
����������
�������

Citation: Qureshi, H.N.;

Manalastas, M.; Ijaz, A.; Imran, A.;

Liu, Y.; Al Kalaa, M.O.

Communication Requirements in

5G-Enabled Healthcare Applications:

Review and Considerations.

Healthcare 2022, 10, 293. https://

doi.org/10.3390/healthcare10020293

Academic Editor: Daniele Giansanti

Received: 21 October 2021

Accepted: 14 January 2022

Published: 2 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Review

Communication Requirements in 5G-Enabled Healthcare
Applications: Review and Considerations
Haneya Naeem Qureshi 1,2,*, Marvin Manalastas 1,2 , Aneeqa Ijaz 2, Ali Imran 2, Yongkang Liu 1

and Mohamad Omar Al Kalaa 1

1 Center for Devices and Radiological Health, U.S. Food and Drug Administration,
Silver Spring, MD 20993, USA; marvin@ou.edu (M.M.); yongkang.liu@fda.hhs.gov (Y.L.);
omar.al-kalaa@fda.hhs.gov (M.O.A.K.)

2 AI4Networks Research Center, School of Electrical & Computer Engineering, University of Oklahoma,
Tulsa, OK 74135, USA; aneeqa@ou.edu (A.I.); ali.imran@ou.edu (A.I.)

* Correspondence: haneya@ou.edu

Abstract: Fifth generation (5G) mobile communication technology can enable novel healthcare
applications and augment existing ones. However, 5G-enabled healthcare applications demand
diverse technical requirements for radio communication. Knowledge of these requirements is
important for developers, network providers, and regulatory authorities in the healthcare sector
to facilitate safe and effective healthcare. In this paper, we review, identify, describe, and compare
the requirements for communication key performance indicators in relevant healthcare use cases,
including remote robotic-assisted surgery, connected ambulance, wearable and implantable devices,
and service robotics for assisted living, with a focus on quantitative requirements. We also compare
5G-healthcare requirements with the current state of 5G capabilities. Finally, we identify gaps in the
existing literature and highlight considerations for this space.

Keywords: 5G networks; healthcare; key performance indicators; wireless communication

1. Introduction

Integrating fifth generation (5G) mobile communication technology into digital health-
care technology can facilitate healthcare delivery with expanded communication capabili-
ties given 5G’s high data speed, ultra-low latency, massive device connectivity, reliability,
increased network capacity, and increased availability. These characteristics can enable
novel healthcare use cases and augment existing ones [1–4]. Use cases include remote
robotic-assisted surgery, remote diagnosis/teleconsultation, in-ambulance treatment by a
remote physician, wearable device applications (wearable device applications are consid-
ered within the scope of the Internet of Things (IoT), narrow band IoT (NB-IoT), or Massive
IoT), service robotics for assisted living, and medical big data management [1,5–9].

5G-enabled healthcare applications have diverse communication technical require-
ments for different use cases. Knowledge of those requirements is important for all stake-
holders, including developers, network providers, and regulatory authorities in the health-
care sector, to facilitate safe and effective healthcare [6], where an understanding of the
underlying communication requirements is needed to select wireless technology with
features that support healthcare application design targets and expected performance [10].
5G promises to provide the low latency and high bandwidth to enable modern healthcare
applications such as remote robotic surgery and in-ambulance treatment. Accordingly,
designing, deploying, and evaluating the systems needed to implement those use-cases can
be informed with a clear understanding of the underlying communication requirements
that can enable the intended functionality.

For instance, the expansive set of 5G configuration and optimization parameters offer
network operators flexible options in setting up their networks and dynamically optimizing
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network performance to achieve a desired objective. Accordingly, a large set of parameters
can impact the needed performance for a 5G-healthcare use case. Accordingly, quantitative
key performance indicators (KPIs) can help 5G network providers assess the feasibility
of a given 5G-enabled healthcare use case, provide the level of service needed for the
safe and effective functioning of 5G-enabled healthcare applications, and draft service
level agreements with their customers. Clearly specified KPIs can also inform regulatory
authorities like the U.S. Food and Drug Administration (FDA) when evaluating whether
communication service levels and quality of service are met to support the safe and effective
use of a 5G-enabled medical device. Finally, end users such as healthcare facilities and
patients can use this knowledge for developing, negotiating, and managing relevant service
level agreements (SLAs) with the 5G network provider [6].

In this review paper, we identify, compare, and summarize the communication require-
ments for several healthcare use cases that can be enabled by 5G. The focus of this paper
is on quantitative requirements. Furthermore, we identify gaps in the existing literature
and highlight considerations in this area. Specifically, we survey the technical requirements
for remote robotic-assisted surgery, mobile connected ambulance (i.e., in-ambulance treat-
ment by remote physicians), wearable and implantable devices, and service robotics for
assisted living.

This article is unique in detailing a comprehensive review of the quantitative KPI
requirements of 5G-healthcare use cases. To the best of our knowledge, the closest work to
our review paper on the similar topic is the recent magazine article by Cisotto et al. [11],
which highlights select quantitative requirements for the use cases of telepresence and
robotic-assisted telesurgery, remote pervasive monitoring, healthcare in rural areas, and mo-
bile health (m-Health). Compared to the related work, our review paper includes references
specific to the use of 5G in healthcare, in addition to those addressing the communication
requirements of the healthcare applications regardless of the enabling communication
technology, which can inform how applications use 5G. Our literature search results extend
until 29 June 2021. Accordingly, we have significantly expanded the scope of the considered
references to comprehensively capture the state-of-the-art and include a comparative study
between planned and existing 5G capabilities. We have also identified gaps in this space
and considerations for 5G-healthcare requirements, which were not within the scope of [11].
Moreover, after identifying literature that reported KPIs for the use of 5G in healthcare use
cases, we have traced the original sources of the referenced KPIs in those papers.

The rest of the paper is organized as shown in Figure 1. In Section 2, an overview of
5G KPIs with specifications of their definitions is provided. Sections 3.1–3.4 identify four
potential areas of 5G healthcare applications and review KPI requirements in individual
areas, which include telesurgery (Section 3.1), connected ambulance (Section 3.2), healthcare
IoT (Section 3.3), and robots for assisted living (Section 3.4). The identified 5G-healthcare
requirements are then compared with the current state of 5G capabilities in Section 4, and
gaps in this space are highlighted in Section 5. Finally, Section 6 concludes the paper.
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2. Key Performance Indicators for 5G-Healthcare

While KPIs such as data rate, accessibility, reliability, and mobility have been widely
used in the performance evaluation of 4G cellular networks, the diversity and heterogeneity
of 5G applications are calling for further expansion to incorporating novel sets of KPIs
for measuring adequacy and efficacy of 5G-enabled services. The taxonomy shown in
Figure 2 highlights the vastness of 5G network KPIs. Inspired by [12–14] and combined
with domain knowledge, this taxonomy classifies 5G KPIs into four categories: network,
service, application, and user. Each category also includes high-level and low-level KPIs.
High-level ones measure the overall performance of the network based on metrics defined
by the standardization bodies such as 3rd Generation Partnership Project (3GPP). However,
most of the time, these high-level KPIs are focused on characterizing general features of
the cellular system/service. In this regard, we also introduce low-level KPIs under each
high-level one to further instantiate specific requirements. A certain 5G-enabled healthcare
application might depend on a given set of KPIs to deliver its function while having low
sensitivity to others.

The service level KPIs often discussed in 5G-enabled healthcare literature to address
several aspects of the communication network, including availability, accessibility, reliability,
data rate, and retainability. Availability is the fraction of time the network is available
to provide the services users demand [15]. Accessibility is discussed in the context of
connectivity time, which measures the time to establish a network connection, starting
at the user request and ending at the beginning of the data transmission. Reliability is
addressed through numerous low-level KPIs shown in Figure 2: throughput, latency, jitter,
and packet loss rate (PLR), and bit error rate (BER). User throughput during active time is the
size of a burst divided by the time between the arrival of the first packet and the reception of
the last packet of the burst. Latency corresponds to the travel time of data packets from the
source to the destination (i.e., one-way, or end-to-end latency) [16]. The round-trip latency
is the time it takes a signal to be sent plus the time spent to receive an acknowledgement
of that signal. Jitter is a measure of the variation in the time of arrival between packets.
If uncontrolled, jitter impacts the audio and video quality, which can negatively impact
applications where this type of communication is used (e.g., telesurgery, remote diagnosis,
and service robotics for assisted living). PLR is the fraction of packets that failed to reach
the receiver out of total number of transmitted packets. BER is the total number of bits
received in error over the total number of bits sent. Like jitter, high BER/PLR negatively
impacts audio and video quality. Also relevant to the service level is the data rate, which is a
measure of the volume of successfully received application data, expressed in bits, within a
period expressed in seconds. A high data rate is relevant in applications that transport
large volumes of data. Service retainability refers to the count of radio link interruptions
following the activation of that link between the user and the network. A related measure
of service retainability is the number of reconnections, i.e., the count of attempts a user
performs to re-establish network connection following a link failure.

The overall network characteristics are addressed in the literature with several network
level KPIs such as network bandwidth, utilization and spectral efficiency. Bandwidth refers
to the network maximum aggregated data transmission rate. Connection density and traffic
density are measures of utilization. Connection density refers to the number of connected
devices per unit area. This is relevant in connected IoT application, where the number
of connected devices is large. Traffic density (or area traffic capacity) is a measure of the
volume of catered data in a unit area. Spectral efficiency is the maximum number of bits
the network can provide to users every second using a given bandwidth.
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Figure 2. Taxonomy of 5G network KPIs.

