 0.846, their predictive performances were lower than that
of the Tox21 Data Challenge models. On the other hand, six predictive models showed high AUCs:
0.878 (Arlbd_ago, AID: 743053), 0.801 (Arom_ant, AID: 743139), 0.813 (PPARg_ago, AID: 743140),
0.785 (ARE_ago, AID: 743219), 0.840 (ATAD5_ind, AID: 720516), and 0.899 (p53_ago, AID: 720552).
The predictive performances for these six targets were comparable to or better than those of the top
models of the Tox21 Data Challenge. Therefore, the results indicate that several predictive models
developed in this study were valid toxicity models for in silico screening with high accuracy.
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Figure 4. Comparison of the Toxicity Predictor models with the Tox21 Data Challenge 2014 models:
This figure shows the predictive performance of the top 10 Tox21 Data Challenge and Toxicity
Predictor models, which were built for 10 toxicity targets (AhR_ago, Arlbd_ago, ERlbd_ago, Arom_ant,
PPARg_ago, ARE_ago, ATAD_ind, HSR_act, MMP_disr, and p53_ago). The horizontal axis denotes the
names of the modeling teams of the Tox21 Data Challenge, and the vertical axis indicates the areas
under the curve (AUCs).

2.4. Implementation of the Models in the Toxicity Predictor

All 118 (two criteria for each of the 59 toxicity targets) models were implemented as part of Toxicity
Predictor, which is a web application for the prediction of drug-induced liver injury. The Toxicity
Predictor web application was constructed by the Development of a Drug Discovery Informatics
System project in the Japan Agency for Medical Research and Development (AMED) and is available
at http://mmi-03.my-pharm.ac.jp/tox1/. This application uses an input file containing one or multiple
QSAR-ready structures in simplified molecular-input line-entry system (SMILES) strings or SDF
format. Furthermore, it can depict a structural formula drawn in the browser and can use it as an
input. The molecular structure from the input file is converted to a three-dimensional (3D) structure
by the three-dimensionalization algorithm used in this study (Figure 5). Next, Toxicity Predictor
calculated the necessary descriptors for the requested models using Mordred, an open-source software
application used to calculate molecular descriptors. Finally, Toxicity Predictor predicted the chemical
toxicity of 59 targets using the models constructed in this study. The prediction results of the input
compound for the toxicity targets were converted to inactive or active, were returned, and can be
viewed in a terminal browser (Figure 6b). Furthermore, the 3D structures and prediction results for all
MIEs can be downloaded in SDF and CSV formats, respectively.

A model can be evaluated locally only within its applicability domain (AD), which is the chemical
space of the training set [30,31]. Any extrapolation outside of that specific area of the structure space
is most probably unreliable. Therefore, the system of the toxicity predictor incorporates domain
evaluation to ensure the reliability of the QSTR inference. The AD of the evaluation compound is
defined using the average of the logarithmic values of the Euclidean distance with the five nearest
molecules in the descriptor space and is expressed numerically as reliability in Toxicity Predictor.
Furthermore, the chemical structure is assessed to evaluate if it falls within the AD of the training set
chemical space, and its position in the training set chemical space can be visualized and confirmed by
principal component analysis (Figure 6a).

http://mmi-03.my-pharm.ac.jp/tox1/
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Figure 5. The platform screens of Toxicity Predictor.

From the platform, entering the compounds for prediction and describing the chemical structure
formula from an input format such as SMILES strings or SDF format is possible. The compound to
be predicted is three-dimensionalized based on the algorithm in “Conformations and Descriptors”,
and descriptors are calculated.
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Figure 6. Prediction results in Toxicity Predictor: (a) the position of the compound to be predicted in
the training set chemical space visualized with principal component analysis. The gray points are
compounds in the training set, and the blue point is the compound to be predicted. (b) The predictive
results for 59 MIEs predicted by Toxicity Predictor for each of the criteria 1 and 40. Normalized
prediction scores for each target were displayed as bar charts. Red, blue, and gray bars show scores
above 0.6, below 0.4, and between 0.4 and 0.6, respectively.
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3. Materials and Methods

3.1. Biological Overview of Modeled MIEs

We outline the toxicological meanings of the endpoints established in our model construction
research. The following cellular targets and their interactions with agonists and antagonists can be
potential MIEs associated with diverse toxicological adverse outcomes (Tables S1 and S2).

