
Molecules 2011, 16, 1667-1681; doi:10.3390/molecules16021667 
 

 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 
Review 

Design and Screening of M13 Phage Display cDNA Libraries 

Yuliya Georgieva 1,2 and Zoltán Konthur 1,* 
 
1 Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestraße 63-

73, 14195 Berlin, Germany 
2 Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 

Berlin, Germany  

* Author to whom correspondence should be addressed; E-Mail: konthur@molgen.mpg.de;  
Tel.: +49-(0)30-8413-1586. 

Received: 21 December 2010; in revised form: 14 February 2011 / Accepted: 15 February 2011 / 
Published: 17 February 2011 
 

Abstract: The last decade has seen a steady increase in screening of cDNA expression 
product libraries displayed on the surface of filamentous bacteriophage. At the same time, 
the range of applications extended from the identification of novel allergens over disease 
markers to protein-protein interaction studies. However, the generation and selection of 
cDNA phage display libraries is subjected to intrinsic biological limitations due to their 
complex nature and heterogeneity, as well as technical difficulties regarding protein 
presentation on the phage surface. Here, we review the latest developments in this field, 
discuss a number of strategies and improvements anticipated to overcome these challenges 
making cDNA and open reading frame (ORF) libraries more readily accessible for phage 
display. Furthermore, future trends combining phage display with next generation 
sequencing (NGS) will be presented. 
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1. Introduction  

Coupling of peptides to the surface of filamentous bacteriophages followed by affinity selection of 
binders to a chosen target was first described and termed “phage display” in 1985 by George P. 
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Smith [1]. Since then, display of peptides and antibody fragments have been widely used, while the 
display of cDNA libraries remained problematic. 

The most prominent and most frequently used system to date is the presentation of the desired 
molecules through coupling to the minor coat protein pIII of the filamentous phage M13. The pIII 
protein is positioned on one tip of the phage capsid and consists of three functional autonomous 
domains (D1, D2 and D3) joined by glycine rich linkers [2]. The D1-domain at the N-terminus is 
responsible for the translocation of the viral DNA into the host cytoplasm during infection of Gram-
negative bacteria. The D2-domain binds to the bacterial F-Pilus and plays a central role in the infection 
process [3]. The C-terminal D3-domain is essential for the assembly of stable capsids [4] and a 
prerequisite for phage production. In most phage display vectors the pIII protein is missing the D1 and 
D2 domains resulting in phage-particles of reduced infectivity [5]. 

As the C-terminus of the shortened pIII has to remain intact to allow proper phage assembly, only 
N-terminal linkage of polypeptides to pIII is possible. Such constructs have been demonstrated to 
function well and display peptide epitopes [6,7], whole proteins [8], single chain antibodies [9] or Fab 
fragments [10]. However, expression of cDNA libraries in this fashion is challenging due to the 
naturally occurring translational stop codon in the 3’-region of reverse transcribed mRNAs. Moreover, 
the cDNAs, or fragments thereof, have to be in the same reading frame as the pIII protein, as well as 
the secretory leader sequence, and are not allowed to contain in-frame stop codons. One possibility to 
overcome this problem is to fragment the cDNA prior to its plasmid incorporation. But even though 
such inserts can lead to functional pIII production and a proper presentation of polypeptides, the 
majority of the clones contain non-functional inserts due to frame shifts or wrong orientation [11-13]. 
Hence, in most cases the poor display of cDNA expression products and the low percentage of target 
cDNAs being in the correct reading frames in the start library are hampering their application. Clearly, 
another limitation for efficient display of eukaryotic proteins on the phage surface is the poor ability of 
the Escherichia coli host system to perform post-translational modifications, which are in many cases 
essential for the proper folding and function of displayed proteins. However, the introduction of 
substrate phage display indicates possibilities to overcome these problems at least partially. Substrate 
phage display is designed to map acceptor sites for enzymatic reactions such as biotinylation, 
phosphorylation or phosphopantetheinylation, as reviewed by Yen and Yin [14]. The principle is to 
incubate a (poly)peptide phage display library with an enzyme of choice and to subsequently enrich the 
modified targets on a modification-specific selection matrix, such as an anti-phosphothyrosine 
antibody in case of a tyrosine kinase [15]. Recently, Aebi and co-workers demonstrated that 
asparagine-linked (N-linked) protein glycosylation can be achieved in E. coli by transfer of the 
glycosylation machinery of Campylobacter jejuni [16]. In a proof of principle experiment they showed 
that in vivo N-glycosylated proteins can be presented on phage particles.  

