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Abstract

Background: The transforming growth factor beta-1 (TGFβ-1) cytokine exerts both pro-tumor and anti-tumor effects
in carcinogenesis. An increasing body of literature suggests that TGFβ-1 signaling outcome is partially dependent on
the regulatory targets of downstream receptor-regulated Smad (R-Smad) proteins Smad2 and Smad3. However, the
lack of Smad-specific antibodies for ChIP-seq hinders convenient identification of Smad-specific binding sites.

Results: In this study, we use localization and affinity purification (LAP) tags to identify Smad-specific binding sites in
a cancer cell line. Using ChIP-seq data obtained from LAP-tagged Smad proteins, we develop a convolutional neural
network with long-short term memory (CNN-LSTM) as a deep learning approach to classify a pool of Smad-bound
sites as being Smad2- or Smad3-bound. Our data showed that this approach is able to accurately classify Smad2-
versus Smad3-bound sites. We use our model to dissect the role of each R-Smad in the progression of breast cancer
using a previously published dataset.

Conclusions: Our results suggests that deep learning approaches can be used to dissect binding site specificity of
closely related transcription factors.

Keywords: Machine learning, Transcription regulation, Feature engineering

Introduction
Transforming growth factor-beta (TGFβ) signaling con-
tributes to a wide range of cellular behaviors in both
normal and tumor settings. TGFβ plays essential roles
in differentiation [1, 2], epithelial-mesenchymal transition
(EMT) [3, 4], cytostasis [5], cell migration [6], angiogen-
esis [7] and wound healing [8]. Its role in carcinogenesis
has been described as paradoxical because TGFβ can act
as either a tumor suppressor or a driver of cancer progres-
sion depending on context [9, 10]. The paradoxical role of
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TGFβ in cancer biology has led to a growing body of data
documenting molecular co-factors that determine the dif-
ferent TGFβ outcomes. However, an unmet need remains
to re-analyze prior TGFβ-pathway data according to what
is now known about specific molecular determinants.
The canonical pathway of TGFβ-1 signaling is initiated

when an extracellular TGFβ-1 ligand binds and induces
dimerization of the TGFβ receptor, which then phos-
phorylates one of the R-Smad proteins Smad2 or Smad3.
The phosphorylated R-Smad forms a complex with the
common partner (co-Smad) Smad4 and translocates to
the nucleus to regulate the expression of target genes
[11, 12]. Activation of R-Smads is partly regulated by
dynamic phosphorylation-dependent shuttling of R-Smad
complexes between the cytoplasm and the nucleus [12, 13].
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Although both Smad2 and Smad3 can be phosphory-
lated by the same receptor, activation of different R-Smads
often leads to different regulatory outcomes. For example,
in the metastatic breast cancer cell model MDA-MB-231,
Smad2 knock-down led to a more aggressive phenotype,
while Smad3 knock-down led to a lag in tumor initiation,
suggesting that Smad2 and Smad3 have opposing effects
on disease progression [14]. Another study in HaCaT cells
showed that Smad3 was responsible for driving cell-cycle
arrest [15]. These Smad2- and Smad3-specific signaling
outcomes have been further traced to Smad-specific bind-
ing of transcription factors to the R-Smad complex [16].
Smad binding partners affect which transcription sites are
bound by the R-Smad complex because the R-Smads by
themselves have low DNA binding affinity (1.1 × 10−7M)
by electroshift mobility assay [17]).
Since Smad-driven genome regulation is mediated

through chromatin binding, it should be possible to dis-
tinguish Smad2- from Smad3-driven regulation using
genome-wide binding measurements of Smad binding
elements (SBEs). However, direct genome-wide measure-
ment of specific R-Smad binding is limited by the lack of
Smad2-specific antibodies for ChIP-Seq or similar exper-
iments. This is a challenge that pervades the Smad signal-
ing literature (most studies simply refer to “Smad2/3” sig-
naling), but is particularly challenging for genome-binding
measurements. Consequently, most ChIP-seq studies of
Smads use a high quality pan-Smad2/3 antibody and
are unable to distinguish the regulation by the differ-
ent Smads. Efforts to measure Smad-specific genomic
binding directly, such as by transfection of Smad fusion
proteins, or CRISPR knock-out of either Smad2 or Smad3,
would perturb R-Smad abundance and disrupt the nucleo-
cytoplasmic feedback dynamics [13].
An experimental solution to this challenge would be to