AhR. The aryl hydrocarbon receptor (AhR), a member of the family of basic helix–loop–helix
transcription factors, is crucial for the adaptation of responses to environmental changes. AhR is
a ligand-activated transcription factor that is known to mediate most of the toxic and carcinogenic
effects of various environmental contaminants such as polyaromatic hydrocarbons and dioxin [32].

GR. The glucocorticoid receptor (GR) is a member of the nuclear receptor family of
ligand-dependent transcription factors. GR plays a critical role in carbohydrate, protein, and lipid
metabolism and programmed cell death [33].

AR. The androgen receptor (AR), a nuclear hormone receptor, is significant in AR-dependent
prostate cancer and other androgen-related diseases. EDCs and their interactions with steroid hormone
receptors, such as AR, may disrupt normal endocrine function and interfere with metabolic homeostasis,
reproduction, and developmental and behavioral functions [34].

ER and ERRs. The estrogen receptor (ER), a nuclear hormone receptor, plays an important role
in development, metabolic homeostasis, and reproduction. Two subtypes of ER, ER-α and ER-β,
are composed of various functional domains and have several structural regions in common [35].
EDCs and their interactions with steroid hormone receptors, such as ER, disrupt normal endocrine
function. However, estrogen-related receptors (ERRs), the orphan nuclear receptors, are crucial in
cellular energy metabolism control. ERR-α is a member of the NR superfamily, and studies have linked
it with various cancers. In endocrine-related cancers, such as breast cancer, ERR-α regulates numerous
target genes that direct cell proliferation and growth independent of ER-α [36].

PR. The progesterone receptor (PR), a nuclear hormone receptor, influences development, metabolic
homeostasis, and reproduction. EDCs tend to bind to PR and disrupt normal endocrine function [37].

Aromatase. Aromatase catalyzes the conversion of androgen to estrogen and is vital in maintaining
the androgen and estrogen balance in many EDC-sensitive organs [38].

TRHR. Thyrotropin-releasing hormone (TRH) receptor (TRHR) is a G-protein-coupled receptor
(GPCR) that binds the tripeptide thyrotropin-releasing hormone. TRHR is found in the brain and,
when bound by TRH, acts to increase the intracellular inositol trisphosphate through phospholipase
C. It plays a crucial role in the anterior pituitary as it controls the synthesis and secretion of
thyroid-stimulating hormone and prolactin [39].

TSHR. TSHR is a GPCR for thyrotropin (thyroid-stimulating hormone or TSH), which is a member
of the glycoprotein hormone family. TSH is released by the anterior pituitary gland and is the main
regulator of thyroid gland growth and development [40].

TR. Thyroid receptor (TR), a nuclear hormone receptor, plays an important role in normal brain
development, metabolism control, and many aspects of normal adult physiology. A large number of
industrial chemicals reduce circulating levels of thyroid hormone [41,42].

PPARs. Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription
factors of the NR superfamily with three distinct subtypes, namely PPAR-α, PPAR-δ (also called
PPAR-β), and PPAR-γ. All these subtypes heterodimerize with Retinoid X receptor (RXR), and these
heterodimers regulate the transcription of various genes. PPAR-γ receptor is involved in the regulation
of glucose and lipid metabolism. The function of PPAR-δ includes the regulation of cholesterol and
lipid metabolism [43].

FXR. Farnesoid X receptor (FXR), a member of the NR superfamily, is identified as a receptor of
bile acids. It is found in large amounts in the liver, intestine, kidney, and adrenal cortex. FXR binds
to FXR-response elements of DNA as a monomer or heterodimer with a common partner for NRs,
RXR, to regulate the expression of the diverse genes involved in the metabolism of bile acids, lipids,
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and carbohydrates. Numerous studies have reported that FXR agonist is favorable for liver regeneration
and hepatocarcinogenesis [44,45].

