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Abstract: Pancreatic cystic lesions are increasingly detected in cross-sectional imaging. Intraductal
papillary mucinous neoplasm (IPMN) is a mucin-producing subtype of the pancreatic cyst lesions
arising from the pancreatic duct system. IPMN is a potential precursor of pancreatic cancer. The
transformation of IPMN in pancreatic cancer is progressive and requires the occurrence of low-
grade dysplasia, high-grade dysplasia, and ultimately invasive cancer. Jaundice, enhancing mural
nodule >5 mm, main pancreatic duct diameter >10 mm, and positive cytology for high-grade dyspla-
sia are considered high-risk stigmata of malignancy. While increased levels of carbohydrate antigen
19-9 (CA 19-9) (>37 U/mL), main pancreatic duct diameter 5–9.9 mm, cyst diameter >40 mm, enhanc-
ing mural nodules <5 mm, IPMN-induced acute pancreatitis, new onset of diabetes, cyst grow-rate
>5 mm/year are considered worrisome features of malignancy. However, cross-sectional imaging
is often inadequate in the prediction of high-grade dysplasia and invasive cancer. Several studies
evaluated the role of humoral and intra-cystic biomarkers in the prediction of malignancy in IPMN.
Carcinoembryonic antigen (CEA), CA 19-9, intra-cystic CEA, intra-cystic glucose, and cystic fluid
cytology are widely used in clinical practice to distinguish between mucinous and non-mucinous
cysts and to predict the presence of invasive cancer. Other biomarkers such as cystic fluid DNA
sequencing, microRNA (mi-RNA), circulating microvesicles, and liquid biopsy are the new options
for the mini-invasive diagnosis of degenerated IPMN. The aim of this study is to review the literature
to assess the role of humoral and intracystic biomarkers in the prediction of advanced IPMN with
high-grade dysplasia or invasive carcinoma.

Keywords: IPMN; biomarkers; pancreatic cancer

1. Introduction

Intraductal papillary mucinous neoplasm (IPMN) is a mucin-producing subtype of
the pancreatic cyst lesions arising from the pancreatic duct system [1]. Depending on the
involvement of the pancreatic duct system, we recognize three types of IPMN: main duct
IPMN (MD-IPMN), branch duct IPMN (BD-IPMN), and mixed-type IPMN (MT-IPMN)
when main duct, secondary branches, or both are involved respectively (Figure 1) [2].
Taking into account the histological structure and the mucin gene expression, IPMN can also
be classified in gastric, intestinal, pancreaticobiliary, and oncocytic [3]. IPMN and mucinous
cystic neoplasm (MCN) are considered precursors of pancreatic cancer and it is estimated
that 8% of pancreatic malignancies arise from these lesions [4]. The transformation of
IPMN in pancreatic cancer is a progressive oncologic process that begins as low-grade
dysplasia, continues with high-grade dysplasia, and ends in invasive cancer. The precise
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mechanism of this process is not fully understood, yet but several genetic alterations have
been identified as potential drivers of malignancy (e.g., KRAS, GNAS, TP53, and SMAD4
mutations) [5,6]. Unlike the other pancreatic cancer precursor (intraepithelial neoplasia-
PanIN) which can be identified only with a histopathological examination, IPMN may
be detected with cross-sectional imaging and can be classified as high or low risk for
malignant transformation.
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Jaundice, enhancing mural nodule >5 mm, main pancreatic duct diameter >10 mm,
and positive cytology for high-grade dysplasia are considered high-risk stigmata of malig-
nancy and are absolute indications for surgery. Increased levels of carbohydrate antigen
19-9 (CA 19-9) (>37 U/mL), main pancreatic duct diameter 5–9.9 mm, cyst diameter >40 mm,
enhancing mural nodules <5 mm, IPMN-induced acute pancreatitis, new onset of diabetes,
cyst grow-rate >5 mm/year are considered worrisome features of malignancy and relative
indications for surgery [7]. Echoendoscopic Ultrasound (EUS) can be used to examine the
morphologic characteristic of IPMNs to detect alarming features of malignancy with a
sensitivity of 56–78%, and a specificity of 45–67% for the differential diagnosis between
IPMN and other cystic lesions [8]. Differently from cross-sectional imaging, EUS allows the
performance of Fine-Needle-Aspiration (FNA) for a biochemical (CEA, amylase, glucose,
and mucin dosage) and cytological study of the cystic fluid [9]. Although cross-sectional
imaging and EUS are considered the gold standard to detect, worrisome features of malig-
nancy in IPMN, several biomarkers have been described as useful tools in daily practice.
Carbohydrate Antigen 19-9 and Carcinoembryonic Antigen (CEA) are the most frequently
used biomarkers during the follow-up [10]. Laboratory scores such as Neutrophil to lym-
phocyte ratio (NLR), Platelet to lymphocyte ratio (PLR), and C-reactive protein to albumin
ratio (CAR) have been reported as potential predictors of malignancy in IPMN. Recently,
cyst fluid DNA sequencing, microRNA (mi-RNA), circulating microvesicles, and liquid
biopsy have been described as new frontiers for the mini-invasive diagnosis of degenerated
IPMN. This study aims to review the literature to describe the evidence and current use of
humoral biomarkers in the prediction of malignancy in IPMN.