On the user level, KPIs of battery or power consumption, range, and payload size are
commonly reported in literature covered in this paper. User battery consumption and the
its associated low-level KPI, duty cycle, which is the ratio between an application active
(ON) and idle (OFF) times, are relevant in IoT devices where transmissions are intermittent
and battery lifetime is limited. Range is the distance at which the signal transmitted is
sufficient for the transmitter and receiver to communicate effectively. Another relevant
KPI discussed in literature is the user payload size, which can be controlled to balance the
transferred data volume with the incurred transmission overhead. This promotes efficient
network resource usage while helping to meet specific application needs.

On the application level, security and position accuracy are the most commonly dis-
cussed KPIs in literature reviewed in this paper. Security refers to the network ability to
identify, isolate, and eliminate threats to its infrastructure, users, and their data. Position
accuracy is a measure of the difference between the estimated and actual user locations.
The 3GPP (the entity that develops 5G specifications) has set different position accuracy
targets for different scenarios ranging from several meters for emergency calls to a few
decimeters for indoor plant operations and vehicle-to-everything (V2X) [17].

Although relevant to enabling 5G healthcare functions, some KPIs are seldom ad-
dressed in the articles reviewed in this paper. For example, the network-coverage is relevant
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to all applications using its services. While network coverage area probability is related to user
activity range, it refers to the percentage of service area where users can receive a desired
service. On the application level, privacy is relevant to healthcare applications because
it refers to the ability of the network to keep the data that passes through it or is stored
privately in it. Also on the application level, network resource elasticity is relevant in ap-
plications with temporary need for elevated connection capabilities such as in-ambulance
treatment and other emergency related applications. Resource elasticity describes the
network ability of responding to temporal and spatial fluctuations in traffic demand by re-
distributing available resources to seamlessly meet the demand of critical applications [18].
On the service level, mobility is relevant to applications that are mobile such as connected
ambulance. Mobility is the maximum user speed that a network can support. It also refers
to the ability of a network to support mobile users. A measure of mobility can be the rate
of successful handovers between the coverage sites. Additional examples of KPIs related to
the service level include the service restoration time under resilience and survival time under
reliability. The former refers to the period in which the services are restored to normal
operating status after experiencing a downtime. The latter is the tolerable packet delay in
which an application can still function effectively.

Figure 3 illustrates a subjective summary of the general relevance of the high-level 5G
network KPIs we investigated in Figure 2 to the following applications: remote robotic-
assisted surgery, connected ambulance or in-ambulance treatment by remote physician,
healthcare IoT applications, medical data management, teleconsultation and remote di-
agnosis, and service robotics for assisted living. These applications are only considered
as generic concepts, which recognizes that realistic medical devices implementing one or
more of these application concepts have unique KPI needs. Furthermore, the FDA guidance
document on radio frequency wireless technology in medical devices recommends that
the medical device wireless quality of service (QoS) is specific to the medical device [10].
Accordingly, this summary can help inform the KPI value specifications that should be
determined for the specific intended use of a medical device and its design. Relevance is
qualitatively described as high, medium, or low. Notably, remote robotic-assisted surgery
needs careful provisioning of several KPIs, including reliability, where low-level KPIs such
as latency, jitter, and packet loss fall under. However, when the scenario is implemented
in an operating room, mobility is not as relevant as other KPIs since the connection will
not move across multiple network cells. On the contrary, in-ambulance treatment by re-
mote physician or connected ambulance needs exceptional mobility support since the data
exchange occurs while the ambulance is mobile. Support for mobility in this case comple-
ments other relevant KPIs such as reliability, data rate, availability, coverage, and resource
elasticity to enable the exchange of diverse data streams (e.g., video, audio, file transfer,
and control commands). The number of connected wearable devices is expected to grow
globally from 720 million in 2019 to more than 1 billion in 2022 [19]. Accordingly, the KPIs
of utilization and UE battery consumption are highly relevant for enabling the network
connectivity for such devices given their energy constraints. In the case of medical data
management, security and privacy are more relevant compared to other KPIs, such as relia-
bility. Like other services that use audio and video, remote diagnosis or teleconsultation are
negatively impacted with degraded reliability. Other relevant KPIs for this use case include
coverage, range, and utilization, to facilitate the service access by many users. Finally, we
note that reliability, range, and position accuracy are relevant in the service robotics for
assisted living use case where the robot is mobile in a limited area. The following sections
will review the related literature for each of these use cases.
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Figure 3. Examples of 5G-enabled healthcare application concepts and their projected needs for some
communication KPIs.

3. KPIs for Specific 5G-Healthcare Use Cases
3.1. Remote Robotic-Assisted Surgery

Several studies have addressed quantitative KPI requirements for remote robotic-
assisted surgery, which we also refer to as telesurgery for the remainder of this review. This
use case involves the use of a robotic-assisted surgery platform by a surgeon located in
a remote geographic location. The most commonly reported KPIs include latency, data
rate, and packet loss [11,20–47]. Few studies have also reported quantitative requirements
for reliability, communication service availability, payload size, traffic density, connection
density, service area dimension, survival time, range, and duty cycle [11,30,34,44]. Table A1
presents the reported latency requirements for several communication streams that can
be used during telesurgery such as camera flows, vital signs, and feedback for force
and vibration. Latency in this context is considered end-to-end. Compared to latency,
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quantitative requirements for jitter have been investigated less investigated in the literature.
The reported jitter requirements are detailed in Table A2. Similarly, requirements for
data rate are detailed in Table A3. These requirements can be influenced by different
compression techniques used. Reported packet loss and BER requirements are presented in
Table A4. Reports of other KPIs, such as reliability, availability, survival time, etc., are listed
in Table A5. By big payload in Table A5, we mean when the packet exceeds 10 Kb [11].
The ability of current 5G networks to meet these KPIs will be discussed in Section 4.

Notably, the reported KPI values are inconsistent across literature reports, which could
be attributed to the varying type of tasks considered by the researchers during telesurgery.
Additionally, the equipment used to perform telesurgery and the simulation environment
also varies across studies. To detail the context of the telesurgery KPI specification, we also
labeled the original source of the reported KPIs in each study as detailed in Tables A1–A5.
Most KPI values were found in experiment and simulation settings of the individual studies
with exceptions where the values were a consensus view of the achievable performance by
wireless stakeholders [22,33], and Refs. [22,30] contain a white paper by the 5G Infrastruc-
ture Public Private Partnership (5GPPP) that highlighted use cases for 5G in healthcare and
suggested quantitative requirements. A technical requirements document was compiled
by the IEEE 802.15 Task Group 6 for Body Area Networks (BAN), formed in 2007 to help
develop a communication standard optimized for the low power devices and operation,
in or around the human body to serve a variety of applications, including medical ap-
plications. The report in [30] outlined findings from the National Science Foundation
(NSF)-funded workshop on ultra-low latency wireless networks. The report addressed
healthcare application requirements of the emerging applications, including telesurgery,
in terms of throughput, latency, and reliability. In the following, the relevant experimental
and simulation studies are summarized.

3.1.1. Experiment Based

The Aesop 1000TS robot (Computer Motion, Goleta, CA, USA) was adapted to hold
a metal pin in addition to a laparoscope and camera (Stryker Instruments, San Jose, CA,
USA) in [23]. Programmed incremental time delays were introduced in the audiovisual
acquisition, and the number of errors made while performing tasks at various time delay
intervals was noted. A remote surgeon in Baltimore, MD performed tasks 9000 miles away
in Singapore and determined that a delay of <700 ms is acceptable.

A teleoperation capable ZEUSTM robotic minimally invasive surgery system was
used in [24], with a dedicated communication link by Bell Canada and Telesat Canada. This
link included a wired link with a roundtrip delay of 64 ms, a satellite link with a roundtrip
delay of 580 ms, and a software simulated delay link through a local switch. Different tasks
were performed from London, Ontario to Halifax, Nova Scotia, Canada. These included
dry (typical surgical maneuvers at latencies from 0 to 1 s, in increments of 100 ms) and
wet (internal mammary artery takedown on a pig) experiments. A heuristic mathematical
model accompanied the task completion times and error rate results, showing acceptable
delays of up to 300 ms and 800 ms for simple tasks with training. It was concluded that
the effect of delay is not pronounced until the round-trip time exceeds 400 ms and the
maximum tolerable delay is approximately 600 ms.

Researchers from European Institute of Telesurgery used the ZEUS system, which is
transcontinental, which attempted a remote robot-assisted laparoscopic cholecystectomy on
a 68-year-old woman with a history of abdominal pain and cholelithiasis. The surgeon’s
subsystem (Equant’s point of presence, New York) and patient’s subsystem (operating room
in European Institute of Telesurgery, Strasbourg) were connected via a high-speed terrestrial
network (i.e., ATM service), with a round-trip distance of over 14,000 km. Robot motion data
had a high priority and a rate guarantee of 512 Kbps within the 10 Mbps virtual path. The
operation was carried out successfully in 54 min, with a 155 ms mean time lag for transmission.
The study estimated that 300 ms was the maximum time tolerable delay.
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Dohler et al. [32] attempted a robot-assisted laparoscopic gall bladder removal for six
pigs, with the surgeon located in Strasbourg, France and animals located in Paris, France,
using the ZEUS system. The time lag was artificially increased from 20 ms up to 551.5 ms. It
was concluded that no packets were lost during the surgical procedures, and the round-trip
delay was 78–80 ms, with additional 70 ms for video coding and decoding and a few
milliseconds for rate adaptation, summing to 155 ms [32].

To study the impact of haptic feedback in virtual environments, two experimental
platforms were implemented in [40]. Platform 1 consisted of two sites at the University of
Belfast separated by a few hundred meters and linked by Gigabit Ethernet connection. The
configuration of the experimental platform consisted of four 100 Mbps Ethernet segments,
two 1000 Mbps fiber optic segments, and four PCs. One PC was connected to a PHANToM
Desktop, two generated background traffic, and one ran the remote virtual environment.
In Platform 2, one of the computers is used to emulate network impairments. Haptic data,
network congestion, and network-impairments were analyzed using these two platforms
by introducing controlled delay (0 ms to 50 ms), jitter (1 ms to 15 ms), and packet loss
(0.1% to 50%). Study participants self-scored the sense of force feedback. The haptic QoS
requirements were summarized by less than 10 ms delay, less than 3 ms jitter, 1% to 5% for
packet loss rate, and haptic data transmission rate of approximately 1 kHz.