CAR. The constitutive androstane receptor (CAR) is a nuclear receptor that regulates gene
expression for multiple drug-metabolizing enzymes and transporters, which are important factors in
the metabolism of drugs or xenobiotics. CAR activation leads to the upregulation of organic anion
transporting polypeptide (OATP) transporters—that is, hepatic uptake transporters—together with
the upregulation of cytochrome P450 (CYP) and UDP-glucuronosyltransferases (UGT) enzymes [46].

PXR. Pregnane X receptor (PXR) regulates the expression of several drug-metabolizing enzymes,
such as CYP3A4. The induction of these proteins is a major mechanism for developing drug resistance
in cancer [47].

RAR. Retinoic acid receptor (RAR) is a nuclear receptor that regulates the development of chordate
animals, including the body axis, spinal cord, forelimbs, heart, eye, and reproductive tract. Retinoic acid
(RA) is derived from retinol (vitamin A) as a metabolic product and functions as a ligand for nuclear
RARs. These RARs bind target genes as heterodimer complexes with RXRs at a DNA sequence known
as the RA response element. Interference with RA signaling can have potential adverse effects on
embryonic development [48].

ROR-γ. Nuclear receptor retinoic acid receptor-related orphan receptor gamma (ROR-γ) is a key
transcription factor for the pathogenesis of autoimmune diseases mediated by Th17 cells. Because of the
essential role of ROR-γ in controlling the differentiation and functioning of Th17 cells, interference with
ROR-γ signaling pathways may promote susceptibility to immunotoxicants and autoimmune diseases.

RXRs. Retinoid X receptors (RXRs), with three distinct subtypes, namely RXR-α, RXR-β,
and RXR-γ, occupy a central position in the NR superfamily, as they are common heterodimerization
partners for several members of the human NRs, including PPARs, PXR, CAR, RARs, FXR, and TRs [49].
RXR-α has a potential role in metabolic signaling pathways, skin alopecia, dermal cysts, cardiac
development, and insulin sensitization [50].

VDR. Vitamin D receptor (VDR), a member of the nuclear hormone receptor superfamily,
plays a critical role in calcium homeostasis and bone metabolism [51].

ARE. The Nrf2–ARE pathway is an intrinsic mechanism of defense against oxidative stress.
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that induces the expression of
target genes involved in the amelioration of oxidative stress by binding to the antioxidant response
element (ARE) [52]. Oxidative stress can activate various transcription factors including NF-κB
(nuclear factor-kappa B), AP-1 (activator protein-1), Nrf2, hypoxia-inducible factor-1 (HIF-1α), p53,
and PPAR-γ. It can lead to chronic inflammation, mediating most chronic diseases, including cancer,
diabetes, cardiovascular diseases, neurological diseases, and pulmonary diseases [53].

NF-κB and AP-1. The Nuclear factor-kappa B (NF-κB) transcription factor family and activator
protein-1 (AP-1) transcription family are known as key regulators of inducible gene expression in the
immune system [54].

HIF-1. Hypoxia-inducible factor-1 (HIF-1) is a major transcription factor that regulates the cellular
response in low-oxygen conditions. HIF-1 comprises two subunits, hypoxia-responsive HIF-1-α
and HIF-1-β, and is known as the aryl hydrocarbon receptor nuclear translocator. Under hypoxic
conditions, HIF-1-α and HIF-1-β form a heterodimer. The HIF-1 complex translocates into the nucleus,
binds to the hypoxia-responsive element (HRE), and activates the expression of target genes, such as
vascular endothelial growth factor (VEGF). The HIF-1 pathway is essential for normal growth and
development, and it is involved in the pathophysiology of cancer and inflammation [55].

p53. p53, a tumor suppressor protein, is activated following cellular insult, including DNA
damage and other cellular stresses. The activation of p53 regulates cell fate by inducing DNA repair,
cell cycle arrest, apoptosis, or cellular senescence. Therefore, the activation of p53 is a good indicator
of DNA damage and other cellular stresses [56].