2. Circulating Humoral Predictors of Malignancy

The risk of IPNM malignant transformation is not accurately predictable [Nasca2020].
For this reason, various clinical and radiological parameters have been considered to
stratify the IPMN potential malignancy, thus identifying patients who will benefit from
an early operation and those requiring a watchful waiting approach. Humoral predictors
of malignancy can be crucial in the management of these lesions. Currently, an active
area of research focuses on finding effective IPMN malignancy predictors, ranging from
tumor markers as CA19-9 and CEA to serum inflammatory parameters such as NLR, PLR,
and CAR.

2.1. Carbohydrate Antigen 19-9

CA 19-9 is a monosialogangloside expressed on the surface of cells first isolated in
1979 by Koprowski using a hybridoma made from a mouse’s spleen cells immunized with
the SW116 human colorectal carcinoma cell line [11]. The CA 19-9 carbohydrate epitope, a
sialylated lacto-N-fucopentanose I1 oligosaccharide, is related to the Lewis A blood group
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antigen [12,13] and it is not expressed in approximately 5–10% of the population because of
the lack of 1, 4-fucosyl transferase enzyme, necessary for the sialyl Lewis antigen epitope
production [14–17]. In physiological conditions, Ca 19-9 is produced by pancreatic and
biliary ductal cells and secreted by gastric, colonic, endometrial, and salivary epithelia.
Small quantities are present in serum as a high molecular weight glycoprotein complex.
High levels of Ca 19-9 are found in the peripheral blood of patients with gastrointestinal
cancers (e.g., adenocarcinomas of the stomach, gut, and pancreas) but also in benign
diseases (peptic ulcers, pancreatitis, cirrhosis, cholangitis, and obstructive jaundice) [18,19].
Serum CA19-9 is the most consolidated tumor biomarker for pancreatic cancer, widely
used for both adenocarcinoma diagnosis and prognosis [16,18,20,21]. In recent years, it
has been investigated whether CA19-9 could be useful also for distinguishing invasive
from benignant IPMN [22,23]. A large meta-analysis, which includes 15 studies and
1530 patients, reported a specificity for CA 19-9 of 89% and 88% and sensitivity of 40%
and 52%, in malignant and invasive IPMN, respectively [24]. Evidence that elevated CA
19-9 values (>37 U/mL) are associated with both high-grade dysplasia and invasive cancer
leads to its inclusion in several guidelines both as a “worrisome feature” and a relative
criterion for resection [7,25]. Remain still unclear the correlation among CA 19-9 level with
histological malignancy and survival. In this context, Cipriani et al. recently performed
a single-institution large cohort study evaluating the utility of CA 19-9 in pathologically
proven IPMN [26]. They demonstrate CA 19-9 as a predictor of IPMN malignancy and
worse survival, even though with a reduced sensitivity that can limit the diagnostic value
of the maker. More importantly, these results show that CA 19-9 is not closely associated
with high-grade dysplasia but strongly correlated with more advanced stage tumors.

2.2. Carcinoembryonic Antigen

CEA is a 180 kDa cell-surface glycoprotein belonging to the immunoglobulin super-
family of cell adhesion molecules [27,28]. Gold and Freedman first discovered it from
human colorectal cancer tissue and embryonic colon mucosa in 1965 [29]. A characteristic
of the CEA family structure is the presence of several glycosylations on asparagine residues
linked with multiantennary N-glycan chains that could present Lewis x and sialyl Lewis x
structural motifs. They can play a role in the metastatic dissemination of colon carcinoma
cells since they are biological ligands for L-selectin and E-selectin [30].

CEA is a cell-surface glycoprotein employed as a serum tumor biomarker, especially
in colorectal cancer, as an independent predictor of overall survival, disease-free survival,
and recurrence [31,32]. CEA is also used as a diagnostic value in pancreatic adenocarci-
noma [33,34]. Furthermore, in last years, various studies give attention to its role to under-
stand whether it could be useful in predicting malignant and invasive IPMN [22,23,26,35].
Fritz et al. demonstrated that CEA > 5 µg/L was present in 40% of patients with invasive
IPMN and only in the 8% with a non-invasive IPMN, showing a sensitivity of 40% and a
specificity of 92.4% [22]. A meta-analysis taking into account 15 studies published between
2001 and 2013 was reported by Wang et al., which demonstrated that serum CEA has
low sensitivity (18%) and high specificity (93–95%) for malignant and invasive IPMN [35].
Kim et al. obtained similar results, showing a sensitivity of 6.1% and a specificity of 96.4%
in predicting IPMN malignancy [23]. A recent study has shown the opposite conclusion: it
found that increased values of serum CEA were not associated with a higher probability of
malignancy in IPMN [26]. Therefore, the low sensitivity of CEA makes it unsuitable to be
used as a screening method, especially in high-risk patients. However, considering its high
specificity, this marker can be valuable in rule-in IPNM malignancy [36].