provide cells with epitope-tagged Smads in a native cis-
regulatory environment. This can be accomplished using
methods such as the BAC TransgenOmics platform [18],
in which epitope-tagged BAC transgenes are introduced
into mammalian cells, preserving proximal cis-regulatory
elements. More recent genome editing approaches, such
as CRISPR/Cas9, can also be used for epitope tagging in
the genome itself [19]. Such an experimental approach,
however, would not disambiguate Smad binding in pre-
viously generated data. The limited information available
about Smad2-specific and Smad3-specific effects would
be more useful if it could help provide Smad-specific attri-
bution for the vast amounts of non-specific information
already collected regarding Smad2/3 combined effects.
Recent advances in machine learning have enabled

the use of models trained on existing data to per-
form transcription factor binding site (TFBS) prediction.
The power of such models was demonstrated in the
ENCODE-DREAM challenge, where teams competed

to develop models for cell type-specific TFBS predic-
tion using ATAC-seq data. The top entries such as
Anchor [20], Catchitt [21], and FactorNet [22] were
able to accurately predict the binding sites of transcrip-
tion factors in cell types not included during training.
Despite the promise of cell type-specific TFBS predic-
tion using machine learning, model performance varies
widely, partly due to differences in the quality of train-
ing data available. More recently, neural networks such as
Deepbind[23] and DeepTF [24] are being used to perform
TFBS prediction. While Convolutional Neural Networks
(CNNs) were initially developed for use on image data,
CNNs have also been used for feature selection on non-
image data, as exemplified by methods such as DeepIn-
sight [25] and DeepFeature [26]. However, most machine
learning approaches to TFBS prediction have been evalu-
ated on widely studied transcription factors such as REST
and CTCF, where large amounts of data are available for
model training. To the best of our knowledge, no model
has been developed to disambiguate R-Smad binding sites.
In this study, we combine experimental genome-wide

measurement of Smad-specific binding sites with deep
learning to disambiguate genome-wide Smad2 and Smad3
binding in new and existing data. In order to experimen-
tally distinguish Smad2 and Smad3 target sites, Smad2
and Smad3 fusion proteins were transfected into the
breast cancer cell line MDA-MB-231 in a native cis-
regulatory environment as BAC transgenes [18]. ChIP-seq
was then performed using the fusion tags to identify bind-
ing regions of each R-Smad. Geometric analysis of the
binding regions identified sequence-dependent structural
features, suggesting that sequence-based learning could
distinguish R-Smad-specific binding. Using the collected
sequences as training data, we developed a deep learn-
ing model to classify Smad2- and Smad3-binding regions.
We applied this model to the problem of attributing
Smad2- versus Smad3-binding for regions of known pan-
Smad2/3 antibody binding. Specifically, we re-analyzed a
public ChIP-Seq data set that had been generated using a
pan-Smad2/3 antibody, and our method inferred poten-
tial Smad2- and Smad3- driven genomic regulation. This
study represents a proof of concept for the broader use
of deep learning to resolve the specificity of genomic
regulation driven by closely related transcription factors.