In the following sections, we will discuss a number of strategies and improvements employed to 
overcome the challenges associated with the generation of cDNA and open reading frame (ORF) 
phage display libraries. For instance, the use of cDNA fragmentation and ORF selection strategies 
prior initial library preparation leading to an increased expression of functional clones and improved 
presentation, as well as the application of different vector systems avoiding direct fusion to pIII. 
Furthermore, the use of comprehensive full-length ORFeome collections bypassing the application of 
conventional cDNA libraries and the implementation of next generation sequencing (NGS) 



Molecules 2011, 16                            
 

 

1669

technologies for fast and reliable identification of enriched binders will be discussed. While most of 
these considerations inevitably also apply to alternative phage display approaches, such as lambda and 
T7 display, we focus on the filamentous bacteriophage M13. Alternative phage display systems and 
their applications were discussed elsewhere [17-19]. 

2. Cloning Strategies for Functional cDNA Presentation  

All five capsid proteins of the M13 bacteriophage have been successfully exploited for the 
presentation of fusion-proteins. For the display of proteins and peptides, N-terminal fusion to the 
minor coat protein pIII [1] and the major coat protein pVIII [20] proved most effective. Since pIII 
allows incorporation and presentation of larger inserts compared to pVIII, it is the scaffold of choice in 
most cases of ORF and protein display. Alternatively, C-terminal fusions to pVI for the display of 
cDNA libraries has been reported [21]. 

Besides the direct insertion of the gene of interest into the phage genome to generate a fusion to a 
coat protein encoding gene [9], phagemid vectors were established that combine selected genomic 
features of the phage with those of bacterial plasmids providing considerable advantages [22]. 
Phagemids contain both phage and bacterial origins of replication, a phage packaging signal, a 
selectable marker gene and the gene of the chosen coat protein for fusion. Its use allows easy 
preparation and maintenance of the vector, high yield of dsDNA and better transformation 
rates [23,24]. To assemble functional phage particles, co-infection with helper phage (e.g., M13K07) 
are required. The physical linkage between the phagemid encoded genotype and the displayed 
phenotype is achieved because helper phage have an origin of replication or a packaging signal of 
reduced functionality. Hence, phagemid vectors are being favorably incorporated into new viral 
particles rather than the helper phage genome and the resulting phage carry a mixture of wild-type and 
fusion coat proteins in a predominantly monovalent fashion [25]. For the purpose of multivalent 
display, alternative helper phage are required, such as the hyperphage. Hyperphage completely lack the 
gene for wild-type pIII in their genome and only pIII fusion-proteins are integrated into the viral 
particles [26]. This leads to reduced phage titers and reduced infectivity of the newly produced phage 
and therefore a combined application of both hyperphage and M13K07 during the biopanning process 
proved advantageous. Helper phage with a variety of different features have been discussed [27] and 
their efficiencies were compared [28]. 