The study in [29] involved both simulation and practical experiments, where multi-
modal data were transmitted over a QoS-enabled Internet Protocol (IP) network. The force
feedback device was the PHANToM desktop from SensAble Technologies Inc., which could
provide force up to 3.3 N in 3 axis directions and generate 1000 packets/s of position and
force data during the haptic collaboration actions. In the experiments, the force feedback
device was used to manipulate moving virtual objects and to provide the user with feed-
back from the virtual environment. The end-to-end delay experienced by the haptic traffic
was found to decrease from 200 ms (best effort) to 40 ms by running the haptic application
in a Differentiated Services (DiffServ) network.

To understand the impact of vibration feedback latency, authors of [37] built a system
consisting of a liquid crystal display (LCD), touch sensor, rod device with a vibrator,
microcontroller, and a host computer. The microcontroller (NXP semiconductors, mbed
NXP LPC1768) controlled the feedback latency from 0.1 to 25.6 ms, according to an adaptive
staircase algorithm. Twenty-four participants first sat in front of the touchscreen and were
instructed to tap the touchscreen by raising the rod as quickly as possible after the rod head
made contact with the touchscreen with an approach velocity of 0.1–0.5 m/s. After the
practice, they experienced a 25.6 ms delayed vibration. The participants then conducted
eight staircases for further experiments involving two surface conditions (wood or metal).
The results showed a 5.5 ms detection threshold of the vibration feedback latency.

Another experimental study proposed a multiplexing scheme that was evaluated using
a teleoperation system consisting of a KUKA light weight robot arm (KUKA Robotics), a JR3
force/torque sensor, a force dimension Omega 6 haptic device [31], and real-time Linux-
based Xenomai development software. Using the robot arm, the human operator could
move toys and peg them in corresponding holes, which was considered as a representative
task for the teleoperation applications. Haptic teleoperation experiments were performed,
and KPIs considered were varying end-to-end signal latencies (force delay, video delay,
audio delay), packet rates, peak delay, convergence time, and peak signal-to-noise ratio
(PSNR) for visual quality.

In [39], researchers from Touch Lab, MIT demonstrated an experiment on haptic
interaction between two users over a network with 2.4 Gbps connection. Authors used
two PHANToM force-feedback devices at both sites; one was located at UCL VECG Lab,
London, UK and the second was in MIT Touch Lab, Massachusetts, USA. The experimental
subjects were to cooperate in lifting a virtual box together under different conditions.

A mutual tele-environment system named “HaptoClone” is proposed by researchers
from the University of Tokyo in [36], which mutually copies adjacent 3D environments
optically and physically using micro-mirror array plates technology. Haptic feedback was



Healthcare 2022, 10, 293 9 of 33

also given by using an airborne ultrasound tactile display. Different objects were touched
by users, and the perceived delay of tactile feedback was measured. Simulations showed
that a 100 ms delay was allowable to achieve the real-time interaction.

Other experimental studies using robot systems of SoloAssist (AKTORmed) in Ger-
many, Panda robot (Franka Emika) in Italy, 3D-microscope (Karl Storz) and TiRobot system
(Tinavi), and MicroHand (WEGO Group) in China are surveyed in [46].

3.1.2. Simulation Based

The surgical simulator dV-Trainer from Mimic technologies Inc., Seattle, WA, USA
was used in [26,27]. In [26], sixteen medical students performed an energy dissection and a
needle-driving exercise on the dV-Trainer, with latencies varying between 0 and 1000 ms
with a 100 ms interval. These latencies were communication latencies from the time that a
movement was initiated by the surgeon until the image of the movement is visible on the
surgeon’s monitor. The difficulty, security, precision, and fluidity of manipulation were
self-scored by subjects. It was concluded that the surgical performance deteriorates in
an exponential way as the latency increases. This study further concluded that latencies
less than 200 ms were ideal for telesurgery; 300 ms was also suitable; 400–500 ms may
be acceptable; and 600–700 ms was only acceptable for low-risk and simple procedures.
Surgery was quite difficult at 800–1000 ms. The same simulator was utilized in [27].
However, in this study, instead of students, 37 surgeons were involved and performed
different exercises in an easy-to-difficult order. The dV-Trainer simulator was permitted to
introduce fixed latencies into the exercises between the gesture on the grips and the visual
feedback on the console. Instead of a self-scoring system as in [26], the dV-trainer in [27]
included a built-in scoring system, capturing instrument collisions, drops, etc. This study
concluded that although the impact of delay is related to the difficulty of the procedures,
overall, delays of 100 to 200 ms caused no significant impact, delays higher than 500 ms
caused a noticeable increase in surgical risk, and surgery became extremely difficult and
should be avoided at delays higher than 700 ms.

In [29], following experiments on a testbed (PHANToM devices), a probability density
function (PDF) model of the haptic traffic from a distributed haptic virtual environments
(DHVE) application was created for the use in a simulated DiffServ network using OPNET
simulation tool. Subsequently, the effect of running the haptic traffic over a DiffServ IP
network was obtained. Results indicated that the haptic throughput increases with the
increase in the queue scheduling weight.

Another work leveraging a similar testbed used a force-feedback haptic device in
the PHANToM experimental testbed [41]. The set-up involved two computers that were
connected through a gigabit Ethernet fiber optic link running on the best effort IP service.
The collected network traces from the test network were used to generate statistical models
of each type of DVHE traffic that can be used in the standard network simulation packages
such as OPNET. The measured network parameters included throughput, packet lost, delay,
and jitter. Results from this simulation model showed a close match of simulation network
throughputs with experimental throughputs of 850 Kbps and 630 Kbps in asynchronous
and synchronous modes, respectively. DHVE effective throughput deteriorated sharply
above 90% background load. End-to-end delays of more than 5 ms occurred at above 90%
background load. The impact of jitter, latency, and packet loss was studied in [38] using the
analytical models, OPNETWORK, and OPNET simulators. For audio, the simulated traffic
behavior model was based on two-state (ON-OFF) Markov modulated rate process (MMRP)
with the exponentially distributed time at each state. For video, the model was based on
K-state MMRP. The QoS requirements for the audio were reported as: delay < 150 ms,
jitter < 30 ms, and packet loss < 1%. For video, these requirements were concluded as:
delay < 400 ms, jitter < 30 ms, and packet loss < 1%.

Another simulation-based study to investigate the haptic-audio-visual data communi-
cation used an interpersonal communication system, HugMe, which consisted of a haptic
jacket for a remote person to simulate nurture touching, a haptic device for a local person
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to communicate his feelings with the remote person, and a depth camera to capture the
image and depth information of the remote person and send it back [28].

Several studies citing jitter requirements for telesurgery have referred to the work
in [43] that used Image Server and Haptic Handshake applications. The network emula-
tion in [43] consisted of two endpoint computers and a third intervening computer that
simulates the network using NISTNet software. The Handshake application is intended to
train students remotely in surgical procedures by placing a haptic device at each endpoint
and having the instructor guide the movements of the student remotely. The performance
was evaluated under varying packet loss, delay, and jitter conditions. Minimum end-to-
end performance requirements for throughput was 128 Kbps, packet loss was less than
10%, delay was less than 20 ms with abrupt movement and less than 80 ms with gentle
movement, and jitter was less than 1 ms.

The authors investigated the effect of packet loss and latency in multimodal telepres-
ence systems in [35]. The packet loss caused the impression of time delay and influenced the
perception of the subsequent events. The simulated haptic feedback force was generated
via PHANToM haptic device. The visual 3D environment was presented on a monitor,
which was fixed above the haptic device and tilted 80◦ toward the observer. The visual
space was collocated with (i.e., projected into) the haptic space by means of a mirror, and
participants viewed the mirrored image through a pair of shutter glasses for the stereo
image presentation. Visual-haptic event judgment was investigated under packet loss rates
of 0, 0.1, 0.2, and 0.3, respectively. The minimum required latency for visual-haptic events
was concluded to be 50 ms. Finally, telesurgery reports using software-defined networking
(SDN), fog, and cloud infrastructures are described and compared in [48]. For more details
on the use of SDN, fog, and cloud in emerging healthcare, the reader is referred to the
works in [49–53].

The reported KPI values are inconsistent across literature reports due to factors such
as varying types of tasks during telesurgery, varying equipment, and varying simulation
environments across the studies. For example, latency ranges from as low as 1 ms for
haptic feedback to as high as 700 ms for camera flow data, jitter ranges from 1 ms for haptic
feedback to 55 ms for 3D camera flow, and the data rate requirements vary between 10 Kbps
for vital signs transmission and 1.6 Gbps for 3D camera flow. Similarly, the BER also varies
between 10−10 to 10−3 depending on the data type.

3.2. Connected Ambulance

Table 1 summarizes the literature relevant to the connected ambulance use case in
terms of the investigated communication KPIs. The literature covers a wide range of
applications termed connected ambulance. In essence, this involves providing medical
care enroute to a healthcare facility while exchanging relevant data (e.g., imaging, vital
signs, audio, and video) with healthcare providers. Requirements for 5G-enabled mobile
healthcare in general are discussed in [21], where the authors propose to implement two-
way connectivity between ambulances and hospitals across the UK. The KPIs discussed in
the paper include the maximum allowed end-to-end latency for different data types (i.e.,
150 ms for camera and audio flow, 250 ms for vital signs, and less than 10 ms for force and
vibration). Data rate requirements for different data types were also specified, with the
highest data rate requirement being 10 Mbps for two-way visual multimedia streaming,
followed by haptic feedback, including force and vibration data types with 400 Kbps each,
and then audio multimedia stream with a requirement of 200 Kbps. Depending on the
required quality and bandwidth constraints, the data rate requirements for audio data
can vary between 22 and 200 Kbps. Moreover, different types of vital signs were assigned
different data rates, with EEG having the highest requirement of up to 86.4 Kbps [21].
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Table 1. Summary of literature for relevant connected ambulance KPIs.