Results and discussion
LAP-tagged r-Smad BAC system is able to recapitulate
native TGFβ signaling
Immunoblots confirmed the presence of the LAP-Smad,
which resolved at a higher molecular weight due to the
presence of the LAP tag. The LAP-Smad was detected
together with the endogenous Smad of interest when cell
lysate was immunoblotted against a specific Smad; LAP-
Smad2 at 85kDa could be detected together with the
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endogenous Smad2 at 58kDa when immunoblotted with
Smad2 antibody. The LAP-Smad2 was also detected at the
same 85kDa size when immunoblotted with GFP anti-
body. No LAP-Smad3 was detected in the MDA-Smad2
cell lysate, and vice versa, indicating that there was no
cross interaction (Additional file 1).
To illustrate the functionality of the LAP-Smad, high

content analysis imaging was performed with anti-GFP
antibody to demonstrate the translocation of LAP-
Smad2 and LAP-Smad3 upon TGFβ-1 stimulation. In
the absence of TGFβ-1, the LAP-Smad2 and LAP-Smad3
were mainly localized in the cytoplasm. Translocation of
LAP-Smad into the nucleus was observed 1 hour after
10ng/mL TGFβ-1 stimulation (Fig. 1).

LAP-tagged r-Smad BAC ChIP-seq shows good
concordance with native ChIP-seq
We used an approach similar to the Irreproducible Dis-
covery Rate [27] of ENCODE for comparing the peaks
called using LAP-tagged Smad3 and native Smad3 ChIP-
seq generated in-house. Briefly, peaks were called using
MACS2 using the default parameters and a cut-off q-value
of 0.05 in both experiments. The distance from each peak
obtained from the Smad3 ChIP of MDA-MB-231 to the

nearest peak found with the GFP-ChIP of MDA-Smad3
was calculated using GenomicRanges [28]. Finally, the
distance to the nearest peak was visualized as a function
of the p-value of the peak. If the p-value indicates confi-
dence, then we would expect peaks with higher p-value to
have shorter distances between peaks (i.e., greater over-
lap between both ChIP experiments). Indeed, we found
that although LAP-tagged Smad3 allowed a greater num-
ber of peaks to be called, there was still good concor-
dance between peaks called in native Smad3 as well as
LAP-tagged Smad3 (Additional file 2). In particular, we
observed that peaks with p-values of less than 10−20 in
our MDA-Smad3 ChIP overlapped a peak identified in
our native Smad3 ChIP. This result suggests good con-
cordance between a LAP-tag Smad3 ChIP-seq and native
Smad3 ChIP-seq. Having established the concordance of
our LAP-tag Smad ChIP, we turned to characterizing
Smad2 and Smad3 bound sites.

Characterising Smad2 and Smad3 binding sites
Earlier studies had highlighted a role of 3D conformation
in determining the binding affinity of transcriptional co-
regulators [29–31]. Furthermore, a recent structural study
of FOXH1-driven TGFβ signaling identified DNA shape

Fig. 1 Translocation of LAP-Smads from the cytoplasm to the nucleus upon stimulation with TGFβ-1, shown via high content imaging in
MDA-MB-231 cells. Left, LAP-Smad2, right LAP-Smad3. Cell nuclei were stained with red Hoechst stain (DAPI channel). Green GFP stain (FITC
channel) showed predominantly cytoplasmic localization of LAP-Smads in the absence of TGFβ-1 stimulation, and translocation to the nucleus after
TGFβ-1 stimulation
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characteristics that distinguished Smad2- versus Smad3-
binding complexes [32]. We took advantage of these
findings to characterize key shape properties of the
respective R-Smad binding sites using the R package
DNAshape [33]. The binding regions of Smad2 and
Smad3 obtained from our LAP-SmadChIPwere subjected
to computational prediction of structural and geomet-
ric features, such as minor grove width and electrostatic
potential.
While the minor grove width (MGW) of Smad2- and

Smad3-bound sites were similar at the middle of the bind-
ing peaks, we observed that the MGWs at the farthest
ends (+/- 100 base pairs) of Smad3-bound peaks were nar-
rower than for the Smad2-bound peaks (Fig. 2A). We also
observed larger electrostatic potential in Smad2-bound
regions as compared to Smad3-bound regions (Fig. 2B).
These differences can be attributed to differences in the
underlying DNA structure. The intrinsic flexiblity of DNA
can be characterized along dinucleotide steps [34]: flexible
steps allow for more exploration of conformational space
while stiffer steps allow for less. Likewise, C:G base pairs
have a larger electrostatic potential due to the presence
of a partial positive charge on the amine group of cyto-
sine. The more negative electrostatic potential observed
in the narrower Smad3-bound sites is also consistent
with earlier Poisson-Boltzmann calculations that show
lower electrostatic potentials in structures with narrower
MGW [29]. Both intrinsic flexibility and electrostatic
potential contribute to sequence-dependent groove width
differences [35]. Consistent with our expectation, Smad2-
bound regions had an average GC content of 50.3% as
compared to Smad3-bound regions with an average of
50.0% (p < 0.05, using t-test).
Biologically, the differences between Smad2- and

