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Abstract

The relationship between impulsivity and cognitive control is still unknown. We hypothesized

that trait impulsivity would differentially correlate with specific cognitive control processes.

Trait impulsivity was measured by the Barratt Impulsiveness Scale, which assesses motor,

attention, and non-planning impulsiveness components. Cognitive control was measured by

a hybrid-designed Stroop task, which distinguishes proactive and reactive control. Thirty-

three participants performed the Stroop task while they were scanned by functional mag-

netic resonance imaging. Proactive and reactive control involved increased activity in the

fronto-parietal network, and brain activity was associated with impulsivity scores. Specifi-

cally, higher motor impulsiveness was associated with a larger proactive control effect in

the inferior parietal lobule and a smaller reactive control effect in the right dorsolateral pre-

frontal cortex (DLPFC) and anterior cingulate contex. Higher attention impulsivity was asso-

ciated with a smaller proactive control effect in the right DLPFC. Such a correlation pattern

suggests that impulsivity trait components are attributable to different cognitive control

subsystems.

Introduction

Impulsivity is a component of personality concept that involves a tendency to display behavior

characterized by little or no forethought, reflection, or consideration of the consequences. There-

fore, difficulty in implementing cognitive control has been considered the key characteristic of

people with high impulsivity [1]. Both substance and behavioral addictions, such as alcohol

dependence [2] and gaming addiction [3], as well as schizophrenia [4], are characterized by

reduced inhibitory control and increased self-reported impulsivity. However, the relationship

between impulsivity and cognitive control is still largely unknown.

Previous studies have explored the relationship between impulsivity traits and cognitive

control [5, 6]. One of the most widely used scales to measure impulsivity traits is the Barratt

Impulsiveness Scale (BIS) [7]. The BIS includes three components: motor impulsiveness, atten-

tion impulsiveness, and non-planning impulsiveness. Some studies have reported correlations

between the BIS total score and cognitive control measurements [8–10] while others have not
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[11, 12]. This discrepancy may have arisen due to the nature of the three individual impulsivity

dimensions, which are modulatory and can correlate with each other. Indeed, differences have

been found in studies testing correlations between cognitive control measures and individual

dimensions of BIS [13].

For example, the correlation coefficient between motor impulsiveness and cognitive control

has been found to be higher than that between the other two BIS dimensions and cognitive

control, using cognitive control paradigms that included Go/No-Go, antisaccade, Stop Signal

and Trail Making B [8, 14, 15]. In addition, Kam and colleagues [13] performed correlation

analyses between BIS scores and event-related potentials (ERP) measured in the AX-CPT para-

digm. Motor impulsiveness was linked with smaller P300 in general and larger N200 when

conflict detection was involved. Non-planning impulsiveness was linked with smaller N200

when the inhibition of a primed response was required. Attention impulsivity was associated

with inefficient conflict detection. These results thus suggest that the three BIS factors differen-

tially correlate with cognitive control processes.

Just as impulsivity is comprised of different dimensions, cognitive control also includes a

set of complex mental processes, and these subcognitive control systems may contribute to

impulsivity traits differently. Braver and his colleagues [16] suggested a dual mechanism of

cognitive control (DMC) framework, which postulates that cognitive control can be under-

stood as operating via two primary modes: proactive and reactive. Proactive control provides

relatively tonic maintenance of goal information [17–19], whereas reactive control acts as a

flexible form of “late correction” in response to performance monitoring [16, 20]. Under the

DMC framework, proactive and reactive control have been found to have a different neural

basis, with sustained activation in the prefrontal cortex (PFC) contributing to proactive con-

trol, and the PFC, anterior cingulate cortex (ACC), posterior cortical, and medial temporal

lobe regions contributing to reactive control. Such distinctions may map onto the dysfunction

of a highly impulsive person. For example, previous studies suggested increased failure of pro-

active control and impaired reactive control in schizophrenia patients compared to healthy

subjects [21, 22]. A systematic review of the literature suggests that patients with borderline

personality disorder exhibit prefrontal dysfunctions across impulse components in orbitofron-

tal and dorsolateral PFC regions, whereas patients with attention-deficit/hyperactivity syn-

drome display disturbed activity mainly in the ventral lateral PFC and ACC [23].