Casp. Caspases (Casps) involved in apoptosis are classified by their mechanism of action as
initiator (caspase-2, -8, -9, and -10) and executioner caspases, classically described as the “executors of
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apoptosis” (caspase-3, -6, and -7). The inhibition of apoptosis results in numerous cancers, autoimmune
diseases, inflammatory diseases, and viral infection [57].

HDAC. Histone deacetylases (HDACs) are a group of epigenetic enzymes that regulate gene
expression by histone deacetylation. Histone acetylation plays a major and fundamental role in
chromatin structure/function regulating eukaryotic gene expression, and it facilitates gene transcription
and expression by relaxing the chromatin structure. HDAC inhibitors activate antitumor pathways
through multiple action mechanisms, such as the activation of the apoptotic pathway and cell cycle
arrest [58].

H2AX. One of the earliest cellular responses to DNA double-strand breaks is the phosphorylation
at Ser139 of the core histone protein H2AX. This phospho-Ser139 serves as a sensitive biomarker for
detecting such breaks, localizing the site of DNA repair [59].

HSR. Heat shock response (HSR) is a transcriptional response to elevated temperature shock,
regulated by heat shock transcription factors (HSFs). The function of HSF-1, a well-studied target
gene in HSR, is the protection of cells against proteotoxicity associated with misfolding, aggregation,
and proteome mismanagement. While the induction of the HSR is specific to elevated temperature
stress, a closely related cell stress response with HSF-1 is also induced when cells are exposed to other
forms of environmental stress, such as oxidants, heavy metals, and xenobiotics, that cause protein
damage and misfolding [60].

Shh. The hedgehog (Hh) pathway is crucial in many vital cellular processes, such as
cell proliferation and differentiation during embryonic development. Three Hh genes discovered
in vertebrates are Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), and Desert Hedgehog (Dhh).
Sonic Hedgehog protein (Shh) is the most widely found in adult tissues and is the most potent target.
Therefore, chemicals that interfere with the Shh pathway are potential developmental toxicants [61].

TGF-β. Transforming growth factor-β (TGF-β) is a cytokine involved in various biological
activities, including the regulation of proliferation, differentiation, and function of numerous cell types
and the effects on glucose metabolism and fibrosis, in addition to its immunomodulatory function [62].

MMP. Mitochondrial membrane potential (MMP), a parameter for mitochondrial function,
is generated by the mitochondrial electron transport chain that creates an electrochemical gradient.
This gradient drives the synthesis of ATP, a crucial molecule for various cellular processes.
Measuring MMP in living cells is commonly performed to assess the effect of chemicals on mitochondrial
function [63].

ERsr. The endoplasmic reticulum (ER) plays a major role in the synthesis, folding, and structural
maturation of proteins in the cell. If cells encounter conditions during which the workload imposed on
the ER protein-folding machinery exceeds its capability, ER stress (ERsr) can occur. Under ERsr, secretory
proteins start to accumulate in improperly modified and unfolded forms within the organelle [64].

ATAD5. Enhanced Level of Genome Instability Gene 1 (ELG1; human ATAD5) protein levels
increase in response to various types of DNA damage. Thus, quantifying this activity can be used to
identify the compounds that cause genetic stress [65].

3.2. Data Source

For this modeling study, data collection and processing work were conducted on the constructed
toxic database based on Tox21. First, all datasets (training and test sets) of chemicals were downloaded
in the SMILES format from the PubChem database, derived from the Tox21 program. We used
a keyword for the database search, namely “Tox21 summary”, and selected bioassays of 59 toxicity
targets, such as the NRs and SR pathways, to identify agonists/antagonists (Table 3). The toxicity scores
(PubChem activity scores) of each toxic target were tied to the PubChem Substance IDs (SIDs). Finally,
14,250 compounds were used, but compounds with no activity score were excluded.
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Table 3. Molecular Initiating Events (MIEs) used in this study.