Smad3-bound sites can be traced to the differences
in transcriptional co-regulators that interact with each
respective R-Smad. Motif enrichment analysis was per-
formed to identify potential co-regulators of Smad2 and
Smad3 binding. While both Smad2- and Smad3-bound
promoters were enriched forMEF, Smad2-bound promot-
ers were exclusively enriched for various basic helix-loop-
helix (bHLH) transcription factors such as E2A, Tcf12,
and Ascl. This is juxtaposed to the exclusive enrichment
of Smad3-bound promoters for various nuclear receptors
(NR). The bHLH family of recognize the E-box motif [36]
comprised of the canonical CG-rich sequence CANNTG
[37]. On the other hand, the NR family of transcription
factors recognize the P-box motif, which comprises either
AGAACA or AGGTCA [38].
Taken together, our characterization of the shape

features of Smad2- and Smad3-bound sites suggests
DNA sequence could potentially encode information
about R-Smad specificity. Hence, we sought to build a
model that enables de-convolution of Smad2 and Smad3

binding using DNA sequence. Using such a model, we
seek to classify a peak identified using a pan-Smad2/3
antibody as being Smad2-bound or Smad3-bound.

CNN-LSTM hybrid model that can distinguish between
Smad2 and Smad3 binding sites
Both CNNs and RNNs have been used extensively in
a TFBS prediction tasks, with both yielding competi-
tive results in various TFBS prediction tasks. We first
sought to assess the suitability of each network architec-
ture for de-convolving Smad binding sites. As shown in
Fig. 3, the AUPR obtained on the testing set for both
CNN and CNN-LSTMmodels were comparable (0.95 and
0.96, respectively) when we used 10 models for predic-
tion. Notably, the CNN-LSTM model was able to classify
Smad2-bound sites better despite the imbalanced train-
ing data, increasing the accuracy from 0.7 to 0.78 at a cost
of a 0.03 decrease in the accuracy of Smad3 predictions.
The improved performance of the CNN-LSTM hybrid
is consistent with the finding by Lanchantin et al. [39]
that a medium-sized CNN-RNN hybrid model yielded a
higher AUC compared to a small CNN comprising 2 con-
volutional layers while having smaller standard deviations
between different models. While no neural network has
been previously developed for the task of de-convoluting
the binding sites of closely related transcription factors,
the AUPR obtained in our study is comparable with state-
of-the-art TFBSmethods such as Catchitt, which reported
an AUPR of > 0.8 in classification of CTCF using a large
training data-set [21].
We also evaluated the impact of using different numbers

of models for ensemble learning. The final output proba-
bility for classification is calculated by taking the average
probability from all the models used in an ensemble. This
was done by enumerating all possible combinations of N
models (where N is the number of models to be used for
ensemble learning). As expected, increasing the number
of models led to increased AUPR (Fig. 3C). Increasing the
number of models also decreased the standard deviation,
suggesting greater consistency in predictions between
models. These findings are consistent with earlier work
in machine learning that demonstrated the superiority of
ensemble methods in classification tasks [21, 40]. Taken
together, our results show that snapshot ensemble learn-
ing, combined with a cosine annealing training schedule,
was a computationally efficient approach for increasing
the performance of NN-based TFBS prediction.
To test if our model could be generalized, we tested our

