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Bacterium Cupriavidus oxalaticus Strain Ox1 and Its Derived

mCherry-Tagged Strain
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ABSTRACT Here, we report the complete genome sequences of the soil oxalotrophic
bacterium Cupriavidus oxalaticus Ox1 and a derived mCherry-tagged strain. The genome
size is approximately 6.69 Mb, with a GC content of 66.9%. The genome sequence of
C. oxalaticus Ox1 contains a complete operon for the degradation and assimilation of oxalate.

xalotrophy is the ability to use oxalate as a carbon and energy source. So far, this metab-

olism has been described in a specialized group of both aerobic and anaerobic bacteria
(1, 2). Oxalic acid transformation involves the decarboxylation of oxalate into formate by the
formyl-coenzyme A (formyl-CoA) transferase (Frc; EC 2.8.3.16) and the oxalyl-CoA decarboxyl-
ase (Oxc EC 4.1.1.8) (1, 3), followed by formate oxidation by the formate dehydrogenase (4).
Excretion of formate through the oxalate/formate antiporter OXIT is required for energy pro-
duction (5). Cupriavidus oxalaticus Ox1, formerly Pseudomonas oxalaticus, is a soil bacterium
isolated from the gastrointestinal tract of Indian earthworms (6). This species has been used as
a model to study oxalotrophy through enzymatic studies (7-10). In contrast, analysis of the
genes encoding the key enzymes involved in oxalotrophy is still lacking. Here, we sequenced
and annotated the complete genome of C. oxalaticus strains Ox1 NEU 1047 (wild type) and
NEU 1287 (mCherry tagged), to study oxalotrophy on the former and to check the chromoso-
mic insertion of the mCherry fluorescent protein tag for the latter. We report the presence of a
putative complete oxalotrophy transcriptional operon. In addition, we confirmed the chromo-
somic insertion of mCherry upstream of the gimSU genes (11, 12) in the constitutive fluores-
cently tagged mutant (strain NEU 1287 mCherry), which was prepared in-house using a mini-
Tn7-mCherry transposon system (13).

The strains were cultured in nutrient broth at 37°C under constant agitation (120 rpm)
overnight. Genomic DNA was extracted using the Genomic-tip 20/G kit (Qiagen GmbH,
Germany), following the manufacturer’s instructions. Both bacterial genomes were sequenced
and assembled by the Lausanne Genomic Technologies Facility (University of Lausanne).
Genomic DNA was sheared using a Megaruptor instrument (Diagenode, Denville, NJ, USA)
to obtain 10- to 15-kb fragments. After shearing, the DNA size distribution was checked on a
fragment analyzer (Advanced Analytical Technologies, Ames, 1A, USA). DNA (500 ng) was
used to prepare several SMRTbell libraries with the PacBio SMRTbell Express template prep
kit v2.0 (Pacific Biosciences, Menlo Park, CA, USA) according to the manufacturer's recom-
mendations. DNA fragments of <3 kb were size selected using AMPure PacBio beads. The
DNA was sequenced using v3.0/v3.0 chemistry and diffusion loading on a PacBio Sequel |
instrument with a movie length of 600 min and a preextension time of 120 min using one
single-molecule real-time (SMRT) cell 1M v3. De novo microbial assembly was performed
using SMRT Link v9.0 with the Microbial Assembly Workflow v1.0.4, which includes a preas-
sembly automatic quality-filtering step. Default parameters were used, except for the genome
length, which was set to 6 Mb instead of 5 Mb. The workflow reported rotation to the oriC
position and circular status of the contig. The genomes were not determined to be complete
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TABLE 1 Assembly and annotation statistics for C. oxalaticus Ox1 and C. oxalaticus Ox1
mCherry

C. oxalaticus Ox1

C. oxalaticus Ox1

Characteristic (NEU 1047) mCherry (NEU 1287)
Genome size (bp) 6,694,750 6,697,997
No. of chromosomes 2 2

No. of contigs 2 2

Ns, (bp) 3,885,446 3,888,701
Mean coverage (x) 189.27 160.97
GC content (%) 66.94 66.94
Total no. of genes 6,059 6,064
Total CDSs? 5,975 5,980

No. of protein-coding CDSs 5,872 5,872

No. of rRNAs (5S, 16S, 23S) 555 55,5

No. of tRNAs 65 65

GenBank accession no.
GenBank assembly accession no.

CP069811.1, CP069812.1
GCA_016894385.1

CP069809.1, CP069810.1
GCA_016894365.1

a CDSs, coding DNA sequences.

manually. Genome annotation was carried out with using the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) (14). Assembly and annotation statistics for both strains are
provided in Table 1.
Data availability. This whole-genome sequencing project has been deposited at
GenBank under the BioProject accession no. PRINA695296. The nucleotide sequences
and genome assembly accession numbers for both C. oxalaticus Ox1 and Ox1 mCherry are
presented in Table 1.
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