Use Case KPIs Data Type Tools Study Year

Ambulance transporting
stroke patients to hospital

Throughput, number
of reconnections

Audio, video, and vital
signs TeleBAT system in ambulance [54] 2000

Ambulance transporting
cardiac patients to hospital Retainability, PLR 12-lead ECGs Rhythm-surveillance and

defibrillation equipment [55] 2002

Ambulance transporting
cardiac patients to hospital Latency, PLR 12-Lead ECG

Philips standard (basic device
model without advanced

features such as
computer-assisted ECG

interpretations), embedded,
and integrated ECG device

[56] 2010

Ambulance transporting
stroke patients to hospital Retainability Audio, video

VIMED CAR, head and body
cameras, and specialized

microphones
[57] 2012

Ambulance transporting
stroke patients to hospital

Retainability,
bandwidth (mean and
maximal upload and
download speeds for

data transfer),
accessibility

Audio-video, blood
pressure, heart rate, blood

oxygen saturation,
glycemia, and electronic

patient identification

PreSSUB 3.0 system
in ambulance [58] 2014

Ambulance transporting
stroke patients to hospital

Reliability,
retainability Audio, video

In-Touch RP-Xpress
telemedicine device, Verizon

Jetpack 4G LTE mobile hotspot
(4620LE) for 4G LTE

[59] 2014

Ambulance transporting
stroke patients to hospital

Bandwidth (median
maximal and

average upload
download speed)

Audio-video, blood
pressure, heart rate, blood

oxygen saturation,
glycemia, temperature,

cardiac rhythm, Glasgow
Coma Scale (GCS),

and electronic patient
identification

PreSSUB 3.0 system
in ambulance [60] 2016

Mobile stroke treatment units
for patients with acute onset

of stroke-like symptoms
Service restoration

time, PLR, and latency
CT, audio-video, and

vital signs
MSTUs with CT system, camera

(RP-Xpress; InTouch Health) [61] 2016

Testing of video encoding
framework on ultrasound
videos of carotid artery in

connected
ambulance scenario

Bitrate, data rate,
time-varying
bandwidth
availability

Ultrasound videos of the
common carotid artery

Multi-objective optimization,
Philips ATL 5000 ultrasound
machine, x265 open source

software, and Ubuntu 14.04.4
LTS/Linux 64-bit platform

[62] 2017

A mobile small cell-based
ambulance in the uplink

direction in a
heterogeneous network

Latency, data rate,
PLR, retainability, and

spectral efficiency
Ultrasound video LTE Sim system level simulator [63] 2018

Project proposal aiming to
capture more than 6000

ambulances across the UK
provided by 200
different vendors

Latency, data rate,
PLR

Ultrasound video,
in-ambulance video vital
signs, EEG, ECG, force,

vibration

Sonography and
vital-signs-measuring

equipment in ambulances
[21] 2019

Connected ambulance
prototype study with QoS
control in network slicing

environment

Uplink/downlink
throughput, latency
(average per-hop)

Video slices (eHealth,
conferencing, surveillance

and entertainment)

MEC-based TeleStroke service
by SliceNet, NetFPGA cards,

SimpleSumeSwitch architecture,
LTE eNodeBs,

OpenFlow-enabled switches,
Software Development Kit

(SDK), Dell Edge Gateway, and
P4 NetFPGA

[64] 2019

Connected Ambulance
prototype study in network

slicing environment

Average packet loss,
latency (round trip
time), throughput

(frames per second)

Audio, video

eHealth infrastructure at Dell,
Ireland, pfSense security,

OpenVPN, Dell Edge Gateway
series 3003, LTE SIMS,

OpenMANO OSM, and
MEC by SliceNET

[65] 2019
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Table 1. Cont.

Use Case KPIs Data Type Tools Study Year

Prediction of ambulances’
future locations to overcome

mobility-based challanges
Position accuracy GPS data Apache Spark, Spark SQL, and

algorithms [66] 2020

Proposition of an architecture
for connected ambulance

Uplink/downlink
rate, number of device

connections, latency,
speed, reliability, and

jitter

Ultrasound image, vital
signs, and video

Vital signs monitor, ultrasound
equipment, and video cameras [67] 2020

Report compiled by industry
experts and academic

researchers based on their
studies

Latency, jitter, survival
time, communication

service availability,
reliability, and data

rate

4K video, audio Reference given to [22] [11] 2020

Simulation of mobile
ambulance using emulated

biosensor data

Latency, average
throughput, and PLR

Body temperature, blood
pressure, and heart rate

Data Distribution Service (DDS)
middleware, and biosensor

emulator
[68–70]

2015, 2020

Ambulance transporting
stroke patients in rural area

to hospital

Retainability,
reliability Audio, video,

iPad, Jabber video app,
University of Virginia Health
System firewall, COR IBR600

LE-VZ; CradlePoint router, 4G
Verizon Wireless sim, and

AP-CW-M-S22-RP2-BL and
AP-CG-S22-BL antennas

[71,72]
2016, 2020

Connected ambulance
evaluation in network slicing

environment using a
test platform

Downlink/uplink
data rate, and
uplink latency

Video, CT image, vital
signals, and medical record

5G customer-premises
equipment (CPE) signal

transceiver, 5G user plane
function (UPF) gateway service

flow forwarding device, and
medical data acquisition device,

MEC cloud computing node

[73] 2021

Stroke patients in mobile
stroke units en route

to hospital

Reliability,
retainability

Audio, video, ECG, and
vital signs

MEYTEC GmbH telemedicine
systems of Vimed car and

Vimed Doc for
videoconferencing and

teleradiology

[74,75]
2019, 2021

The studies in [11,22] also highlighted some general requirements for this use case,
including 10 ms latency, 2 ms jitter, <2 ms survival time, 1 − 10−5 service availability,
1 − 10−7 reliability, and 0.05 Mbps data rate.

The project “improving treatment with rapid evaluation of acute stroke via mobile
telemedicine” (iTREAT) in [71] reported that 93% of connected ambulance cases achieved a
minimum 9 min of continuous, and live video transmission with a mean mobile connectivity
time of 18 min, and 87.5% of tests achieved bidirectional audio video quality with ratings
of 4 out of 5 or higher, excluding one route with poor transmission quality. The transport
routes were 20 min to the University of Virginia Medical Center, and 30 test runs were
performed. Limitations of this study include manual ratings of the service quality, not
explicitly incorporating patient while testing, exclusion of one route with poor coverage
conditions, small size of study, and being limited to one region.

Another e-ambulance study used biosensor emulators in a laboratory to mimic biosen-
sor communication behavior and studied KPIs with the varying number of biosensors and
payload sizes [68–70]. Reported outcomes include an upper bound of 250 ms on latency,
and 0.4 Mbps for average overall throughput, and the success ratio of transmitted samples
varied between 97.7% and 99.9%.

A connected ambulance use case was investigated in [62] in the context of proposing a
video encoding configuration that jointly optimizes the clinical video quality, time-varying
bandwidth availability, and heterogeneous device’s performance capabilities. The proposed
model estimated structural similarity quality with a median accuracy error of less than 1%,
bitrate demands with the deviation error of 10% or less, and encoding frame rate within a
6% margin.
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The study in [67] proposed measurement-based requirements for high-definition ul-
trasound images (uplink rate > 20 Mbps, downlink rate > 5 Mbps, network delay < 80 ms,
jitter < 30 ms), 4K video (uplink rate > 20 Mbps, downlink rate > 20 Mbps, network
delay < 50 ms, jitter < 20 ms). Reliability was set to 99.99%, and mobility was 0–120 km/h.
The measured download rate inside the ambulance, which is a user of a 5G private network,
reached 1361.21 Mbps, and upload rate reached 257.52 Mbps.

Handling specific patient conditions was also addressed in the context of connected
ambulance, e.g., prehospital stroke evaluation and treatment [76]. A Prehospital Stroke
Study at the Universitair Ziekenhuis Brussel investigated the safety, technical feasibility,
and reliability of in-ambulance telemedicine [58]. A total of 43 attempts were made to
perform a prehospital teleconsultation of neurological and non-neurological conditions (e.g.,
strokes, trauma, respiratory, gastro-intestinal, acute pain, intoxication, labor, dysglycemia,
and vascular disease). The authors concluded that 30 teleconsultations were performed,
with success rate of 73.2%. Transient signal loss occurred during 6 teleconsultation sessions
(14.6%). The time before the connection was re-established varied from 38 seconds to
5 minutes and 47 seconds. Permanent signal losses occurred in five teleconsultations
(12.2%). The success rates for the communication of blood pressure, heart rate, blood
oxygen saturation, glycemia, and electronic patient identification were 78.7%, 84.8%, 80.6%,
64.0%, and 84.2%, respectively. Communication of a prehospital report to the in-hospital
team had a 94.7% success rate and prenotification of the in-hospital team 90.2%. Most
problems were caused by unstable bandwidth of the 3G/4G mobile network; limited
high speed broadband access; and software, hardware, or human error. The study’s main
limitations include the small sample size, short study duration, and complex observational
design. A continuation of this study was carried out in [60], which addressed patients
with suspected acute stroke and reported median maximal and average upload speeds
as 196 Kbps and 40 Kbps, respectively. The download median maximal speed is reported
as 407 Kbps, and average speed is reported 12 Kbps, using 4G. An experimental study
evaluated the use of mobile stroke treatment units (MSTUs) to diagnose and treat 100
residents of Cleveland who had an acute onset of stroke-like symptoms [61]. It was
concluded that there were six instances of video disconnection, of which five were because
of an area of poor wireless reception, and one was due to the compatibility issue of the
devices. No video disconnections lasted longer than 60 s. One limitation pointed out by
the authors is the small sample size of this study.