No. AID Molecular Initiating Events Activity Type Abbreviation

1 720516 ATAD5 genotoxic inducer ATAD5_ind
2 720552 p53 agonist p53_ago
3 720637 mitochondrial membrane potential disruptor MMP_disr
4 720719 glucocorticoid receptor agonist GR_ago
5 720725 glucocorticoid receptor antagonist GR_ant
6 743053 androgen receptor lbd agonist Arlbd_ago
7 743054 androgen receptor full antagonist ARfull_ant
8 743063 androgen receptor lbd antagonist Arlbd_ant
9 743067 thyroid receptor antagonist TR_ant

10 743077 estrogen receptor alpha lbd agonist ERlbd_ago
11 743078 estrogen receptor alpha lbd antagonist ERlbd_ant
12 743091 estrogen receptor alpha full antagonist ERfull_ant
13 743122 aryl hydrocarbon receptor agonist AhR_ago
14 743139 aromatase antagonist Arom_ant
15 743140 peroxisome proliferator-activated receptor gamma agonist PPARg_ago
16 743199 peroxisome proliferator-activated receptor gamma antagonist PPARg_ant
17 743219 antioxidant response element agonist ARE_ago
18 743226 peroxisome proliferator-activated receptor delta antagonist PPARd_ant
19 743227 peroxisome proliferator-activated receptor delta agonist PPARd_ago
20 743228 heat shock response activator HSR_act
21 743239 farnesoid-X-receptor agonist FXR_ago
22 743240 farnesoid-X-receptor antagonist FXR_ant
23 743241 vitamin D receptor agonist VDR_ago
24 743242 vitamin D receptor antagonist VDR_ant
25 1159518 NFkB agonist NFkB_ago
26 1159519 endoplasmic reticulum stress response agonist ERsr_ago
27 1159523 retinoid-related orphan receptor gamma antagonist ROR_ant
28 1159528 activator protein-1 agonist AP1_ago
29 1159531 retinoid X receptor-alpha agonist RXR_ago
30 1159555 retinoic acid receptor antagonist RAR_ant
31 1224892 constitutive androstane receptor agonist CAR_ago
32 1224893 constitutive androstane receptor antagonist CAR_ant
33 1224894 hypoxia agonist HIF1_ago
34 1224895 thyroid stimulating hormone receptor agonist TSHR_ago
35 1224896 histone variant H2AX agonist H2AX_ago
36 1259247 androgen receptor with stimulator antagonist Arfulls_ant
37 1259248 estrogen receptor alpha with stimulator antagonist Erfulls_ant
38 1259387 androgen receptor with antagonist agonist ARant_ago
39 1259388 histone deacetylase antagonist HDAC_ant
40 1259390 sonic hedgehog signaling agonist Shh_ago
41 1259391 estrogen receptor alpha with antagonist agonist ERaant_ago
42 1259392 sonic hedgehog signaling antagonist Shh_ant
43 1259393 thyroid stimulating hormone receptor agonist antagonist TSHR_agoant
44 1259394 estrogen receptor beta agonist ERb_ago
45 1259395 thyroid stimulating hormone receptor antagonist TSHR_ant
46 1259396 estrogen receptor beta antagonist Erb_ant
47 1259401 estrogen related receptor with PGC antagonist ERRPGC_ant
48 1259402 estrogen related receptor with PGC agonist ERRPGC_ago
49 1259403 estrogen related receptor antagonist ERR_ant
50 1259404 estrogen related receptor agonist ERR_ago
51 1347030 thyrotropin releasing hormone receptor agonist TRHR_ago
52 1347031 progesterone receptor antagonist PR_ant
53 1347032 transforming growth factor beta antagonist TGFb_ant
54 1347033 human pregnane X receptor agonist PXR_ago
55 1347034 caspase-3/7 in HepG2 inducer CaspH_ind
56 1347035 transforming growth factor beta agonist TGFb_ago
57 1347036 progesterone receptor agonist PR_ago
58 1347037 caspase-3/7 in CHO-K1 inducer CaspC_ind
59 1347038 thyrotropin releasing hormone receptor antagonist TRHR_ant

AID means PubChem assay IDs.
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3.3. qHTS Data Analysis