2.1. Direct N-terminal fusion to pIII 

The display of cDNA libraries as N-terminal fusion to pIII requires elimination of the naturally 
occurring stop codon and the removal of the 3’ untranslated region at the end of the cDNA. In 
addition, large cDNA fragments often show unsatisfactory presentation efficiencies compared to 
shorter inserts. To circumvent both problems, cDNA libraries are frequently fragmented prior to 
cloning assuming that in doing so functional binding domains are separated from potentially 
problematic sequences [12]. However, the majority of the clones in fragmented cDNA libraries appear 
to be non-functional or contain undesirable stop codons primarily as a result of the cDNA fragments 
being out of frame to the N-terminal leader sequence, or pIII, or both. To improve the quality of the 
fragmented cDNA library preparation, Zacchi and colleagues optimized the system by selecting for 
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open reading frames prior cloning into phage display vectors [29]. Selection was achieved by cloning 
the fragmented cDNAs into a special vector flanking the potential ORF by a pIII-leader sequence at 
the N-terminus and the β-lactamase-gene at the C-terminus. Hence, only clones with in-frame inserts 
produced β-lactamase and could survive on ampicillin-containing agar plates. Since the β-lactamase 
gene was additionally flanked by loxP-sites, it was finally removed from the construct by Cre 
recombinase, resulting in a direct fusion of the ORFs with the pIII encoding gene [29,30]. Another 
group reported a similar strategy by which they simply subcloned the ORFs after positive selection on 
ampicillin instead of using the Cre-loxP recombination strategy [13]. 

An interesting way to bypass the ORF selection prior phage display library generation, but still 
obtaining ORF enriched cDNA libraries, was demonstrated by Hust and colleagues in 2006 [31]. The 
idea behind this strategy was deduced from the fact that intact phage particles can only be generated if 
pIII was available. Using hyperphage – which does not contribute wild-type pIII – instead of a 
conventional helper phage, all phagemid vectors containing stop codons in the cloned cDNA 
fragments instead of ORFs would result in the loss of pIII expression and, hence, would not generate 
phage particles. Indeed, 60% of all phagemids contained ORFs predicted to be immunogenic epitopes 
from Salmonella typhimurium, which was equivalent of a 10-fold enrichment. 

2.2. Indirect fusion to pIII 

A very elegant way to overcome the problems associated with the direct N-terminal fusion to pIII of 
cDNA libraries was developed and introduced by Crameri and Suter in 1993 [32]. They created a 
display system based on the strong natural bond of leucine zipper structures. Thus, the leucine zipper 
domains of the two transcription factors c-Jun and c-Fos were cloned in a single phagemid vector 
(pJuFo) in such a way that the Jun-leucine stretch was joined to the N-terminus of a truncated pIII and 
the Fos-leucine stretch was attached to the 5’-terminus of the cDNA fragments. Hence, the library 
contains primarily C-terminal fragments and full-length cDNA expression constructs. After their 
separate expression and transport to the periplasm, the two interaction partners meet and associate 
spontaneously forming a leucin zipper, thus providing the physical linkage between pIII and the 
protein to be displayed (Figure 1). Phage particles containing cDNA fragments in the wrong reading 
frame or possessing a premature stop codon will present short – mostly unnatural – peptides and/or 
phenotypically empty phage and will in most cases be lost during selection promptly. 

Figure 1. Schematic representation of bacteriophage M13 and different monovalent 
display types based on pIII coat protein. (left) Direct fusion of POI (protein of interest) to a 
truncated pIII. (right) Indirect fusion of POI to pIII by means of a leucine zipper structure. 
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The pJuFo system became quickly popular and is – to our knowledge – the most widely used 
system for displaying cDNA libraries on phage particles to date [19,33]. It has been applied for the 
selection and isolation of IgE-binders from various allergenic sources, such as Aspergillus 
fumigatus [34-36], peanut [37], dust mite [38], wheat [39] and many others [40,41]. Furthermore, this 
approach was successfully applied to recover known and novel autoantigens in autoimmune disorders, 
such as systemic lupus erythematosus [42] and vitiligo [43], as well as for example in prostate 
cancer [44].  

A notably interesting application of the pJuFo system was reported 2002 by Brunet and 
colleagues [45]. The phage particles were decorated with the Stoffel fragment of DNA I polymerase 
(Taq) on the one hand and cross-linked with the substrate on the other. The library was then efficiently 
screened for catalytically active phage. They could demonstrate that indirect pIII-fusion can be applied 
for in vitro selections of enzymes with unknown catalytic activities from large protein libraries. 