2.3. Neutrophil to Lymphocyte Ratio

The NLR is an inflammatory marker derived from the total neutrophils count divided
by the total lymphocytes count. Its preoperative value, if elevated, correlates with poor
prognosis in various solid malignancies [37,38]. In the IPMN context, Arima et al. found a
higher NLR value in patients with IPMN invasive carcinoma compared to non-invasive



Int. J. Mol. Sci. 2021, 22, 12839 4 of 17

IPMN and healthy volunteers [39]. In their study, an NLR > 2.074 presented a sensitivity
of 73.1% and a specificity of 58% in predicting potentially malignant IPMN. A combined
criterion, which includes this cut-off NLR value with other factors such as international
consensus guidelines and CA 19-9 > 37, showed a high positive predictive value of 78%
and high specificity of 96% [39]. In a retrospective study taking into account 272 patients
with pathologically documented IPMN, Gemenetzis et al. demonstrated that a value
NLR > 4 was an independent predictive marker for the presence of IPMN-associated inva-
sive carcinoma [40]. However, the NLR sensitivity was not able to discriminate between
the different degrees of dysplasia. Hata et al. also described the ability of NRL in predicting
high-grade dysplasia/invasive-IPMN [41]. To combine NRL with image findings, CEA,
and CA 19-9, increases the predictive power with a sensitivity of 58.8% and a specificity
of 76.8%. This study also observes that high NLR values correlate with tumor aggressive-
ness and poor outcomes in IPMN invasive associated carcinoma [30]. Conversely, Onho
et al. found no significant difference in prognosis between high NLR and low NLR [42].
McIntryre et al. confirmed that NLR was unable to discriminate high-grade dysplasia from
low-grade dysplasia [43]. However, the NLR remains an easy to perform cost-effective
diagnostic marker for predicting IPMN associated with invasive carcinoma, especially
when combined with other factors. It is worth noting that the optimal cut-off value is still
an open point.

2.4. Platelet to Lymphocyte Ratio

PLR derives from the ratio between the total counts of platelets and lymphocytes.
Similar to the NLR, it is an inflammatory marker with a pivotal prognostic role in various
solid tumor cancers [44]. In a retrospective study involving 120 patients who underwent
surgery for a pathologically proven mucin-producing pancreatic cystic neoplasm (MpPCN),
PLR > 208.1 was an independent predictor of invasive carcinoma in MpPCN [45]. In
patients categorized as “High risk” in the Fukuoka Consensus Guideline, high PLR was
associated with 83.3% invasive carcinoma versus 42.5%, showing that the use of PLR
could improve the positive predictive value of these guidelines in detecting invasive
neoplasms [25,45]. On the other hand, the retrospective study by Gemenetzis et al. suggests
that PLR is not a predictive marker for high-grade dysplasia or IPMN-associated invasive
carcinoma [40]. Further investigations are hence necessary to fully assess its role.

2.5. C-Reactive Protein to Albumin Ratio

Host-related inflammatory biomarkers such as the NLR, PLR, among others, have been
recognized as prognostic factors in pancreatic adenocarcinoma [46,47]. The significance
of these markers in IPMN diagnosis is an intriguing aspect currently under investiga-
tion [40,41,48,49]. The role of the ratio between the CAR has been less investigated. Very
recently, Serafini et al. conducted a retrospective analysis on 83 patients who underwent
pancreatic resection for IPMNs [50]. Their results suggest that CAR > 0.083 was a statisti-
cally significant predictor of invasive carcinoma or high-grade dysplasia in IPMNs with a
sensitivity of 52% and a specificity of 93%. Although CAR has low sensitivity in detect-
ing malignancy, its specificity overcomes the ICG criteria for detecting malignant IPMN.
Moreover, patients with low CAR value presents better overall survival when compared to
those with CAR > 0.083 [50]. These findings indicate that CAR can be an easy-to-obtain
indicator in IPMN clinical treatment. Although international multicentric clinical studies
are needed to confirm its relevance, CAR may be promising when integrated with imaging
analysis and consolidated tumor markers.

2.6. Cyst Fluid Sample

When the cross-sectional imaging is inconclusive or documents worrisome features,
EUS evaluation is frequently required. The EUS morphological assessment alone is gen-
erally inadequate to differentiate mucinous from serous cysts [51]. Thus, an FNA is
performed to analyze a sample of the cyst fluid and increase the diagnostic accuracy of
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EUS. Classically, the cyst fluid is tested for CEA, amylase, and cytological analysis [52].
Recently glucose, mucin, and DNA sequencing in the cyst fluid are under evaluation for
differential diagnosis of mucinous neoplasms.

2.7. Carcinoembryonic Antigen

Lewandrowski KB et al., firstly reported the dosage of tumor markers in pancreatic
cyst fluid in 26 patients [53]. They documented high levels of CEA in all mucinous
lesions and low levels in serous cysts and pseudocysts. Brugge W.R. et al. performed a
multicenter retrospective study collecting the tumor markers dosage in cyst samples of
patients undergoing surgery for final histological examination [8]. They demonstrated
that cyst fluid CEA higher than 192 ng/mL presented a diagnostic accuracy of 88% in
differentiating mucinous from a non-mucinous cyst. Laurens A. et al. reported that CEA
levels lower than 5 ng/mL were predictive of a serous cyst with a sensitivity of 50% and a
specificity of 95% [54]. The same authors documented that raising the threshold of cyst
CEA to 800 ng/mL the diagnosis of mucinous cyst presented a higher specificity (98%) but
a significantly lower sensitivity (48%). The threshold of 192 ng/mL is used in daily practice
as a binary cut-off with a sensitivity of 52–78% and specificity of 63–91% in distinguishing
between mucinous and non-mucinous cysts. The cyst CEA levels are not accurate for the
differential diagnosis between IPMN and mucinous cystadenoma [55]. Moreover, cystic
CEA is not adequate in predicting the presence of dysplasia or invasive carcinoma [56].