TeleBAT system in [54] used an integrated mobile telecommunications system while
transporting patients to the University of Maryland hospital via an ambulance. Results
showed feasibility of the case, with number of disconnections resulting from coverage
holes, or network switching.

Another case study on mobile stroke units (MSU), a11, consisted of a combination
of two studies: PrioLTE2 (Reliability of Telemedically Guided Pre-hospital Acute Stroke
Care With Prioritized 4G Mobile Network Long-Term Evolution) study and TeDir (TeleDi-
agnostics in Prehospital Emergency Medicine [Tele-Diagnostik im Rettungsdienst]) study.
A remote neurologist rated the audiovisual quality. The authors in [74] reported high inter-
rater reliabilities between the onboard and remote neurologists, and 16 out of 18 treatment
decisions agreed. Limitations of this study included 12.6% of the teleconsultations not
being completed due to the failure of video connection, higher rate of aborted attempts than
the previous studies (1% in [61] and 2% in [77]), small number of patients, and inclusion of
the data from two separate studies with different assessment metrics.

A prehospital utility of rapid stroke evaluation using in-ambulance telemedicine
(PURSUIT) pilot feasibility study was conducted in [59]. Actors performing pre-scripted
stroke scenarios of varying stroke severity were used in live acute stroke assessments. It is
concluded that 80% of the sessions were conducted without major technological limitations.
Reliability of video interpretation was defined by a 90% concordance between the data
derived during the real-time sessions and those from the scripted scenarios. A previous
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pilot study, StrokeNET in Berlin, could not conclude assessments because the audio video
was lost in 18 out of 30 scenarios [57].

As for cardiac patients, a study published in 2010 [56] demonstrated the transmission
of 12-lead electrocardiography (ECG) in an ambulance driving at 50–100 km/h to the cell
phone of the attendant emergency medical technician and then to the hospital and to the
cell phones of off-site cardiologists using a 3G network, after going through the hospital
ECG-processing server. It was concluded that the ECG can be transmitted successfully at
the first attempt in all five trials, except in one remote, mountainous ambulance service area.
The average transmission time of an ECG report ranged from 91 to 165 s. Interruption of
ambulance ECG transmission occurred in up to 27% of transmissions. Rehman et al. in [55]
reported a 1 year study included data from 17 ambulances enroute to Silkeborg Central
Hospital (distance ranging from 20–75 km) transmitting 12-lead ECGs and involving
250 patients with the suspected diagnosis of acute myocardial infarction. Results indicated
that 86% of prehospital diagnoses were successful. Geographically related transmission
problems were the primary reason for failure. Limitations of this study included patient
history taking by direct communication between the physician and patient and the lack of
a randomized setup.

Mobility is one of the unique features of the connected ambulance use cases and
this raises the connectivity issues that can be observed in high-speed moving vehicles
(e.g., poor signal quality, multiple handovers, greater occurrences of connection drops,
and penetration loss from metallic walls of vehicle). To address these challenges, authors
in [63] evaluated data streaming between one ambulance and hospital nodes on the uplink
with a small cell inside the ambulance traveling at a speed of 120 km/h. In the simulation
scenario, a transceiver was installed on the roof of the ambulance to transmit/receive data
to/from the backhaul macrocell network. The small cell installed inside the ambulance
made a wireless connection between the paramedics and the small cell access point (SAP).
The SAP and the transceiver were connected through a wired network. The PLR value
when using the small cell was reduced to 4.8% compared to 14% in case of 10 users trying
to connect to the outside macrocell base station. All 10 users were located in the same
ambulance. Throughput also improved by a small amount with the small cell. Authors
concluded that using small cell inside the ambulance could be particularly useful in high
bandwidth congestion scenarios. Another way to help address mobility challenges can be
to predict the future location of the ambulance based on its previous locations as reported
in [66]. The authors proposed an algorithm, NextSTMove, which is 300% faster than
traditional algorithms and achieved accuracies of 75% to 100%.

Among the 5G features that can enable connected ambulances is network slicing,
where logical network resources can be provisioned to accommodate specific application
demands. A study conducted in network slicing environment using facilities at the 5G
Prototyping Lab at Dell EMC facilities Ireland and SliceNet reported an average round trip
latency of 296.91 ms from client to core, an average round trip time of 50.68 ms from client
to edge, and an average packet loss of 7.2% for the core and 0.1% at the edge [65]. Another
study was carried out in [64] using the same experimental tools with the added features
like QoS control based on the data plane programmability and low-latency cloud-based
mobile edge computing (MEC) platform. Throughput was evaluated for the coordinated
and uncoordinated network slicing strategies and ranged from 0 to 18 Mbps. In QoS-aware
slicing, average delay of less than 0.05 ms was observed. However, in non-QoS aware
slicing, no guarantee of low latency was given for any network transmission.

Another network-slicing system architecture for 5G-enabled ambulance service was
tested in the experimental settings with ambulance speed of 30 km/h. Two types of data
were considered in this study: video data for remote consultation and uploading of 4.5 GB
of computed tomography (CT) image data from an ambulance to a destination hospital
affiliated with the Zhengzhou University [73]. For video data, the average downlink speed
of 1080 p 30 Hz HD video in the 5G network environment was 4.6 Mbps, compared to
3.5 Mbps with unstable network and packet loss in 4G. For CT data, the upload time was
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shortened by 33 percent in 5G as compared to 4G and the average latency for 5G was
12.88 ms, compared to 76.85 ms for 4G which was 6 times that of 5G.

Other relevant studies are ongoing by the groups such as PRE-hospital Stroke Treatment
Organization’s (PRESTO) [75,78] and EU 5G PPP Trials working group by SliceNET [79,80].

The reported KPI values for connected ambulance use case vary across literature re-
ports with the variation in considered ambulance mobility, which has a range of 0–120 km/h
across reports. Accordingly, latency ranges from around 10 ms for haptic feedback to
around 250 ms for vital signs transmission. However, one study also reports latency of
as low as 0.05 ms using a QoS-aware slicing scheme. Jitter ranges from 2 ms to 30 ms,
depending on the data type and survival time remains less than 2 ms. The maximum data
rate requirement reported in literature is around 1360 Mbps and the minimum is 22 Kbps,
depending on the communication quality and bandwidth constraints. The average packet
loss is reported to be in the 0.1% to 7.2% range.

3.3. Healthcare IoT

Based on the American Society of Engineers, medical internet of things refers to
the amalgamation of the medical devices and applications that connect to healthcare
information technology systems by leveraging the networking technologies [81]. Healthcare
IoT systems encompass diverse applications and computational capabilities and target
diverse populations. Notably, many healthcare IoT systems predate 5G and are being
used with 4G and local area wireless technologies such as Wi-Fi and Bluetooth. However,
5G can enable an expanded use of healthcare IoT and facilitate the development of novel
applications [53]. Accordingly, we dedicate this section to highlighting the wide range
of healthcare IoT applications and summarizing their reported communication KPIs. We
broadly categorize healthcare IoT systems, which include, medical, and non-medical
devices, into five types as shown in Figure 4: (1) fitness tracking and health improvement,
(2) chronic disease monitoring, (3) aid for the physically impaired, (4) tracking of life
threatening events, and (5) embedded/implantable medical devices.

Embedded Medical 
Devices

Glucose sensor,  cardiac arrhythmia monitor/recorder, brain liquid
pressure sensor, endoscope capsule, drug delivery capsule, deep

brain stimulator, cortical stimulator, visual neuro-stimulator,
audio neuro stimulator, brain-computer interface

Fall detection, exercise trainer robot, walk
assistive robot, service task robot, robotic

arm

BIRON, Paro, SCITOS G5 mobile-robot ,
NABAZTAG, iCat, PaPeRo

Monitoring  Chronic 
Diseases

Aid for the Physically Impaired

Track Life Threatening
Events

Fitness Tracking and Health
Improvement

Exoskeleton suit, hearing aid, muscle tension
monitor, assistive device for the blind EEG, ECG, EMG, heart rate monitor, glucose sensor,

blood pressure sensor, tear-based wearable

Smart watch, sleep monitor, stress
level monitor, mood detection

Fall detection monitor, gyroscope,
accelerometer, seizure detection

Wearable and
Implantable
Devices/IoT

Service Robotics for
Assisted Living

Service Assistive Robots

Companion Robots

Figure 4. Types ofhealthcare IoT devices and service assistive robots.

Applications targeted for healthy individuals can be used for a wide range of purposes,
including routine monitoring, lifestyle improvement, or disease prevention, where they act
as early warning systems [82]. Examples include smart watches [83,84] that can monitor
heart rate, blood glucose level, blood pressure, and breathing rate. Other fitness and health
improvement wearables include temperature sensors [85,86]; pulse oximeter SpO2 [87–89];
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sleep trackers [90]; fertility and pregnancy trackers [91]; and monitors for respiration [92],
blood pressure [93–96], pH [97,98], stress [99], mood [100], and sleep [101].