Importantly, samples of people with schizophrenia and other mental disorders with or with-

out a history of medication may produce results that are not representative of the general popu-

lation. Thus, investigating the relationship between the subsystems of cognitive control and the

impulsive trait in healthy adults will shed light on our understanding of impulsivity. However,

few studies have examined trait impulsivity in relation to both reactive and proactive control.

The aim of the present study was to investigate the relationship between the impulsive trait

and cognitive control, which were measured by the BIS and the Stroop task, respectively. The

present study employed a blocked/event-related hybrid design of the Stroop task that has been

successfully applied previously to disentangle proactive and reactive control processes. We pre-

dicted that BIS and cognitive control associations would be found in the fronto-parietal cogni-

tive control network. Moreover, we hypothesized that this relationship might be varied across

different dimensions of BIS and cognitive control subsystems.

Materials and methods

Participants

In total, 35 undergraduates participated in the study. However, two subjects were considered

outliers on overall response time (above or below 2.5 standard deviations of the group mean).

Trait impulsivity and cognitive control
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After eliminating these two participants, 33 undergraduates (15 females and 18 males; average

age: 20 ± 1.2 years) yielded useable behavioral and imaging data. All of the participants were

healthy, with no self-reported history of neurological or psychiatric disorders, and no use of

psychiatric or cardiac medications. Participants had no sensorimotor deficits and had normal

or corrected-to-normal visual acuity. Written informed consent was obtained from each sub-

ject and this study was approved by the Ethics Committee of Shenzhen People’s Hospital,

Shenzhen, China.

Self-reporting questionnaires

We measured trait impulsivity with the Chinese version of the BIS [24]. By using exploratory

and confirmatory factor analysis, previous studies have reported high reliability and validity of

the BIS in college and community samples from the Chinese adult population [24–26]. This is

a 30-item questionnaire that taps three subtraits: attention, motor, and non-planning impul-

siveness. All items are answered to evaluate the occurrence of behavior using a five-point scale

ranging from 1 (never) to 5 (always).

Functional magnetic resonance imaging (fMRI) paradigm

A hybrid-design that incorporates block and trial events can be used to isolate proactive and

reactive control [16]. Andrews-Hanna and colleagues [27] have successfully used a hybrid-

designed Stroop task to investigate developmental trajectories of reactive and proactive control

mechanisms across adolescence and early adulthood. Following the manipulation in Andrews-

Hanna et al. [27], three types of trials (congruent, c; incongruent, i; neutral, n) were mixed in

three types of blocks: Incongruent Blocks (I, including 50% incongruent trials and 50% neutral

trials), Congruent Blocks (C, including 50% congruent trials and 50% neutral trials) and Neu-

tral Blocks (N, 100% neutral trials). Participants were instructed to identify the font color of

each word using one of four buttons on hand-held button boxes. On each trial, a color word

(red, green, blue, or yellow) appeared for 1500 ms, followed by 500 ms of fixation between

trials.

Half of the trials in each block consisted of stimuli that were specific to that block (i.e., i, c,

n) and the remaining half of the trials consisted of neutral stimuli that appeared across all

blocks. The trial types within blocks were pseudo-randomly ordered such that no more than

two trials of the same type could appear in a row. Hence, within the congruent blocks, six con-

gruent trials (Cc) were mixed with six block-general neutral trials (Cn) to allow for compari-

sons between trial types within blocks. Similarly, within incongruent blocks, six incongruent

trials (Ii) were mixed with six block-general neutral trials (In). Neutral blocks consisted of six

neutral trials that were specific to the neutral block and six block-general neutral trials (Nn).

In total, participants completed 324 task trials, with 54 trials corresponding to each trial type.

The experiment was divided into three runs. Each run comprised four, 30 s fixation (F) blocks

interleaved with nine, 45 s task blocks. The order of the three runs was: F-C-I-N-F-I-N-C-F-

N-C-I-F, F-I-N-C-F-N-C-I-F-C-I-N-F, and F-N-C-I-F-C-I-N-F-I-N-C-F.