2.8. Cytological Analysis

The specimens obtained with EUS-FNA can be used to perform a cytological analy-
sis. Positive cytology for high-grade dysplasia or malignancy is considered an absolute
indication for surgery [7]. According to the Papanicolaou Society of Cytopathology (PSC),
the pancreatobiliary cytology can be classified into six diagnostic categories: (1) Non-
diagnostic (a specimen that provides no diagnostic information about the solid or cystic
lesion); (2) Negative for malignancy (a specimen that contains adequate cellular or extra-
cellular tissue without consistent evidence of malignancy); (3) Atypical (a specimen that
contains cells with cytoplasmic, nuclear, or architectural features that are not consistent
with physiological or reactive changes); (4-A) Neoplastic (a specimen consistent with a
benign lesion), (4-B) Neoplastic (a neoplasm that is pre-malignant or low-grade malig-
nant); (5) Suspicious for malignancy (a specimen that presents features of malignancy,
but the findings are qualitatively or quantitatively insufficient for a conclusive diagnosis);
(6) Positive (a specimen that contains malignant cytological features) [57,58]. Thornton
G. D. et al. performed a metanalysis of 18 studies with 1438 patients affected by IPMN
that underwent EUS-FNA. The pooled sensitivity and specificity of cytological analysis
in the differential diagnosis between mucinous and non-mucinous cysts were 54% and
93%, respectively [9]. Several cytological findings can help to distinguish the different
pancreatic cists: for example, the presence of macrophages, histiocytes, and neutrophils is
suggestive of pseudocyst; the presence of mucin is suggestive of mucinous neoplasm; the
presence of glycogen-rich cuboidal cells indicate a serous cystic neoplasm [59]. Moreover,
the cytological analysis can detect malignancy within the mucinous cists with a reported
high specificity (83–99%) but a low sensitivity (25–88%) [59].

2.9. Glucose

Recently, the dosage of glucose in the cystic fluid has been reported as a useful tool in
the differential diagnosis between mucinous and non-mucinous cysts. Park G. W. et al.,
performed a metabolomic analysis on pancreatic cyst fluid samples and reported that the
metabolomic abundance of glucose was lower in mucinous cysts [60]. Faias S. et al. reported
similar results on cyst fluid samples collected with EUS-FNA. In this study the median
glucose levels were 19 mg/dL (IQR 19-19) in mucinous and 105 mg/dL (IQR 96–127) in
non-mucinous cysts (p < 0.0001) [61]. Glucose levels < 50 mg/dL had a sensitivity of
89% and a specificity of 86% in identifying mucinous cysts. Car R. A. et al. compared
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glucose and CEA levels in the cystic fluid of 153 patients with histologically confirmed
diagnoses [62]. The median glucose level was 19 mg/dL in mucinous and 96 mg/dL in
non-mucinous cysts. With the threshold of 50 mg/dL, glucose levels had a sensitivity
of 92%, a specificity of 87%, and a diagnostic accuracy of 90% in the identification of
mucinous cysts.

Although glucose seems comparable, if not superior to CEA in differentiating between
mucinous and non-mucinous cysts, it is not adequate to detect degenerate IPMN with
dysplasia or invasive carcinoma.

2.10. Mucin

Mucins (MUCs) are highly glycosylated glycoproteins expressed in epithelial cells [52].
MUC can be detected by specific stains or by utilizing gene expression. MUCs research
can be performed on cystic fluid sent for cytological and chemical analysis with no need
for other specimens. MUC can differentiate the mucinous from the non-mucinous cyst
with a reported sensitivity and specificity of 80% and 40%, respectively [63]. MUC 1 is
not expressed in normal pancreatic tissue and is considered a marker of malignancy and
invasiveness [64]. Nissim S. et al. in a metanalysis of 39 studies, reported that MUC 1 was
detectable in 8.6% of not-degenerated IPMN and 35.8% of cancerized IPMN; MUC 2 was
detectable in 51.7% of not-degenerated IPMN and 68.9% of cancerized IPMN; MUC 5A
showed the weakest association with malignant progression of IPMN and was expressed
in 84.7% of not-degenerated IPMN [65]. Moreover, MUC 4 was implicated in IPMN
development with increased expression in degenerated IPMN [66]. The research of mucins
in cystic fluid on one side can be useful to the differential diagnosis between mucinous and
non-mucinous cysts, but, more interestingly, on the other one, has the potential to detect
malignant and degenerated IPMN.

2.11. Amylase

Cyst levels of amylase can be used as an indicator of communication with the pancre-
atic duct system. Amylase levels are generally high in pseudocysts but can also be detected
in other cystic pancreatic lesions such as IPMN [67]. Waaij LA et al. in a review of 12 studies
reported that amylase cystic levels lower than 250 U/L virtually excluded pseudocysts
and can be found in mucinous and serous cysts [54]. IPMN presents, by definition, a
direct connection with the pancreatic duct system while mucinous cystadenomas lack this
connection; however, amylase can be detected in both cases and is not useful for their
differentiation. In clinical practice, cystic amylase levels < 250 U/L can be used to exclude
pseudocysts with a sensitivity of 44% and a specificity of 98% but it cannot be used either
to differentiate between other non-mucinous and mucinous cysts or to detect degeneration
or malignancy [7].