Patients with underlying conditions or those who need assisted living in chronic
scenarios can benefit from applications for measuring and reporting electroencephalogram
(EEG) [102,103], ECG [93,104,105], electromyography (EMG) [106,107] heart rate [108–110]
for cardiac patients, glucose [111,112], insulin for diabetic patients [113–115], and contin-
uous respiratory rate for chronic respiratory patients [116]. For assisting the physically
impaired, there are numerous wearable devices to help improve quality of life, such
as hearing aids (ear-to-ear communication) [117,118]; devices for disability assistance,
e.g., muscle tension monitor [119]; muscle tension stimulation [120]; wearable assistive
devices for the blind [121–124]; devices for speech impairment [125,126]; artificial/wearable
limbs [127–129]; and exoskeleton suits [130]. Other examples that can be used by the elderly,
or by Alzheimer’s or epilepsy patients, include wearables for fall detection [131–133] and
seizure detection [134,135], and gyroscopes [136] and accelerometers [137] for localization
monitoring. Examples of implantable devices include pacemakers [138] and implantable
cardioverter defibrillators (ICD) [139], and implanted actuator [140,141].

Despite the diversity of healthcare IoT applications, the underlying KPIs requirements
are shared by most. However, KPI levels vary for different applications. Following are
some of the KPI requirements for this category.

Energy efficiency is vital for battery-operated devices, where the needed battery
lifetime can range from a few days to a few years. Accordingly, battery lifetime can be
>1 week (the life-time numbers are expected/calculated based on normal use conditions for
continuous monitoring) for non-implantable devices, and for monitoring ECG, EEG, EMG,
glucose, etc. [142]. For implantable devices, this figure can grow to several years (e.g., >3 years
for deep brain stimulator) or remain within the range of hours for some applications such as
>24 h for capsule endoscopes [34]. The importance of battery lifetime increases in implanted
devices given the risks associated with the device replacement because of depleted battery.
In an attempt to overcome constraints on the battery form factor to accommodate specific
implant application, solutions for energy harvesting were considered in the literature that can
benefit from the energy present in the environment, human body, and wireless signals [143].
Duty cycle is also relevant in this context, where a lower duty cycle contributes to longer battery
lifetime. It captures the tradeoff between the need to timely communicate data and the cost
of battery power to do so. The work in [34] reports on duty cycle requirements ranging from
<1% (e.g., temperature sensors, fall detection devices, and respiration monitors) to <50% (e.g.,
implantable endoscope capsules).

The efficiency of data transmission during the device ON time is described by the data
rate, with varying requirements according to the application and the used transmission
protocol. Literature reports offer a wide array of data rate requirements. For example,
the researchers in, patel2010applications report that monitoring devices for temperature,
heart rate, breathing, blood pressure, blood sugar, and oxygenation require <10 Kbps
data rate, 72 Kbps for ECG, 86.4 Kbps for EEG, 1 Mbps for deep brain stimulation and
capsule endoscopy, and 1–1.5 Mbps for EMG and location tracking devices [34,144]. Other
references [142,145–147] listed different values, including 128–320 Kbps for deep brain
stimulators, 3 Kbps per ECG channel per link, and 16 bps for the wearable temperature
sensors. Data rate can be influenced by device processing capabilities, the data use model
(i.e., real-time processing by an external processor is associated with demand for a high
data rate, while applications suitable for post-processing can use a low data rate), and the
capabilities of the wireless technology being considered. With the advancement of 5G,
literature reports now point to a higher data rate to be supported by wearables (e.g.,
10 Mbps [148], 0.1–5 Mbps [11].) Requirements for BER also varied by application and
were reported in [149], generally ranging from 10−10 to 10−5. Specific examples included
an ultrasonic wearable device prototype designed to be used as heart rate monitor, and
ECG respiratory rate monitor, and step counter reported a BER requirement of lower than
10−5 using a transmission power of 13 dBm [150]. BER for vital sign monitoring devices
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such as ECG, pulse oximeters, and implantable devices such as hearing aids are reported
as <10−10 [34]. To facilitate the diverse healthcare IoT applications, the overall reliability
and service availability should be 1 − 10−3 [11].

Latency requirements also varied across the applications and by the source. The
authors in [144] report <50 ms latency for monitors of chronic disease and emergency
event detection. Vital signs monitors were assigned a latency of <1 s, while fitness tracking
devices increased latency tolerance to a few seconds. A blanket latency requirement for
wearables was set at 250 ms in [11,34], while survival time was set at 10 ms in [11,22]
and jitter <25 ms in [11]. Other reported latency values include <50 ms for deep brain
stimulators and <100 ms for hearing aids [142]. In [151], LTE-based data transmission
experiments using a real-time video wearable device (i.e., BlueEye) under impaired channel
loss and propagation loss were performed. The purpose of the study was to test whether
mHealth services could be used in the locations with poor coverage conditions. For differ-
ent mobility scenarios, the jitter values obtained were 0.473 ms for the static users, 2.05 ms
for the pedestrian users, and 3.54 ms for the vehicular users. In an attempt to reduce latency
in healthcare IoT applications, significant research was dedicated to data processing and
analytics at the edge side of the system to circumvent delays caused by the processing lag
and cross network data transfer [53,152]. In this context, latency of transmitting various raw
ECG captures from a gateway to a remote cloud was compared with the total latency of pro-
cessing on fog computing service and transmitting preprocessed ECG data in [153]. At the
data rate of 9 Mbps there was 48.5% latency reduction by leveraging fog computing in this
case. This comes at the cost of addressing data security and privacy while in transport
between the device and the cloud. To help manage medical device risks, including security,
a risk management process is specified in the international organization for standardization
(ISO) 14,971 standard for the application of risk management to the medical devices [154].
Moreover, the FDA published a draft guidance on the content of premarket submissions
for the management of cybersecurity in medical devices [155], which provides recommen-
dations to industry regarding cybersecurity aspects of the medical device cybersecurity
management, such as risk assessment. Security KPIs in the context of 5G-enabled healthcare
applications are summarized in [6], including authenticity, confidentiality, integrity, agility,
vulnerability, resilience, mitigation/recovery time, and proactiveness.

Network-level KPIs were addressed in the context of healthcare IoT, including a
connection density of 20,000 devices/km2 in remote pervasive monitoring settings such as
in smart home wearables and 10, 000 devices/km2 for general mHealth wearables [11,22].
Other reported KPIs include 50 Gbps/km2 traffic density and 50 km user activity range [11].

Given that the healthcare IoT includes diverse applications that can be used in diverse
environments, their enabling KPIs can be influenced by practical deployment factors such
as number of nodes, topology, operating frequencies, transmit power restrictions height of
device [156], interference, and co-existence [156,157], and others. Finally, we note that one
of the emerging 5G-enabled healthcare applications is medical augmented reality/virtual
reality (AR/VR). According to a study by Qualcomm [158], the requirements for AR/VR
can go to as high as 10–50 Mbps for 360◦ 4 K video, 50–200 Mbps for 360◦ 8 K video,
and up to 5000 Mbps (or 5 Gbps) for 6 degree-of-freedom (DoF) video. Moreover, a study
by Facebook indicates a real-time playback rate of 4 Gbps (or 32 Gbps) for 6 DoF video,
indicating there might be some use cases where individual sustained per-user rates of
>1 Gbps might be needed [159]. The varying applications and diverse IoT device categories
contributed to the reported KPI covering a broad range of values. For instance, the battery
lifetime ranges from 24 h for capsule endoscopes to several years for other implantable
devices. The data transmission rate for wearable devices varies from as low as <10 Kbps
to 10 Mbps. Similarly, the BER also varies between 10−10 and 10−3 depending on the data
type. The latency ranges from 0.473 ms for wearable devices for vital signs monitoring to a
few seconds for fitness tracking devices, while the network-level KPIs include a connection
density of 10,000–20,000 devices/km2.
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3.4. Robots for Assisted Living

Robots in assisted living environments have been widely studied in literature [11,20–47]. An
assistive robot can be defined as an aiding device that has the ability to process the sensory
information for helping the physically/mentally impaired or elderly persons to perform
tasks of daily living without the need of attendants, in hospital or at home [160]. Assistive
robots can be broadly classified into two categories, i.e., services assistive robots and
companion robots as shown in Figure 4. In this section, our focus is on the communication
KPIs for this application with a summary provided in Table 2 of the reported cellular
network KPIs.

Table 2. Summary of literature for relevant assistive robots KPIs.

KPI Service Robot Assigned Tasks Target Population Study

UE battery

Mobile robot
BENDER with
telepresence
capabilities

Assistance in routine tasks and user
localization Elderly [161]

Latency, PLR Companion robot User finding and medication
reminder Elderly [162]

Latency, data rate Cloud robot Monitoring of vital signs Elderly [163]

Accessibility, position
accuracy

Domestic health
assistant Max

Assistance in routine tasks, user
searching and following Healthy elderly [164]

Throughput
(packets per seconds)

Domestic robot
DoRo

Video streaming through
robot cameras

Elderly and
children [165]

Latency, PLR, position
accuracy (mean

localization error)
Service robot Recognition and localization

of users Healthy elderly [166]

Latency (round trip time),
retainability

(total service time)
Mobile robot DoRo Personalized medical support and

pre-set reminder event

Elderly people
with chronic

diseases
(multimorbidity)

[167]

Latency, reliability Nao, Qbo and
Hanson robots Streaming of teleoperation website Elderly and

children [168]

Position accuracy ASTRO robot Assistance in routine tasks, health
related reminders Healthy elderly [169]

Position accuracy Assistive robotic
arm Tablet placement infront of patient

Patients with
limited or no

mobility
[170]

Position accuracy Mobile humanoid
robot GARMI

Support for household tasks and
emergency assistance

Elderly and
patients [171]

Position accuracy is pertinent to robots used for fall detection and real-time assistance.
The authors in [172] demonstrated that by exploiting the information from the reflected
multipath components, increased accuracy and robustness in localization can be achieved.
Moreover, they proposed 5G mmWave as one of the promising solutions for indoor accurate
localization for assistive living.