The Tox21 10k library can rank the results of qHTS and prioritize hits according to PubChem
activity scores. PubChem activity scores are assigned normalized scores between 0 and 100 for each
PubChem activity score ID (AID). The most active results have scores closer to 100, and inactive
scores are closer to 0. According to PubChem documentation, all inactive compounds have a score
of 0, active compounds have scores between 40 and 100, and inconclusive compounds have scores
between 5 and 30. In this study, to implement binary classification models, the binary labels of active
or inactive compounds were adopted following two definitions: (1) Under the definition of a criterion
of 40, compounds with scores from 40 to 100 were defined as active and those activity scores from 0 to
39 were defined as inactive. (2) Under the definition of a criterion of 1, compounds with scores from
1 to 100 were defined as active and those with activity scores of 0 were defined as inactive. In definition
(1), only the compounds concluded to be active based on the Pubchem criterion were defined as
active compounds, and the other compounds were defined as inactive even if they were inconclusive
compounds. On the other hand, in definition (2), only the compounds concluded to be inactive based
on the Pubchem criterion were defined as inactive compounds and the other compounds were treated
as active compounds even if they were inconclusive compounds. In Figure 7, the scores highlighted in
red show the active examples and other scores show inactive examples. Two types of binary label
tables which denote active or inactive examples were created for the respective criteria.
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Figure 7. Relationship between the thresholds and active/inactive judgment. Red and white squares
mean active and inactive judgments, respectively. Blue square means AIDs and SIDs.

The SIDs of the compounds used in this study are given in rows, and the AIDs are given in
columns. The original table contains the original PubChem activity score of the compounds. In the
table for the criteria of 40, the PubChem activity scores highlighted in red show the active examples for
which the scores were larger than 40. In the table for the criteria of 1, the PubChem activity scores
highlighted in red show active examples for which the scores were larger than 1.

3.4. Conformations and Descriptors

SMILES strings were cleaned and standardized (removing salts, counterions, and fragments and
adjusting the protonation state (neutralize)) by RDkit, which is a Python library [66]. Optimal 3D
structures were generated by following a calculation process to handle the calculation of excessive
candidate compounds using an efficient and heuristic—though not strictly ideal—method. First,
chemical structures were generated from the SMILES strings, and explicit hydrogen atoms were
added to the chemical structures. Next, up to 200 types of 3D conformers were randomly generated.
The energy minimization calculation was performed on them by the MMFF force field, and a conformer
with minimal energy was adopted from 200 types of conformers. However, when this process lasted
more than 60 s, instead of the above calculations, the conformer was generated using the ETKDG
method [67] and the energy minimization calculation was performed on it by the MMFF force field [68].
Finally, the optimal conformer was converted into an SDF format.
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Molecular descriptors were calculated for each compound using Mordred [69,70], a Python library;
2D and 3D descriptors were obtained; and finally, 1824 descriptors were adopted for model construction.

3.5. ML Algorithm and Modeling Scheme

Classification models based on Tox21 were developed using XGBoost. This algorithm was
designed to be highly scalable by adopting a sparsity-aware algorithm for sparse data and a weighted
quantile sketch for approximate tree learning [22]. In this study, the modeling scheme was designed to
integrate the validator, recorder, and filter to gain a single model satisfying high-predictive performance
and robustness (Figure 8). Further, 10% of all compounds was assigned to the test set without the data
being fed into this pipeline. The compounds fed into the pipeline included 90% of all compounds
obtained by excluding the test set, and these were used for the optimization, training, and validation
of the models.

Validator. In the validator, hyperparameter exploration using a grid search was performed.
ML models were trained and validated according to the respective grid-generated parameter values.
One-third of the data fed into this validator was assigned to the validation set as out-of-fold (OOF)
and two-thirds to the training set, where the predictive performance was validated using the hold-out
method. Here, when assigning validation and training sets, extreme unlike distributions between
the validation and training sets could occur by chance. Therefore, three patterns of allocations of
OOF were generated, ensuring that it represented 100% coverage of the input data set and without
duplication. For all pairs of validation training set allocations, the models were constructed using
each grid-generated hyperparameter. They evaluated the predictive performance in the validation
sets according to the ROC-AUC. The hyperparameter governing the performance of the XGBoost was
explored within the following predefined ranges: learning rate (“learning_rate”: 100 types of values
from 0.01 × 0 to 0.01 × 99).