Recently, Weichel et al. investigated the presentation efficiency of the pJuFo system by expression 
of the E. coli alkaline phosphatase, PhoA [46]. Interestingly, the activity rate of the phage-displayed 
PhoA was identical to that of soluble PhoA, although it was shown that only dimeric PhoA is 
catalytically active [47]. This effectively demonstrated that also dimeric constructs can be properly 
presented using pJuFo phagemids without losing their functionality. As a consequence, further areas of 
application in the field of proteomics are conceivable, such as interactome analyses, investigation of 
protein complexes or exploration of enzyme-substrate relationships. 

2.3. C-terminal fusion to pVI 

The minor coat protein pVI is located at the same phage tip as pIII and is similarly available in three 
to five copies. It is the only coat protein with its C-terminus facing outwards and has its N-terminus 
buried in the phage coat [48,49]. Hence, direct C-terminal fusion of cDNA libraries for display is 
feasible and the presence of a stop codon in the cDNA structure do not hamper the expression of pVI 
and phage assembly. However, the same limitations in regard to presentation of out-of-frame peptides 
or empty phage apply as for the pJuFo system discussed above. 

Its first use for screening C-terminally fused cDNA libraries was reported in 1995 by Jespers and 
colleagues [21]. The study describes the selection of novel serine protease inhibitors from a cDNA 
library of the pathogenic worm Ancylostoma caninum. Shortly after, the same research group 
generated a hybrid vector introducing a combination of lambda and pVI display [50]. To our 
knowledge however no other studies have implemented this system at present.  

In 1999, Hufton et al. reported on the construction of a set of vectors to fuse cDNA libraries to pVI 
in all three reading frames and their evaluation by selection of immunogenic ligands from a prostate 
cancer cDNA library [51]. Other examples include the selection of candidate tumor antigens using 
colorectal cancer sera [52] and the identification of collagen-binding proteins through screening of 
cDNAs from the human pathogen Necator americanus [53]. In summary, the application of pVI-
display remains rare. Among other reasons, this is probably due to the generally lower display level of 
pVI-fused proteins in comparison to pJuFo presented proteins, as well as the reduced enzyme activity 
observed [46,51]. 
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3. Different Pathways for Periplasmic Expression 

An obvious obstacle for efficient presentation while working with highly heterogeneous libraries, 
such as cDNAs or ORFs, is the diverse nature of the molecules regarding their length, folding 
characteristics, stability or toxicity for the host. To limit these negative effects and minimize poor 
display, a number of strategies were assessed. For instance, the expression of wild-type pIII was 
reduced to increase the ratio of fusion proteins during phage assembly [54], the periplasmic folding of 
the target proteins was improved via chaperone co-expression [55,56]. Further, the amplification of 
non-displaying phage was reduced by utilizing an engineered helper phage lacking D1 and D2 domain 
of pIII resulting in loss of infectivity [57] or partially randomized signal sequences were employed to 
improve display efficiency [58]. Albeit helpful in many cases, these solutions still do not completely 
eliminate the encountered problems and a certain proportion of polypeptides remain refractory to 
display and will be eventually lost during the selection process. An additional measure to overcome 
presentation limitations was to employ different secretory pathways of the host in order to expand the 
range of properly presented and preferably functional polypeptides on phage. 

In general, the display of proteins on the surface of filamentous bacteriophage relies on the efficient 
secretion of the protein of interest to the periplasm prior phage assembly. E. coli possesses three major 
pathways for the translocation of polypeptides across the cytoplasmic membrane to the periplasm: the 
signal recognition particle (SRP)-dependent Sec pathway for co-translational protein export, as well as 
the SRP-independent Sec pathway and the Tat (twin-arginine translocation) pathway for post-
translational protein export (Figure 2). While proteins requiring periplasmic folding are targeted 
through the Sec and the SRP pathways, the Tat pathway is used for cytoplasmically folded 
polypeptides [59,60].  