model on the human embryonic stem cell (hESC) dataset
deposited by Kim et al. [41]. In this dataset, Kim and col-
leagues sought to identify Smad2 and Smad3 binding sites
during embryonic development. Due to the lack of Smad2
specific antibodies, Smad2 binding sites were inferred by
performing ’peak subtraction’. In brief, a pan-Smad2/3
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Fig. 2 Characterization of Smad2 and Smad3 binding sites using DNAShapeR. A. Minor grove width (MGW) of Smad2-bound sites (left) and
Smad3-bound sites (right). While both Smad2 and Smad3 had similar MGW at the centers of the peaks, there was a marked difference in the MGW
100 base pairs upstream and downstream of the peak center, with Smad3-bound peaks narrower than Smad2-bound. B. Electrostatic potential (EP)
of Smad2- and Smad3-bound sites. Smad2-bound sites (left) were observed to have higher electrostatic potential when compared to Smad3-bound
sites across the full 200 base pairs of each binding site

antibody was first used to obtain a list of all Smad2/3
binding sites. A second ChIP was then performed using
a commercially available Smad3-specific antibody. Finally,
the Smad2 sites were identified by removing binding sites
that were common in both ChIP experiments. We com-

pared the predicted classification of Smad binding sites
with the classification based on peak substraction. The
results are shown in Fig. 3D. Despite the low AUPR (0.44),
the confusion matrix showed that our model was able to
classify Smad2- and Smad3-bound sites correctly about
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Fig. 3 Neural networks can classify Smad-bound sites as being Smad2- or Smad3-bound.A. Precision recall curve of CNN (blue) and CNN-LSTM
(black) models, taking the average of 10 models for final classification. An average precision of 0.95 was observed for the CNN model, as compared
to the slightly higher average precision of 0.96 of the CNN-LSTM model. The model was better able to classify Smad3 (0.87) as compared to Smad2
(0.7) B. Confusion matrix of CNN model in classifying Smad2 and Smad3 sites. The model was able to better classify Smad3 (0.7 vs 0.87). C Confusion
matrix of CNN-LSTM. Similar to the CNN model, the CNN-LSTM model was also better at classifying Smad3 (0.84) as compared to Smad2 (0.78), but
performed better than the CNN model (as shown in A). D. The effect of ensemble learning on model performance evaluated using AUCPR. We
evaluated the performance of increasing the number of models used from one to ten, with increase in AUCPR observed as the number of models
increased. The standard deviation, indicative of stability, also decreased as more models were included in the final ensemble. E. Confusion matrix of
Smad2/3 binding in hESC, showing model performance in a novel cell type was not included in the training dataset



Ng et al. BMC Genomics          (2022) 23:525 Page 7 of 11

60% of the time - a decrease in performance when com-
pared to the testing dataset. However, the decrease in
accuracy can be attributed to the lack of cell-specific train-
ing data, as our model was trained using Smad binding
sites in a breast cell line. The dependence of model per-
formance on the size of the training dataset has been
also observed in other state-of-the-art TFBS prediction
models.

De-convolving the roles of Smad2 and Smad3 in
mCF10A-MII cells
Having shown that our model is able to classify Smad-
bound sites as either Smad2- or Smad3-bound with rea-
sonable accuracy, we sought to leverage our model to
investigate the relative contributions of each R-Smad in
breast cancer progression. Sunquivst and colleagues per-
formed ChIP-seq against Smad2/3 in MCF10A-MII cells
to identify early and late TGFβ (16 hours) response genes,
and demonstrated a shift in Smad2/3 binding sites follow-
ing sustained TGFβ treatment [42]. However, the authors
were not able to differentiate between Smad2- and Smad3-
bound genes. To de-convolute the contribution of each
R-Smad to breast cancer progression, we used our model
to classify Smad-bound sites as either being Smad2- or
Smad3-bound. This might shed light on the contributions
of each R-Smad in sculpting the response ofMCF10A-MII
cells to TGFβ-1. Following classification, we performed
GO-enrichment to functionally characterize the Smad2-
and Smad3-bound peaks in both early and late TGFβ
response.
In the early TGFβ response, we observed an enrich-