Recorder. The recorder works as a record-keeper for the validator. The number of conditions
to evaluate in the validator reached 300 patterns consisting of three OOFs and 100 hyperparameters.
This recorder stored all prediction models constructed for the respective conditions, their modeling
conditions, and the predictive performances in the OOFs.

Filter. The filter eliminates some overfitting cases while selects the models with the highest
predictive performance from the information stored in the recorder. In the filter, based on 300 prediction
performances stored in the recorder, a set of the highest predictive performing models and their
modeling conditions was selected. Here, we imposed the following request to detect some overfitting
cases. We excluded some hyperparameters used for model construction when the models with this
hyperparameter had a high variability of the predictive performances between other OOFs in the 100%
coverage validation. Therefore, even if the selected set of hyperparameters and allocation of OOFs
resulted in high predictive performance, it was not adopted when the variability of performance with
other OOFs at a coverage of 100% was high.
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In the validator, using three types of unduplicated out-of-folds (OOFs) as the validation set,
models were trained and validated with each hyperparameter. In the recorder, all prediction models,
their modeling conditions, and predictive performances were stored. In the filter, high-variability
cases were excluded according to 100% coverage validation, and the highest performing model was
selected simultaneously.

3.6. Evaluation Metrics

The predictive performance of the classification models was evaluated based on information
calculated from confusion matrices, including the number of true positives (TP; compounds correctly
identified as positive), true negatives (TN; compounds correctly identified as negative), false negatives
(FN; misclassified positive compounds), and false positives (FP; misclassified negative compounds).
The following six evaluation indexes were used to evaluate the classification models.

(1) SE: accuracy of predicting “positive” (active) when the true outcome is positive.

SE =
TP

TP + FN
(1)

(2) SP: accuracy of predicting “negative” (inactive) when the true outcome is negative.

SP =
TN

TN + FN
(2)

(3) ACC: the number of correctly predicted samples divided by the total number of samples.

ACC =
TP + TN

TP + TN + FN + FP
(3)

(4) BAC: average between SE and SP.

BAC =
1
2
(SE + SP) (4)

(5) MCC: used as a measure to assess the classification accuracy of the models for an unbalanced
dataset [71].

MCC =
(TP·TN) − (FP·FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

(6) AUC: a graph showing the performance of a classification model at all classification thresholds.
This curve plots two parameters: (i) SE and (ii) 1–SP [72].

To determine the optimal cutoff points in the definitions of TP, FN, TN, and FP, we maximized SE
(1–SP) using the Youden index [73]. In the toxicity predictor, the cutoff value specific to each prediction
model was standardized and displayed using the following formula so that the maximum, minimum,
and average values were 1, 0, and 0.5, respectively.

xn = x− logc 2
u (6)

The value xn is obtained by normalizing the directly predicted value xu using the equation. Here,
c is the cutoff value of each prediction model.
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3.7. Applicability Domain

The AD of the compound entered for the prediction was defined using the Euclidean distance to
the five nearest molecules in the descriptor space of Tox21 compounds. The mean of the logarithmic
Euclidean distances was normalized between 0 and 1 and expressed as reliability in the toxicity predictor.

4. Conclusions

In this study, we built prediction models of 59 MIE agonists and antagonists with information
on the chemical structure and activity from the Tox21 10K library. We aimed to support regulatory
toxicity decisions comprehensively and to enable users to reuse the QSTR predictions. Therefore,
a web application integrating the three-dimensionalization algorithm, toxicity prediction models,
and domain evaluation used in this study was developed to access to the assessment of activity against
59 MIEs. These models were valid toxicity models for alternative in silico screening and therefore
could practically aid in achieving toxicity assessment.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/21/
7853/s1.
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