MRI data acquisition

MRI data were acquired using a Siemens Trio 3T MRI system with an eight-channel head coil at

the Shenzhen Institutes of Advanced Technology, Chinese Academy of Science. Functional MRI

data were collected with EPI sequence, slice number = 33, matrix size = 64�64, FOV = 220�220mm,

TR/TE = 2000/30ms, FA = 90 º, slice thickness = 3.5 mm, and gap = 0 mm. T1-weighted high-reso-

lution structural images were acquired using a magnetization-prepared rapid acquisition gradient

echo sequence (176 slices, TR = 1900 ms, TE = 2.53 ms, FA = 9 º, voxel size = 1 × 1 × 1 mm3).

Trait impulsivity and cognitive control

PLOS ONE | https://doi.org/10.1371/journal.pone.0176102 April 19, 2017 3 / 14

https://doi.org/10.1371/journal.pone.0176102


Data analysis

Behavioral data analyses. Group comparisons were conducted to reveal the performance

difference of the Stroop task between groups. Binary and partial correlations were conducted

to test the relationship between BIS and the performance in the Stroop task. Unless otherwise

noted, the significance of statistical tests (e.g., paired t-tests, independent samples t-tests, corre-

lation analyses) was set using a two-tail comparison.

fMRI analyses at the subject level. Statistical Parametric Mapping (SPM 8; Welcome

Department of Cognitive Neurology, UCL, London, UK) was used in the preprocessing and

statistical analyses of the fMRI data. Differences in timing between slices of the raw data were

adjusted using sync interpolation. The timing-corrected images were then realigned to the first

volume in order to correct for head motion. The functional images were then co-registered to

native high-resolution T1-weighted images and transformed into Montreal Neurological Insti-

tute 2 × 2 × 2 mm standard space with an 8 mm full-width at half-maximum Gaussian kernel.

Finally, high-pass filtering (with a 128 s cutoff) was applied to the images to remove low-fre-

quency drifts.

As described previously, the hybrid block/event-related task paradigm was designed such

that block effects and event-related effects would be modeled within separate general linear

models (GLMs). Similar to previous study [27], one GLM was used to define block effects. The

GLM included a regressor for each block type: congruent (C), incongruent (I), neutral (N) and

fixation (F) blocks. For each regressor, a double-gamma response function was convolved with

the onset of each trial. The proactive control was defined as I-N (i.e. the Stroop interference

effect).

For reactive control, we improved the methods used in Andrews-Hanna et al’s study [27].

Specifically, the trial effect was nested in the block effect; we thus added block regressors in

order to isolate the trial type effect. That is, in addition to the four trial type regressors, a block

regressor that combined four block types was also included in the GLM. For each regressor, a

double-gamma response function was convolved with the onset of each trial. The reactive con-

trol was defined as Ii—In (i.e., the trial-related Stroop interference effect).

fMRI analyses at group level. For the proactive control effect, group analyses compared

activation differences in I and N blocks. For the reactive control effect, group analyses com-

pared activation differences in Ii and In conditions.

Monte Carlo simulations using the revised AlphaSim program were used to determine the

appropriate combination of the significance level and cluster threshold required to reach a cor-

rected significance level of p< 0.05, taking into account both native space voxel dimensions

and the effective smoothness estimated directly from our preprocessed data (https://afni.nimh.

nih.gov/pub/dist/doc/program_help/3dClustSim.html). The Monte Carlo simulations used

1,000 iterations and indicated a significance level of p< 0.005 and cluster threshold of 80 vox-

els in order to reach a corrected significance level of p< 0.05. This threshold was applied to

each of the contrasts described in the study.

Region of interest (ROI) analyses and correlation analyses. To test the relationship

between impulsivity and cognitive control, ROI analyses were conducted. Separate spherical

ROIs with an 8 mm radius were created based on the peak coordinates of the brain regions

revealed by the above mentioned proactive and reactive control contrast. Such an ROI con-

struction approach is widely used [28] to ensure each ROI has the same number of voxels. The

beta estimates of all the conditions involved in the proactive and reactive control contrast were

then extracted for each participant within each ROI using the MarsBar toolbox.