ment of TGFβ signaling related pathways among Smad3
peaks (Table 1). This suggests that Smad3, and not
Smad2, upregulates canonical TGFβ target genes. This
observation is corroborated by experimental evidence
from the literature demonstrating the direct role of
Smad3 in regulating the expression of canonical early
response genes such as Id1 and Smad7. For instance,
Liang and colleagues demonstrated that Smad3, and not
Smad2, leads to the induction of Id1 expression one-hour
post treatment in MCF10A cells [43]. Likewise, Smad3

also directs the expression of Smad7 via direct binding to
the promoter [44].
Turning to the pathways regulated by each Smad fol-

lowing 16 hours of treatment, we observed that Smad3
targets were associated with processes involved in the re-
organization of the extracellular matrix (ECM), including
ECM degradation. The degradation of ECM is a crucial
step during cell invasion process. On the other hand,
we observed terms associated with neural development
in Smad2-bound loci. A role of Smad2 in neural devel-
opment has been observed in mouse models, with the
Smad2 δ exon-3 isoform being enriched in the nuclear
fraction during brain cell differentiation [45]. The process
of neural development includes EMT and directed migra-
tion, and has striking resemblance to cell migration in
carcinogenesis [46].

Conclusion
In this study, we first validated a LAP-tagged R-Smad
system that enables identification of Smad2- and Smad3-
specific binding sites in a breast cancer cell line. Using
the Smad-specific binding sites identified from these
experiments, we performed in-silico characterization of
the structural features that dictate R-Smad specific bind-
ing, and concluded that local sequences encode signifi-
cant amounts of information. Thereafter, we used deep
learning methods to classify a pool of R-Smad-bound
sequences into Smad2- or Smad3-bound. Finally, we took
the CNN-LSTMhybridmodel and used it to disambiguate
the roles of Smad2 and Smad3 in early and late response
to TGFβ-1 in a separate breast cell line, MCF10A-MII.
Our in-silico structural predictions of Smad2 and Smad3

binding sites suggest that regions flanking Smad2 bind-
ing sites have wider minor groves as compared to Smad3
binding sites. This difference in minor grove in turn also
correlates with a larger electrostatic potential in Smad2-
bound sites. The structural differences can be attributed
to differences in sequences. In turn, the difference in
sequence can be traced to the different transcriptional
co-regulating partners of R-Smad. As the structural prop-
erties are encoded by the sequence, we used the sequences

Table 1 Functional annotation of Smad2 and Smad3 bound genes in MCF10A-MII cells. RTK: receptor tyrosine kinase. ECM:
extracellular matrix. NI: Non-integrin

Early Late

Smad2 Smad3 Smad2 Smad3

RTK signaling RTK signaling Neuronal System RTK signaling

ECM reorganization ECM reorganization

Extra-nuclear estrogen signaling Signaling by TGFβmembers cell-cell communication ECM degradation

Signaling by MET Signaling by TGFβ Receptor Complex Cell junction organization cell-cell communication

NI membrane-ECM interactions VEGFA-VEGFR2 Pathway Netrin-1 signaling NI membrane-ECM interactions
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to develop a neural network model to disambiguate
Smad2 and Smad3 binding sites. Consistent with ear-
lier studies, our data suggests that a CNN-LSTM hybrid
model outperforms a CNN-only model in such classifica-
tion tasks. Finally, we applied our model to disambiguate
the roles of Smad2 and Smad3 in breast cancer disease
progression from a publicly available dataset. Our func-
tional enrichment analysis suggests differential roles of
Smad2 and Smad3 in both early and late TGFβ response,
with a more pronounced role of Smad3 in sculpting the
early response while both Smads regulate different pro-
cesses involved in the epithelial-mesenchymal transition
program in the late TGFβ response.
While our results suggests the feasibility of using

machine learning to disambiguate Smad2 and Smad3
binding sites, there are several limitations of the present
model that represent potential avenues for improvement.
First, our current model treats Smad2 and Smad3 bind-
ing as at distinct sites; future work to develop a multi-class
model can be undertaken to identify sites to which both
Smad2 and Smad3 can bind. A second limitation of our
model is the lower generalizability observed in the hESC
dataset. This is due to the lack of training data from other
cell types, which leads to the inability of our model to
learn more generalizable features of Smad2/Smad3 bind-
ing sites. More experimental data from Smad2/Smad3
specific ChIP in other cell types would be required in
order for a more generalizable model to be developed.