2.12. Other Intra-Cystic Markers

CA 19-9 is a tumor marker widely utilized for the management of pancreatic and
biliary malignancies. As said before, CA 19-9 is generally dosed in a peripheral blood
sample with a threshold of 37 UI/mL. Moreover, CA 19-9 can be dosed in cystic fluid
samples. Stigliano S. et al. performed a metanalysis of seven studies involving 939 patients
to assess the role of intra-cystic CA 19-9 in the differential diagnosis of pancreatic cysts [68].
The reported sensitivity and specificity of CA 19-9 in distinguishing between mucinous and
non-mucinous cysts were respectively 68% and 68% [68]. The high heterogeneity among
the studies, the small population sizes, and the absence of a standardized cut-off are the
major complaints of the studies available in the current literature thus not supporting the
use of intra-cystic CA 19.9 in daily practice.

The dosage in cystic fluid samples of other markers such as CA 72-4, CA 125, and CA
15-3 has been evaluated in a few studies, however, their clinical role is still not defined, and
more prospective studies are needed [8]. Ajay V. M. et al. evaluated the expression of cy-
tokines in cystic fluid samples hypnotizing the role of immunogenic and pro-inflammatory
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microenvironment in the development of dysplasia and invasive carcinoma [69]. They
reported that high-risk IPMN were associated with elevated levels of cytokines reflecting a
Th1 and Th2 immunologic response. Specifically, they found that Interleukin-1b (IL-1b) lev-
els in cystic fluid samples were higher in patients with high-grade dysplasia and invasive
cancer compared with those with low-grade or moderate dysplasia. In the multivariate
analysis, high levels of IL-1b were predictive of high-risk cysts. They concluded that IL-1b
might represent a useful tool in the clinical setting to choose whether to perform surgery.

3. New Perspectives
3.1. Cyst Fluid DNA Sequencing

The progression from normal pancreatic cells to pancreatic cancer is a complex mech-
anism involving the accumulation of genetic variations such as gene mutations, gene
down-regulation or up-regulation, and chromosomal aberrations [70]. As such, the trans-
formation of IPMN into pancreatic cancer depends mainly on molecular mutations of
proto-oncogenes or oncogenes leading to aberrant cell growth [71]. Therefore, the cyst
fluid DNA analysis has been investigated as a tool in distinguishing between mucinous
and non-mucinous cysts, and, more interestingly, in the early detection of malignancy.
Khalid A. et al. performed a prospective multicenter study to evaluate the utility of DNA
analysis of pancreatic cyst fluid to diagnose mucinous cists and degenerated lesions in
113 patients [72]. The reported elements of DNA analysis associated with malignancy
were a high amount of pancreatic cyst fluid DNA, high-amplitude mutations, and high
amplitude KRAS mutation. Cyst fluid KRAS mutation was predictive of mucinous cysts
with high specificity (96%) but low sensitivity (45%).

Other studies reported the role of GNAS mutations in the progression towards pan-
creatic cancer. Among the several pancreatic lesions, the GNAS mutation at codon 201 is
observed exclusively in IPMNs and is present more frequently in the intestinal subtype [73].
Kadayifci A. et al. evaluated the role of molecular analysis of pancreatic cystic fluid col-
lected from 197 patients. They documented that by adding GNAS mutation to KRAS
and CEA the diagnostic accuracy of IPMN was significantly increased (86.2%). Moreover,
GNAS mutation can be used to distinguish carcinomas derived from IPMNs and con-
comitant pancreatic adenocarcinoma [74]. McCarty R. T. et al. performed a metanalysis
of six studies involving 785 pancreatic lesions and documented that the combination of
KRAS and GNAS in the molecular analysis of cystic fluid had a sensitivity, specificity,
and diagnostic accuracy of 94%, 91%, and 97% in the diagnosis of IPMN and mucinous
cysts [75].

RNF43 is another protein exerting a tumor suppressor activity; its mutations have
been described in IPMN [76]. Chang X.Y. et al. performed a mutational analysis of 61 IPMN
specimens and reported that RNF43 mutations were present only in high-grade dysplasia
or invasive lesions [77]. They also showed that RNF43 was always associated with GNAS
mutations and with a worse prognosis. However, RNF43 does not seem to be involved in
the progression to invasive carcinoma but it plays a role in the transition from low to high
dysplasia [78].

Other mutations such as TP53, SMAD4, and CDKN2A have been described in pancre-
atic adenocarcinoma and carcinoma derived from IPMN, however, their dosage in cystic
fluid and their use in clinical practice have not been widely evaluated yet [79].