According to the EU Horizon 2020 project “Robots in Assisted Living Environments” [173],
assisted living considerations include reliability, connectivity, low battery discharge profile, low
latency, high communication success rate, and minimum localization error, with appropriate
feedback to support people with limited mobility, who require assistance and companionship.
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To provide personalized medical support to the elderly in the presence of several
chronic diseases, the authors in [167] designed a hybrid robot–cloud approach. The robot
autonomously reached the user with the pre-set reminder events acting as a physical
reminder. This case study in DomoCasa Lab (Italy) evaluated the robot (DoRo) based on
KPIs such as latency (i.e., round trip time), retainability (i.e, in terms of total service time),
robot processing time (RPT), average travel time, and mean velocity. Latency over the 20
experimental trials was reported as 56 ms and RPT as 0.012 ms. For the use case where
DoRo had to travel 12.6 m to deliver the services with a mean velocity of 0.31 m/s, the total
service time was 40.08 s.

The ASTROMOBILE system was evaluated in [169]. The mean path length for the
simplest use case (moving in the kitchen) was 9.6 m with a mean velocity of 0.51 m/s, path
jerk of 0.023 × 106, and a mean position accuracy error is 0.98 m.

Under the German research project SERROGA, which lasted from 2012 to mid 2015,
a companion robot for domestic health assistance was developed [164]. Its services include
communication, emergency assistant, physical activity motivator, navigation services, pulse
rate monitoring, and fall detection. The robot was evaluated in different apartments and
labs for a minimum of 29 min and a maximum duration of 255 min, with a velocity range
of 0.25–0.27 m/s for distance covered of 355–2600 m. The robot was able to complete the
user following tasks with a positioning accuracy of 95%.

A cloud-robotic system for the provisioning of assistive services for the promotion of
active and healthy ageing in Italy and Sweden was assessed in [166] on the basis of latency
(i.e, round trip time), PLR (i.e, data loss rate), position accuracy (i.e, mean localization error),
and localization root mean square error (RMSE) KPIs. The reliability and responsiveness of
the cloud Database Management Service (DBMS) was evaluated based on latency as the
time a robot waits for the user position, after a request to the server. The study took place
in two sites: smart home in Italy (Domocasa lab) and residential condominium in Sweden
(Angen). The mean latency in Domocasa lab was 40 ms, while for the Swedish site it was
134.57 ms. The local host latency acquired during the experimentation was 7.46 ms and was
used as a benchmark. The rate of service failures was less than 0.5% in Italy, and 0.002% for
the Angen site. In Domocasa and Angen, the mean absolute localization errors were 0.98 m
and 0.79 m, respectively, while the RMSE were 1.22 m and 0.89 m, respectively. On average,
the absolute localization error considering the two setups was 0.89 m, and the RMSE was
1.1 m. The use of the presence sensors increased the localization accuracy in the selected
positions by an average of 35%.

Assistive living robots domain can suffer from errors caused by the communication
connection issues, latency, and spatiotemporal dynamic environment changes. To improve
the autonomy and efficiency of robots in smart environment, the authors in [174] proposed
a framework for the improvement of the assistive robot performance through a context
acquisition method, an activity recognition process, and a dynamic hierarchical task planner.
Additionally, authors in [175] proposed to use full duplex 5G communication for reliable
and low-latency robot-based assistive living.

In a trend similar to the other investigated use-cases, the reported communication
KPI values for assistive robots varied across reports, with latency varying from 7.46 ms
to 134.57 ms and velocity varying from 0.25 m/s to 0.51 m/s. The localization error has a
narrow range from 0.89 m–0.98 m, while the distance covered by the assistive robots has a
broad range from 12.6 m–2600 m, and service time varies from 0.08 s–255 min.

4. 5G-Healthcare Requirements vs. Status of 5G Capabilities

5G technology was developed to meet the use cases specified by the International
Telecommunication Union (ITU) International Mobile Telecommunications-2020 (IMT-2020).
These are enhanced mobile broadband (eMBB), ultra-reliable, and low-latency commu-
nications (URLLC), and massive machine type communications (mMTC). As detailed in
the previous sections, many healthcare applications can benefit from the communication
capabilities of these 5G use cases. A study based on simulation confirmed that the 3GPP
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5G system complies with the ITU IMT-2020 performance requirements [176]. 5G trials and
commercial deployments are accelerating throughout the world [177–179]. These show
varying levels of performance toward theoretical goals. For example, 2 Gbps throughput
and 3 ms latency were achieved in Austria using spectrum in the 3.7 GHz band [177]. In
another 5G trial in Belgium, 2.94 Gbps throughput and 1.81 ms latency were achieved.
The peak throughputs of 15 Gbps, 5 Gbps, and 4.3 Gbps in 5G trials were also reported by
European network operators Telia, Elisa, and Tele2 Lithuania, respectively [177]. In the U.S.,
AT&T reported on 5G use cases such as video streaming, downloading, and conferencing
and achieved upload and download speeds around 1 Gbps [177]. Sprint tested streaming
5G virtual reality systems and 4K video and achieved peak download speeds of more than
2 Gbps using the 73 GHz mmWave spectrum [178]. Verizon achieved 4.3 Gbps speeds by
aggregating C-band spectrum with mmWave spectrum in a lab trial [179].

Although commercial 5G coverage is still limited [180–182], 5G tests by OpenSignal
in 2020 compared services offered by Verizon (mmWave), T-Mobile (mmWave, 600 MHz),
Sprint (2.5 GHz), and AT&T (850 MHz) [183]. The report concluded that users should
not automatically expect speeds of several hundred Mbps on 5G because in the tests they
observed an average 5G download speeds ranging from 47.5 Mbps to 722.9 Mbps. They
also noted that the U.S. carrier’s 5G services are held back by 5G spectrum availability
and some services are fast; however, they are limited by the coverage. Those with greater
coverage offer slow speeds due to the limited spectrum. They also highlighted the need for
the U.S. carriers to repurpose large portions of the mid-band spectrum for 5G in the U.S. to
facilitate the 5G performance goals.

Comparing the realistic performance reports with the most stringent data rate require-
ment for telesurgery (i.e., 1.6 Gbps for 3D camera flow as listed in Table A3), we note
that the throughput requirements of many healthcare use cases might be possible to meet
with existing 5G capabilities. However, use cases requiring 6 DoF content such as AR/VR
might be challenging those current capabilities. Furthermore, our review highlights that
the latency for the haptic feedback can go as low as 1 ms, and for connected ambulance,
the lower limit is 10 ms. However, realistic latency figures are expected to remain in the
10–12 ms range [184,185], rather than 1–2 ms. Notably, the 1 ms latency is specified in
next-generation radio access network (NG-RAN) domain, which is defined as the link
between the end user and base station (including MEC). This latency increases when the
communication needs to be transmitted to the core network. Therefore, the end-to-end
latency target could be around 5 ms [186]. The additional delay can impact the applications
that utilize the core network (e.g., remote expert for collaboration in surgery, video analytics
for behavioral recognition, and remote patient monitoring). 5G mmWave frequencies—also
known as frequency range 2 (FR2)—can support large subcarrier spacing, resulting in
smaller transmission time interval and thus improving latency. This indicates a favorable
latency requirement support for healthcare use cases when using the mmWave spectrum.
However, this comes at the expense of limited coverage due to the wave propagation
properties in the mmWave spectrum, which can impact applications that need mobility sup-
port such as the connected ambulance. Moreover, the realistic deployments and trials are
limited by the specific used configurations and the small set of reported KPIs like downlink
throughput and latency. Accordingly, enabling a specific healthcare application using 5G
requires a collaboration between the application developer, 5G network service provider,
and the application user to ensure that the service meets the application requirements for
communication and that the application can be used safely.

5. Gaps in Literature and Future Considerations

A considerable part of the existing literature addresses the communication require-
ments for the healthcare applications qualitatively, for example, using descriptors such
as “big”, “small”, and “extremely low”. Where quantitative requirements are mentioned,
the focus is on high-level KPIs, which leaves a gap in describing how a given application
can be supported in certain scenarios. For example, when addressing throughput, uplink
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and downlink throughput are commonly discussed; however, cell edge throughput is not
considered. Similarly, mobility is commonly mentioned in terms of speed in the case of
connected ambulance, but other mobility-related KPIs, such as handover success/failure
rates or handover execution time, are not specified.

Although some reports describe individual KPIs in detail, the trade-offs between
multiple KPIs and their interactions with configuration and optimization parameters
(COPs) in a healthcare applications are often omitted. For example, one trade-off between
throughput and latency for next-generation video content is described in [158], which
states that achieving 5–20 ms latency requires 400–600 Mbps throughput, while achieving
1–5 ms latency requires 100–200 Mbps throughput. Another example of trade-offs is
between coverage, capacity, and load balancing [187], or the trade-off between coverage,
height of BS, and antenna parameters [188]. Such trade-offs are rarely considered in the
literature on 5G-enabled healthcare use cases, which can complicate applications with
conflicting requirements such as achieving high throughput with high mobility or low
battery consumption. One way to study these trade-offs might be to combine several KPIs
into a new one. For example, Samsung developed representative KPIs to describe the
performance of multi-objective optimization involving more than two KPIs, such as sum of
log of data rate, considering both throughput and fairness. It can be used as a joint KPI of
wearable devices applications to represent both energy efficiency and throughput, energy
efficiency, and delay, or energy efficiency and reliability [189].

Another gap in the literature is the limited 5G network scenarios that are assessed.
Limitations include the small number of network trials, small number of infrastructure
configurations, small coverage area, and the lack of spatiotemporal variability for trials being
conducted in the laboratory settings. A critical analysis of 5G network failure modes that can
impact 5G-enabled healthcare use cases is an open question not addressed in the literature.
For example, only the success of the connected ambulance use case is discussed in the
literature. However, this use case might be negatively impacted in situations with extremely
high mobility, high user density, a disaster scenario where a large number of ambulances rush
to the same point, a cell outage, or the presence of multiple critical traffic flows in the network.