Methods andmaterials
Molecular cloning
The BAC-SMAD2 and BAC-SMAD3 recombinant plas-
mids used in this study were provided by the Genome
Engineering Core Facility of the Institute for Genomics
and Systems Biology at the University of Chicago. A BAC
containing the gene and endogenous cis control elements
was tagged by recombineering to yield the Localiza-
tion and Affinity Purification(LAP) tag at the C-terminus
[18]. Smad2 was tagged in CH17-5E15BAC (BAC-
SMAD2) while Smad3 was tagged in CH17-187G10BAC
(BAC-SMAD3). Following expansion, the plasmids were
extracted using the Maxi/BAC’ protocol with the Nucle-
obond AX 100 kit (Macherey-Nagel, Hoerdy, France).

Cell culture
For the generation of cells stably expressing LAP-tagged
Smad2/Smad3 (referred to as BAC-SMAD cells), MDA-
MB-231 cells (ATCC HTB-26) were transfected with
BAC-SMAD plasmid via Lipofectamine 2000. Selection
of transfects was performed with Geneticin. Three weeks
after antibiotic selection, the cells were GFP-selected
using Moflo XDP Cell Sorter (Beckman Coulter) that
was incorporated into a Class II BSC and equipped with
the standard Ar and Kr gas lasers and a 488 nm 200

mW blue laser to obtain a highly purified BAC-SMAD
population. The transfected cells were maintained in
DMEM, 4500mg/L glucose supplemented with 10% (v/v)
Fetal Bovine Serum, 100U/mL penicillin/ streptomycin
and 800μg/mL Geneticin (Gibco) in a humidified 5% CO2
incubator at 37◦C.

Western blot
Treatment of cells was performed with 10ng/mL of TGF-
β1 (Sigma #T7039). Cells were lysed in RIPA Buffer
containing protease inhibitors and phosphatase inhibitors
and quantification was performed using Quick Start™
Bradford Protein Assay. The protein lysate were dena-
tured and fractionated with NuPAGE Novex 4-12% Bis-
Tris SDS-PAGE in 1X MES buffer. The resolved pro-
teins were wet-transferred onto nitrocellulose membrane
and blocked for one hour. The membrane was incubated
overnight at 4◦C with primary antibodies. Antibodies
used: Smad2 antibody abcam #ab71109, Smad3 antibody
abcam #ab28379, Smad4 abcam #ab3219, GFP antibody
abcam #ab290 and GAPDH Ambion #am4300. (Addi-
tional file 1) Visualization was performed with Amersham
ECL Select Detecting Reagent with FluorChem R Imager
(ProteinSimple, CA, USA).

ChIP-sequencing
Chromatin Immunoprecipitation (ChIP) was performed
with the EZ-Magna ChIP™ A Chromatin Immunopre-
cipitation Kit (Millipore, Billerica, MA, USA) with anti-
GFP (abcam) . ChIP DNA was purified with Qiagen
PCR purification kit and quantification was performed
using the Qubit� 3.0 Fluorometer with Qubit� dsDNA
HS Assay Kit. DNA libraries were generated using the
TruSeq ChIP sample Prep kit (Illumina) followed by deep
sequencing with the Illumina’s HiSeq 2500 system with
at least 100M (million) raw reads for a ≥ 40M clean
single-end reads with a minimum requirement of target
non-redundancy fraction (NRF) of ≥ 0.8 for 10M reads
uniquely mapped read. Sequencing was performed at the
Beijing Genome Institute (BGI).