3.2. MicroRNA (mi-RNA) and Telomeres

MicroRNA (miRNA) are small non-coding RNA that regulate gene expression at
the post-transcriptional level. Different miRNA expression profiles are present at differ-
ent stages of pancreatic malignancy [80]. Several studies documented that miRNA can
have both oncogenic and onco-suppressor functions and that dysregulation of miRNA is
associated with tumorigenesis and cancer progression, [81]. Wang J. et al. performed a
Next-Generation Sequencing (NGS) study of miRNAs in the cyst fluids of pancreatic cystic
lesions [35]. They stratified different grades of pancreatic cysts (low-grade, high-grade, and
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invasive carcinoma) and found that 13 miRNAs were increased, and two miRNAs were
reduced in the cystic fluid of invasive carcinoma. Utomo W.K. et al. evaluated the accuracy
of a nine-miRNA panel in distinguishing between high-risk and low-risk pancreatic cysts
in 62 patients [82]. The reported sensitivity was 10.0%, the specificity 100.0%, the positive
predicted value 100.0%, the negative predicted value 85.2%, and the overall diagnostic
accuracy was 85.5%. Similarly, Shirakami Y. et al. described a panel of six miRNA enriched
in IPMN with invasive carcinoma when compared with benign IPMN [83].

Telomeres are repeated sequences located at the end of all chromosomes, telomeres
prevent the fusion of chromosomal ends, and telomeres shortening is a crucial mechanism
to allow cellular apoptosis and to prevent cellular overgrowth [84]. Telomeres are enzymes,
generally not expressed in normal cells but present in neoplastic cells, which maintain the
telomeres length representing an important mechanism of neoplastic cells’ immortalization.
Hata T. et al. evaluated the role of pancreatic cystic fluid telomere fusion in predicting the
risk for high-grade dysplasia and invasive carcinoma in patients with IPMNs [85]. They
documented that telomere fusion was more frequent in IPMNs with HGD (26.9%) and
IPMNs with invasive cancer (42.9%) than IPMN with intermediate- or low-grade dysplasia
(15.4% and 0% respectively). At the multivariate analysis, cyst fluid telomere fusion was
an independent predictor of high-grade dysplasia and invasive carcinoma. Similarly, the
same researchers, in another study reported that elevated cyst fluid telomerase activity has
a diagnostic accuracy for invasive cancer and high-grade dysplasia of 88.1% [86].

3.3. Circulating Microvesicles

Extracellular vesicles and particles (EVPs) from bodily fluids, plasma, and tissue ex-
plants, have been recognized as ideal diagnostic tools for multiple human cancers, serving
as reliable biomarkers for early-stage cancer detection [87]. Specifically, EVPs identify
cancer-specific proteins in tissues; a machine-learning analysis of EVP plasma cargo en-
ables distinguishing tumors from normal tissues and among various cancer types [70]. In
searching for a noninvasive stratification method for detecting high-risk IPMN, a recent
relevant study focused on extracellular vesicle (EV) analysis and successfully predicted
IPMN with invasive carcinoma [88]. Yang et al., in a study that enrolled 133 patients,
divided into a discovery cohort (healthy controls and patients with HG- or LG- IPMNs)
and a validation cohort (IPMNs diagnosed on imaging), demonstrated that blood-based
extracellular vesicles (EVs) allow differentiating high-risk IPMN from low grade and nonin-
vasive pancreatic cystic lesions [88]. Using a novel digital EV screening method technique,
Yang et al. evaluated 22 plasma-based markers that were observed to be differentially
expressed in pancreatic ductal adenocarcinoma (PDAC), especially mucin-based markers
(MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC13), as well as molecules strictly re-
lated to PDAC vesicles (EpCAM, EpHA2, Glypican 1, STMN1, and TSP1) [89,90]. In IPNM,
MUC5AC is expressed in all the histological subtypes [91]. Its presence in circulating EVs
only in those patients with invasive IPNM suggests that EVs can serve as potential sources
of minimally invasive biomarkers [78]. Although this finding lies on a limited number of
patients, and most of them underwent surgical resection with histopathologic correlation,
it suggests that EV profiling has the potentials to transform IPMN malignancy detection
and surgical evaluation. A confirmation of the result within a larger cohort including
non-operative candidates undergoing surveillance would thus have high clinical relevance.

3.4. Concept of Liquid Biopsy

Blood-detectable genetic alterations associated with tumors can be clinically valuable
as a non-invasive alternative to traditional biopsies, with application from early detec-
tion of disease recurrence to monitoring treatment response and the emergence of drug
resistance [92]. Among these “liquid biopsies” that analyze circulating nucleic acids for
cancer diagnosis, circulating cell-free tumor DNA (ctDNA) is probably the most clinically
advanced approach [93]. Combined with circulating tumor cells (CTCs) analysis, it may
represent a tool to assess in real-time both tumor burden and molecular features of the
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disease [94]. ctDNA has been studied in patients with various cancer types, including
advanced pancreatic cancer [95,96]. A recent meta-analysis including 19 studies further
evaluates ctDNA and other liquid biopsy diagnostics, such as CTSs and blood exosomes,
in PDAC detection [97]. For the overall liquid biopsy, they found sensitivity, specificity,
and area under the ROC curve were 0.80, 0.89, and 0.94, respectively. Among the different
detection methods, exosomes showed the highest sensitivity and specificity, confirming
the strong diagnostic value of liquid biopsy in detecting pancreatic cancer. The utility
of liquid biopsy has been extended in cyst-type classification patients with pancreatic
cystic neoplasms (PCN) [98]. In IPMN, the positive prevalence of GNAS mutations in
circulating cfDNA was found significantly high (70%), even more in IPMN with intestinal
subtypes, whereas KRAS mutations were nearly absent. GNAS mutation was detected
also in cyst fluid and duodenal and pancreatic juice samples of patients with PCN [99,100].
Very recently, Hata et al. reported a pilot study taking into account GNAS alterations
in ctDNA obtained from 57 patients with histologically diagnosed pancreatic cystic neo-
plasms (PCNs), 34 of which presenting IPMN [48]. They found that GNAS in ctDNA
from peripheral blood of patients with pancreatic cysts was significantly higher in those
with IPMN so this mutation can serve as a specific IPMN predictor for differentiating it
from the various PCNs. In addition, the prevalence of GNAS was higher in IPMN with
intestinal subtypes rather than the other subtypes. However, GNAS was not accurate
enough in distinguishing the different histological grades of IPMN. Thus, ctDNA may not
only serve as a biomarker of malignancy but may also be a useful method for non-invasive
cyst classification. The use of DNA-based techniques appears a promising route to early
detection of pancreatic cancer, although its role in detecting IPMN associated invasive
cancer has to be more investigated [101].