Moreover, network KPIs are commonly vendor-specific, where each network equip-
ment vendor specifies the performance metrics using its own set of counters and naming
conventions. This may give rise to the challenge of managing non-standardized KPIs.
The large number of technical counters in the heterogeneous 5G deployments, the use of
vendor-specific monitoring tools by the network operators, and the lack of unified data for-
mat for collecting and reporting the performance data also pose a challenge for managing
the service level agreements between the 5G network operators and the end users of the
5G-enabled healthcare systems [6]. For further reflection on avenues for addressing the
highlighted considerations in practice and research, the reader is referred to [6,190].

Finally, we note that real-time systems and time-sensitive networks (TSNs) can benefit
several of the discussed healthcare applications such as remote robotic-assisted surgery
and in-ambulance treatment. This can be supported by 5G’s technical features such as
the near-instantaneous data transmission. For instance, the telerobotic spinal surgeries
conducted using 5G-enabled robots have been enabled by a minimal lag between the
robot and the remote physician [191]. Similarly, authors in [192] presented a survey on
application requiring near real-time response, including healthcare applications such as AR,
VR, tele-diagnosis, tele-surgery, and telerehabilitation. Accordingly, future considerations
for 5G-enabled healthcare include the investigation and analysis of real-time systems
and TSNs and their role in supporting healthcare applications. 5G can also contribute to
enabling connected healthcare applications in small-scale healthcare facilities like those in
rural areas [193,194].

6. Conclusions

5G communication features promise to enable novel healthcare applications and
expand network access in the existing connected medical devices. Understanding the
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communication KPI requirements for 5G-enabled healthcare use cases can help healthcare
application developers, 5G network providers, and regulatory authorities in the healthcare
sector to promote safe and effective healthcare. In this paper, we have surveyed quantitative
and qualitative KPI requirements for different use cases, including remote robotic-assisted
surgery, mobile-connected ambulances, wearable and implantable devices in the healthcare
IoT, and service robotics for assisted living. A comparison of 5G-healthcare requirements
with the status of 5G capabilities reveals that some healthcare applications can be sup-
ported by the existing 5G services while others might be challenging, especially those with
stringent latency requirement. This calls for a collaboration between the healthcare applica-
tion developers and the network service providers to explore, document, and manage the
possible connectivity support for a given application throughout its lifecycle.

We have also identified gaps in the existing literature and highlight considerations in
this space, including the lack of focus on quantitative requirements, omitting relevant KPIs,
overlooking the trade-offs between multiple KPIs and COPs, the lack of unified KPI specifica-
tions across different network operators and equipment vendors, and (lastly) the limitations
5G scenarios conducted in the existing trials. The gaps in this space and considerations
highlighted in this paper can help direct future 5G-enabled medical device studies and
facilitate the safe, effective, and efficient implementation of 5G technology in healthcare.
Medical devices must integrate 5G technology safely and effectively to facilitate patient
access to 5G-enabled medical device applications. As a part of the overall medical device
risk management process, documenting and meeting the communication requirements for
diverse 5G-healthcare use cases comes under service level agreements. Therefore, knowl-
edge of requirements for 5G-enabled medical use cases highlighted in this paper can also
help network service providers, users, and regulatory authorities in developing, managing,
monitoring, and evaluating service-level agreements in 5G-enabled medical systems.
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Appendix A. Telesurgery KPIs

Table A1. Latency requirements for telesurgery.

Data Type Reported Latency Source Distance

<150 ms [20,21] Experiment [32] 14,000 km
<200 ms [11,22] Other [22] ≈1000 m

2D camera flow <700 ms [23] Experiment [23] 9000 miles
<600 ms [24] Experiment [24] 14,000 km
<300 ms [25] Experiment [25] 14,000 km

<150 ms [20,21] Experiment [32] 14,000 km
<300 ms [26] Experiment [26] -

3D camera flow

<500 ms [27] Experiment [27] -
<400 ms [28,29] Simulation [38] -

280 ms [195] Experiment [195] 15 km
20–50 ms [30] Other [30] 200 km
2–60 ms [46] Experiment [196] -

146–202 ms [197] Experiment [197] 4 km, 6.1 km

28 ms [191] Experiment [191] ≈740 km, 1260 km,
144 km, 190 km, 3160 km

258–278 ms [198] Experiment [198] 3000 km
0.25–5 ms [48] Simulation [48] -

Audio flow <150 ms [20,21,28,31] Experiment [32] 14,000 km
100 ms [30] Other [30] 200 km

Temperature <250 ms [11,20,21,33,34] Other [33] -

Blood pressure <250 ms [11,20,21,33,34] Other [33] -

Heart rate <250 ms [11,20,21,33,34] Other [33] -

Respiration rate <250 ms [11,20,21,33,34] Other [33] -

ECG <250 ms [11,20,21,33,34] Other [33] -

EEG <250 ms [11,20,21,33,34] Other [33] -

EMG <250 ms [11,20,21,33,34] Other [33] -

3–10 ms [20,21] Experiment [37] -
1–10 ms [30] Other [30] 200 km

Force 3–60 ms [28] Experiment [39] ≈3200 miles
<50 ms [29,35] Experiment [40] & Simulation [35] few hundred meters

40 ms [29] Experiment & Simulation [29] -
<100 ms [36] Experiment [36] -

<5.5 ms [20,21,28,31] Experiment [37] -
Vibration <50 ms [29] Experiment [40] few hundred meters

1–10 ms [30] Other [30] 200 km
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Table A2. Jitter requirements for telesurgery.

Data Type Reported Jitter Source

2D camera flow 3–30 ms [11,20] Simulation [41]
Simulation [38]

3D camera flow
3–30 ms [11,20] Simulation [41]

Simulation [38]
3–55 ms [48] Simulation [48]

<30 ms [28–30,34,38,41] Other [30]

Audio flow
<30 ms [11,20,28,29,34] Simulation [41]

Simulation [38]
50 ms [30] Other [30]

3–55 ms [48] Simulation [48]

<2 ms [11,20,29,34] Experiment [40]
Simulation [41]

Force 10 ms [30] Other [30]
1–10 ms [28] Experiment [42]

<2 ms [11,20,29,34] Experiment [40]
Simulation [41]

Vibration 10 ms [30] Other [30]
1–10 ms [28] Experiment [42]

Table A3. Data rate requirements for telesurgery.

Data Type Reported Data Rate Source

2D camera flow <10 Mbps [20,21] Simulation [41] Experiment [40]

3D camera flow 137 Mbps–1.6 Gbps [20,21] Simulation [28]
≈8 Mbps [196] Experiment [196]

95–106 Mbps [197] Experiment [197]
2.5–5 Mbps [28,29] Simulation [41] Experiment [40]

1 Gbps [30] Other [30]
>1 Gbps [11] Simulation [28]

Audio flow 22–200 Kbps [20,21,28,29] Experiment [31]

Temperature <10 Kbps [20,21,34] Other [33]

Blood pressure <10 Kbps [20,21,34] Other [33]

Heart rate <10 Kbps [20,21,34] Other [33]

Respiration rate <10 Kbps [20,21,34] Other [33]

ECG 72 Kbps [20,21,34] Other [33]

EEG 84.6 Kbps [20,21,34] Other [33]

EMG 1.536 Mbps [20,21,34] Other [33]

128–400 Kbps [20,21] Experiment [28,31]
Force 500 Kbps–1 Mbps [29] Simulation [41]

128 Kbps [28] Experiment [43]

128–400 Kbps [20] Experiment [28,31]
Vibration 500 Kbps–1 Mbps [29] Simulation [41]

128 Kbps [28] Experiment [43]
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Table A4. Packet loss or bit error rate for telesurgery.

Data Type Reported Loss Source

2D camera flow <10−3 [20,21] Experiment [40,41]

3D camera flow

<10−3 [20,21] Experiments [40,41]

<1% [28,29] Experiments [40,41] &
Simulation [38]

0.01–0.06% [48] Simulations [48]

Audio flow

<10−2 [20,21] Experiments [40,41]
0.01–0.06% [48] Simulations [48]
<1% [28,29] Experiments [40,41], Simulation [38]

10−5 [30] Other [30]

Temperature
<10−3 [20,21] Other [33]

<10−10 [34] (BER) Other [33]

Blood pressure
<10−3 [20,21] Other [33]

<10−10 [34] (BER) Other [33]

Heart rate
<10−3 [20,21] Other [33]

<10−10 [34] (BER) Other [33]

Respiration rate
<10−3 [20,21] Other [33]

<10−10 [34] (BER) Other [33]

ECG
<10−3 [20,21] Other [33]

<10−10 [34] (BER) Other [33]

EEG
<10−3 [20,21] Other [33]

<10−10 [34] (BER) Other [33]

EMG
<10−3 [20,21] Other [33]

<10−10 [34] (BER) Other [33]

<10% [29] Experiments [40,41]

Force
<10−4 [20] [21] Experiments [40,41]
0.01-10% [28] Experiments [40,41]
<0.1 [35] Experiments [35]

<10% [29] Experiments [40,41,43]
Vibration <10−4 [20] [21] Experiments [40,41,43]

0.01–10% [28] Experiments [40,41,43]

Table A5. Other requirements for telesurgery.

KPI Reported Requirement Source

Reliability 1 − 10−7 [11,44]

Availability 1 − 10−5 [11]

Payload size Big [11]

Traffic density Low [Gbps/km2] [11]

Connection density Low [/km2] [11]

Service area dimension 10 m × 10 m × 5 m [11]

Survival time 0 ms [11]

Range Up to 200 km [30]
300 km [11]

Duty cycle for vital signal monitoring <1–10% [34]
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