Figure 2. Schematic representation of the three major secretion pathways in E. coli.  
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Targeting to the different translocation machineries is defined by the addition of specific leader 
peptides at the N-terminus of the protein of interest. An assessment of the literature on antibody phage 
display vectors has demonstrated that already a number of different leader peptides have been 
applied [61], most of them targeting the Sec pathway. One probable reason for this is that pIII can only 
fold correctly in the periplasm [62] and since antibody fragments (the most frequently displayed 
molecules) generally meet the requirements for the Sec translocon, other transport mechanisms were 
not systematically explored. Today, the most frequent Sec-dependent leader peptide in use is pelB, 
which was derived from the pectate lyase of Erwinia caratovora. For other molecules, such as 
DARPins, post-translational transport via the Sec pathway proved to be unsuitable, while co-
translational transport via SRP lead to efficient display on the phage surface [63]. Recently, the display 
levels for single chain antibody fragment (scFv) using different Sec and SRP leader peptides were 
compared showing that the SRP pathway is equally applicable for antibody display [64].  

In contrast to the Sec pathway, the Tat pathway can be employed for the translocation of folded 
proteins. Its use is essential for the display of polypeptides which need the reducing milieu of the 
cytoplasm and/or metal- or ATP-dependent cofactors and/or molecular chaperones for proper folding 
and biological activity. In 2005, Paschke and Höhne presented the Tat-mediated phage display 
system [65], which is based on the pJuFo. The protein to be displayed and pIII are expressed and 
translocated to the periplasm independently applying the Tat and Sec pathway, respectively, since pIII 
cannot be exported through the Tat-translocon. It’s application was effectively demonstrated by the 
display of functional green fluorescent protein of the jellyfish Aequorea victoria and mutants thereof 
on the phage surface, which require cytoplasmic folding to assemble the inner core chromophore.  

4. ORFeome Collections 

The increasing availability of high-throughput technologies allowing to perform systematic analyses 
on whole-genome or proteome level has not only lead to a dramatic increase in experimental data but 
also in the number of resources becoming accessible. Since several years, the scientific community is 
pursuing the ambitious goal to assemble so-called ORFeome collections, which contain representative 
clones of full-length ORFs for all genes of an organisms. Currently ORFeome collections are being 
established for a wide range of organisms, among others for human [66,67], Arabidopsis thaliana [68], 
E. coli [69] as well as viral genes [70]. These collections are being gradually complemented by 
introducing new accessions, for instance splice variants, and some collections are available with and 
without stop codon at the end of the ORF sequence [66,67]. Most of the ORFeome collections are 
generated using the Gateway recombination technology, whereby cloning is performed without the 
need for restriction enzyme digest followed by ligation of the DNA to generate ENTRY clones for the 
respective ORFs [71]. Subsequently, they can be further transferred by recombination into any other 
vector containing complementary recombination sites.  

ORFeome collections represent a valuable source of well defined, homogeneous and ready to clone 
full-length cDNAs and we envisage that these can be made accessible to phage display applications 
soon. Combining selected subsets of clones with or without a stop codon from ORFeome collections 
with specifically modified phage display vectors of the types described above will allow the 
presentation of ORFs either as a direct or as an indirect fusion to the scaffold coat protein of choice. 
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Undoubtedly, ORFeome phage libraries will be a powerful tool in future applications. Whether they 
will replace conventional cDNA libraries, however, needs to be seen. For the time being, cDNA 
libraries probably represent the anticipated in vivo situation of transcript diversity in a given organism 
or tissue thereof more precisely, since they are believed to cover a wider range of splice variants.  

5. Implementation of Next Generation Sequencing  

The ever-increasing sequencing capacity of next generation sequencing (NGS) platforms, such as 
Roche/454-pyrosequencing or Illumina/Solexa Genome analyzer, revolutionized life sciences since its 
introduction and paved the way for completely novel approaches boosting biological and medical 
research [72].  