4. Discussion and Conclusions

Pancreatic cancer is a rising global burden in terms of morbidity and mortality. Pan-
creatic cancer precursors include PanIN (the most common), mucinous cystic neoplasm,
and IPMN [102]. The progression from PanIN to invasive carcinoma has been widely in-
vestigated; however, the microscopic dimension of this lesion does not allow the detection
with cross-sectional imaging representing a limit in cancer prevention [103]. Differently,
pancreatic cyst lesions can be easily detected with cross-sectional imaging and are fre-
quently found incidentally in 2.6% of the general population [104]. However, the molecular
mechanism of progression from IPMN to invasive carcinoma is less well understood. Patra
C. K. et al., in a murine model of IPMN related pancreatic cancer, demonstrated the co-
operation of GNAS with KRAS and p53 in tumor initiation, progression, and malignancy
maintenance [105]. Although pancreatic GNAS alteration is specifically associated with
IPMN, its mutation alone is insufficient to induce the occurrence of IPMN requiring the
concurrent presence of other genetic alterations (e.g., KRAS mutations and p53 loss of
function) [106]. Other murine models showed the occurrence of IPMN with the asso-
ciation of KRAS mutations with other mutations (e.g., LKB1 or PTEN) without GNAS
alterations [107]. The early mutation of KRAS and GNAS in association with CDX2 expres-
sion and RNF43 alterations has been correlated with the differentiation of IPMN toward
the intestinal subtype. In this setting, GNAS mutations lead to carcinogenesis with the
occurrence of colloid type malignancy. Differently, the association of KRAS mutations with
PTEN or LKB1 alterations induces the differentiation toward the non-intestinal subtype of
IPMNs leading to a tubular-type carcinoma [71]. The accumulation of other mutations such
as p53, CDKN2A, and SMAD4 occurs in advanced lesions leading to cancer progression
and maintenance (Figure 2) [71].
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The risk of malignancy in IPMN varies depending on the subtype (SB-IPMN, MD-
IPMN, or MT-IPMN), the histological pattern (gastric, intestinal, pancreatobiliary, and
oncocytic), and the morphological presentation (e.g., presence of worrisome features). In a
surgical series, the risk of malignancy in MD-IPMN and MT-IPMN ranged respectively
from 6 to 46% and from 60 to 92% [108]. Conversely, the risk of malignancy in SB-IPMN is
lower. Balduzzi A. et al. performed a meta-analysis of 24 studies including 8941 patients
with SB-IPMN [108]. They reported that 20.2% of patients presented a progression during
the follow-up with a pooled incidence of malignancy of 3.5% (range 0–32.8%); among pa-
tients undergoing surgical resection, 29.5% showed malignancy (including both high-grade
dysplasia and invasive carcinoma) at the final histological analysis. The occurrence of
concomitant PDAC was 0.8% (range 0–7%); 0.5% of patients showed distant metastasis
during the surveillance. Histologically, IPMN can be distinguished into four subtypes:
intestinal, gastric, pancreatobiliary, and oncocytic. The progression of the intestinal subtype
leads to colloid carcinoma, while the other subtypes are associated with ductal adenocarci-
noma [109]. From the main duct originate the intestinal, pancreatobiliary, and oncocytic
subtypes meanwhile from the branch duct the gastric subtype [91]. The prognostic value
of the histological subtypes is still today controversial as the available data are conflicting.
The pancreatobiliary subtype is generally considered the most aggressive IPMN, thus it
presents a stronger association with malignancy, a higher rate of recurrence, and poorer
overall survival [110]. The presence of the high-risk stigmata and the worrisome features
defined by the 2017 Fukuoka Consensus Guidelines increases the risk for malignancy and
requires further investigations or surgical treatment [25] (Table 1).

Still today, the only curative approach to IPMN with suspicion of malignancy is
surgery. Duodeno-cephalo-pancreatectomy, distal pancreatectomy, middle pancreatectomy,
and total pancreatectomy are the available surgical techniques. However, pancreatectomy
is considered one of the most challenging abdominal surgery and it is associated with
high morbidity and mortality rate [111,112]. The indication for surgery should be given
only for IPMN with high-grade dysplasia or invasive carcinoma. The best timing for
surgery is before the occurrence of invasive carcinoma when the high-grade dysplasia is
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present. The detection of high-grade dysplasia and invasive carcinoma is often challenging,
and cross-sectional imaging is frequently inadequate. For this reason, several humoral
predictors of malignancy have been researched to stratify the risk of cancer occurrence and
perform surgery in the best moment of the IPMN natural history (Table 2).