Bioinformatics analysis of ChIP-seq data
Sequencing reads were aligned to the hg38 genome
using Bowtie2 [47]. Following alignment, peak calling
was performed using MACS2, with reads extended to
200 base pairs to recover the original binding sites
[48]. Downstream annotations and analysis was per-
formed in R. Peaks identified by ChIP-seq data in TGFβ
treated MCF10A-MII was downloaded from GEO (acces-
sion number: GSE83788) [42]. Likewise, peaks from
TGFβ treated human embryonic stem cells were down-
loaded from GEO [41] (accession number: GSE29422)
and peak coordinates were converted to hg38 using the
liftover tool. Peak annotation and feature encoding
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was performed in a similar manner to our in-house
dataset (described below). Gene ontology (GO) enrich-
ment analysis was performed using ReactomePA [49] and
default settings. GO terms with a p-value of less than 0.05
were considered to be enriched.

Architecture of neural networks
Various neural network architectures have been proposed
for the task of TFBS prediction, with CNN and RNN as the
two dominant architectures. Various forms of RNNs have
been proposed, with long-short term memory (LSTM)
and gated recurrent units (GRU) as two dominant types of
RNNs used in TFBS prediction. Two models were trained
- a vanilla CNN model comprising only of convolu-
tional layers connected to two fully connected layers, and
a CNN-LSTM hybrid comprising a convolutional input
layer connected to a long-short term memory (LSTM)
layer before being connected to two fully connected lay-
ers. Figure 4 shows the configurations of our models.
A dropout layer with a dropout ratio of 0.2 was added
between the two dense layers to prevent overfitting.
For the two fully connected layers prior to the out-

put layer, the number of neurons chosen was determined
based on the work byHuang et al. [50], which specified the
minimum number of neurons required to capture all the
samples within the dataset. This allows us to choose the
smallest possible number of neurons in the dense layers
while not losing valuable information for model training.
We used the ReLu activation function for each layer in the
fully connected layers prior to passing the values to the

output layer using the sigmoid function to obtain a final
predicted value.

Model training and evaluation
Smad2/3 bound promoters (defined to be within 3kb of
transcription start sites) were first resized to 200 base
pairs. Thereafter, the N sequences were one-hot encoded
to produce a N × 200 × 5 matrix which was then used as
input for training and prediction. In our one-hot encoded
matrix, each promoter is encoded in one of N rows.
Each base is encoded by 5 slices corresponding to either
A,T,C,G or N. Neural network training was performed
in Keras using the Tensorflow framework. Training was
performed with 75% of the dataset, with the other 25%
reserved for model testing. We used a cosine annealing
training schedule with restarts [51], where the learning
rate was gradually decreased in each epoch according to
the formula

a(t) = a0
2

[
cos

(
π |(t − 1,T/M)|

T/M

)
+ 1

]

where a(t) refers to the learning rate at epoch t, a0 refers
to the maximum learning rate, and T and M represents
the total number of epochs and number of training cycles
respectively.
We combined the cosine annealing training schedule

with snapshot ensemble learning [52], where the outputs
from ten different models are averaged to produce a final
predicted value. The learning rate was reset to the maxi-

Fig. 4 Architectures of neural networks used in this study. The CNN is made of two convolution stacks (convolution layer + maxpooling). A filter size
of five is used in the first convolution stack to serve as a motif detector. Thereafter, we used a larger filter size (32) in the next convolutional layer to
capture larger patterns in the sequence. Following the convolution stacks, the features are flattened and batch normalized before passing through
two dense layers using the ReLu activation function which are connected by a drop out layer. Finally, the output from the dense layer is passed to an
output layer with a sigmoid activation to produce a final prediction value. Similar to the CNNmodel, we first used a convolution layer with a filter size
of five to serve as a local motif detector for our CNN-LSTM model. After maxpooling, the output matrix is passed to an LSTM with 32 cells. Thereafter,
the output from the LSTM is batch normalized and passed through two fully connected layers with the same configuration as our CNN model
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mum learn rate at the start of each model. The area under
the precision recall curve (AUPR) was used as the metric
of model performance. As our dataset was highly imbal-
anced with 75% of the sites being Smad3-bound, we used
a cut-off probability of 0.75 for classifying peaks as being
Smad2 or Smad3 bound.

Abbreviations
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