Combining the power of NGS with the power of affinity driven selection strategies, such as phage 
display, has already started to change our way of thinking. Being able to sequence millions of DNA 
molecules at a time in practically only a few days has a major impact on the way selections and their 
evaluation can be performed. For instance, the diversity of initial libraries can be analyzed, as 
demonstrated by Pons and co-workers [73]. They have obtained more than one million sequences for 
their naïve scFv phage display library using Roche/454-pyrosequencing, which has allowed the 
analysis of immunoglobulin V-gene usage in their library. Furthermore, NGS made it possible to 
follow the enrichment process of displayed molecules during all rounds of selection. Dias-Neto et al. 
recently used the Roche/454-pyrosequencing platform to analyze the outcome of in vivo peptide library 
selections in cancer patients [74]. They additionally evaluated the outcome of the selection by 
sequencing large numbers of clones by the Sanger method and a comparison of these results with NGS 
revealed that ~80–95% of all sequences generated by traditional sequencing have also been recovered 
by NGS. In another recent report, Ravn et al. monitored the enrichment process over multiple rounds 
of selection with an antibody library in scFv format using the Illumina/Solexa Genome analyzer 
platform [75]. They could demonstrate that all positive clones identified by classical ELISA conducted 
at the end of a selection were also recovered by NGS. Yet some highly enriched clones were missed by 
conventional ELISA-screening but successfully identified by NGS. These clones were subsequently 
analyzed and found to be badly expressed in E. coli as soluble antibody fragments and hence escaped 
the ELISA screening.  

Applying a phage display library of fragmented human cDNA, Di Niro et al. conducted a protein-
protein interaction screen for the identification of interaction partners of human transglutaminase 2 
(TG2) [30]. Next to the isolation of known and novel interaction partners, the use of NGS for the 
evaluation of the enriched binder pool led to the identification of the specific domain of one of the 
candidates directly involved in the interaction with TG2.  

Beyond doubt, next generation sequencing technologies will be increasingly employed to many 
different phage display applications in future, as NGS provides invaluable information about all  
stages of the selection procedure in a fraction of a time compared to standard evaluation methods 
currently applied.  
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6. Conclusions and Outlook 

In the last decades, numerous combinatorial methodologies for the selection and screening of 
proteins were developed, which mimic natural evolutionary processes in vitro and aim at detecting 
interaction partners with specific chemical and/or physical properties. Among these, surface display 
technologies play a central role and besides bacterial, ribosomal, yeast and other screening methods, 
phage display is by far the most widespread application for screening of protein interaction partners or 
selecting antibodies for diagnostic and therapeutic applications [76].   

With the latest developments discussed here, the presentation of cDNA and ORF expression 
products on phage has become not only possible, but led to an increase in library quality, produced in-
depth analysis of the enrichment process, became faster, more convenient and reasonably priced. Thus 
the application of this approach and variations thereof will increase constantly in the future. Most 
application areas described in this review centre around the identification of novel allergens, potential 
biomarkers in autoimmune disorders [43,77], cancer [78,79] or vaccine development [80]. However, 
additional fields of application, such as screening for cellular targets of toxic chemical compounds 
emerge [81]. 

The next level of phage display will indisputably see the implementation of NGS into automation 
strategies for screening of combinatorial libraries [82]. The application of semi-automated selection 
strategies, such as developed in our laboratory [83,84] not only allows the reduction of variability and 
increased reproducibility of the selection protocol, but can be readily implemented in process pipelines 
based on unit-automation [85,86]. Such pipelines, in turn, can be easily extended to include NGS as a 
sophisticated analysis tool of the selection outcome.  

Twenty-five years after its introduction, phage display persists to be the most popular and 
successful surface display application with more than 4,000 entries in PubMed. With the latest 
developments in library design and the combination of phage display with high-throughput selection 
pipelines and next generation sequencing, the field has become as vibrant as ever.  
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