Table 1. Worrisome features and high-risk stigmata for IPMN according to the 2017 Fukuoka Consensus Guidelines.

Worrisome Features High-Risk Stigmata

1. Increased levels of CA 19.9 (>37 U/mL)
2. Main pancreatic duct diameter 5–9.9 mm
3. Cyst diameter >30 mm
4. Enhancing mural nodules <5 mm
5. IPMN-induced acute pancreatitis
6. Thickened/enhancing cyst walls
7. Cyst grow-rate >5 mm/2 year
8. Abrupt change in caliber of the pancreatic duct with distal pancreatic

atrophy
9. Lymphadenopathy

1. Jaundice
2. Enhancing mural nodule >5 mm
3. Main pancreatic duct diameter >10 mm

CA 19.9 (Serum carbohydrate antigen 19-9), IPMN (Intraductal Papillary Mucinous Neoplasia).

Table 2. Humoral biomarkers predictors of degenerate IPMN.

Biomarkers Description
Ca 19.9 (>37 U/mL) 89% sensitivity and 40% specificity in detecting degeneration.

CEA (>5 µg/L) 96.4% sensitivity and 6.1% specificity in detecting degeneration.
NLR (>2) 73.1% sensitivity and 58% specificity in detecting degeneration.

PLR Not well-established cut-off. >200 associated in 83% to degeneration.
Cytological analysis 83–99% sensitivity and 25–88% specificity in detecting degeneration.

Cystic fluid mucins Overexpression of MUC1, MUC2, and MUC4 and a down expression of MUC5A
are associated with degeneration.

Cystic fluid DNA sequencing The presence of KRAS, GNAS, and RNF43 is associated with degeneration.

Classically, CA 19-9 and CEA are considered biomarkers of several malignancies
including pancreatic cancer. High levels of CA19-9 (>37 U/mL) are associated with the
presence of high-grade dysplasia and invasive carcinoma and can be used to distinguish
between malignant from benignant IPMN with a specificity and a sensitivity of 89% and
40% respectively [35]. In addition, high levels of CEA (>5 µg/L) can predict the pres-
ence of malignant IPMN with a specificity of 96.4% and a sensitivity of 6.1% [23]. Both
these tests present a high specificity but a low sensitivity with a consequent low negative
predictive value. Moreover, the role of clinical scores such as NLR, PLR, and CAR have
been evaluated as predictors of high-grade dysplasia and invasive carcinoma [39,45,50].
Although several studies have reported their utility in the prediction of malignant IPMN, a
standardized cut-off is still today not available, and these scores are not widely used in
daily practice. When the cross-sectional imaging and the seral biomarkers are inconclusive,
a EUS examination with an FNA sample can be performed to research specific biomarkers
directly in the cystic fluid. The cystic fluid sample can be used to perform a cytological
analysis on one side to distinguish between mucinous and non-mucinous cysts with a sen-
sitivity of 54% and a specificity of 93% [9]; on the other, it can be used to detect malignancy
with a specificity of 83–99% and a sensitivity of 25–88% [59]. According to the Fukuoka
guidelines, positive cytology for high-grade dysplasia or invasive carcinoma is an absolute
criterion for surgical resection [58]. Moreover, the dosage of Mucins in the cystic fluid can
be performed for the differential diagnosis between mucinous and non-mucinous cysts
(sensitivity 80% and specificity 40%) and to detect degenerate IPMN (in degenerate IPMN
an overexpression of MUC1, MUC2, and MUC4 and a down expression of MUC5A have
been documented) [23–25]. Other chemical analyses can be performed on cystic fluid such
as glucose, amylase, and CEA dosage. However, these markers can be used to distinguish
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between mucinous and non-mucinous cysts but are not useful to detect dysplasia or inva-
sive carcinoma. Recently the cystic fluid DNA sequencing has been reported as a useful tool
for the diagnosis of degenerate IPMN. Among the several genetic mutations, the detection
of KRAS, GNAS, and RNF43 alterations is associated with malignant IPMN [36,75]. More-
over, the research of specific miRNA and telomeres alterations in the cystic fluid sample
has the potential to diagnose invasive carcinoma [44–46]. More recently, the concept of
liquid biopsy is gaining popularity. The research of cancer-associated genetic alterations
in blood samples represents the new frontier of mini-invasive oncological diagnosis and
monitoring [93,94]. The research of blood ctDNA and CTCs have been described for the
diagnosis of several cancers. Moreover, EVs have been described for the early diagnosis of
degenerated IPMN. However, the role of liquid biopsy in IPMN is still poorly understood
and needs more investigation to be used in clinical practice [88].

In conclusion, many biomarkers have been studied in blood and cystic samples of
patients with IPMN. These markers on one side can be used for the differential diagnosis
between a mucinous and non-mucinous cyst, on the other side, few markers are available
for the early diagnosis of high-grade dysplasia and invasive carcinoma. The cystic fluid
DNA sequencing, the liquid biopsy, and the research of EVs present the potential of a
mini-invasive diagnosis, but their role in daily practice is still under investigation. More
studies are needed to find and validate new biomarkers to detect high-grade dysplasia and
invasive carcinoma to perform a curative surgery at the best timing of IPMN natural history.
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