To examine whether the subsystems of cognitive control explained impulsivity, partial cor-

relation analyses between the activation magnitude of proactive and reactive control and the

Trait impulsivity and cognitive control
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score of each impulsivity dimension were conducted with and without controlling for the

other impulsivity dimensions, age and sex. The residuals of variables in the partial correlation

were used in the scatter plots. A boxplot was used to detect outliers before correlation analyses.

Results

Behavioral data

The mean BIS composite score was 66.31 ± 9.26 (mean ± SD). The mean subscale scores were

23.39 ± 4.24 for attention impulsiveness, 21.24 ± 4.0 for motor impulsiveness, and 21.68 ± 4.46

for non-planning impulsiveness.

Consistent with prior studies, response time and accuracy in the Stroop color-word task

significantly differed across conditions, when examined in both a blocked and in a trial-by-

trial fashion (Table 1). As would be expected, there were robust Stroop interference effects.

Participants were significantly slower and less accurate when responding to incongruent

blocks (I) than to neutral blocks (N) (Reaction Time [RT] Effects, t (32) = 5.57, p< 0.001;

Accuracy Effects, t (32) = -2.47, p< 0.05). Additionally, participants were significantly slower

and less accurate when responding to incongruent trials (Ii) than to neutral trials within incon-

gruent blocks (In) (RT Effects, t (32) = 8.97, p< 0.001; Accuracy Effects, t (32) = -4.19,

p< 0.001).

Bivariate correlations between behavioral performances and BIS scores were calculated. For

proactive control, the motor score and attention score were not significantly correlated with

the RT effect or accuracy effect (ps> 0.15). However, the larger RT interference effect was

associated with a higher non-planning score (r = 0.36, p< 0.05) and remained significant

when the other BIS subscale scores, age and sex were controlled (r = 0.57, p< 0.01). For reac-

tive control, the motor score and attention score also did not significantly correlate with the

RT effect or accuracy effect (ps> 0.15). However, the larger RT interference effect was associ-

ated with a higher non-planning score (r = 0.35, p< 0.05) and remained significant when the

other BIS subscale scores, age and sex were controlled (r = 0.57, p< 0.01).

Imaging results

Proactive control effect. Higher brain signal in the I blocks than the N blocks was found

in the dorsolateral prefrontal cortex (DLPFC), ACC, inferior parietal lobule (IPL), and inferior

occipital gyrus on both sides of the brain (Table 2 and Fig 1).

To uncover the brain-neuropsychological relationship, brain signals (I block–N block) in

the DLPFC, IPL, and ACC were entered in correlation analyses. The results of correlation

revealed that, the BIS and non-planning scores were not significantly correlated with brain sig-

nals in any region. However, motor impulsiveness was positively correlated with brain signal

in left IPL (r = 0.47, p< 0.01), and the significance remained after the other two BIS subscale

scores, age and sex were controlled (r = 0.57, p< 0.01) (Fig 2). Attention impulsiveness also

was significantly correlated with brain signals in right DLPFC with (r = -0.38, p< 0.05) and

Table 1. Mean (standard deviation) of response time and accuracy for the proactive and reactive con-

trol related conditions.

Response Time (ms) Accuracy (%)

Incongruent Blocks (I) 754 (118) 88 (9)

Neutral Blocks (N) 712 (108) 90 (10)

Incongruent trials in I blocks (Ii) 793 (135) 86 (10)

Neutral trials in I blocks (In) 714 (107) 90 (9)

https://doi.org/10.1371/journal.pone.0176102.t001
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without the two other BIS subscale scores, age and sex being controlled for (r = -0.33, p = 0.07)

(Fig 3).

Reactive control effect. The contrast between incongruent trials (Ii) and neutral trials

(In) within the incongruent blocks revealed significant activation in bilateral DLPFC (Table 3

and Fig 4).

In the brain-neuropsychological correlation analysis, brain signals in the DLPFC and ACC

were extracted. The ACC was included as an ROI because the region has been shown to play

an important role in reactive control although no significant activation was found in the pres-

ent contrast. Correlations revealed that motor impulsiveness was negatively correlated with

brain signal in the right DLPFC (r = -0.42, p< 0.05), and the significance remained when the

Table 2. Significant brain regions for proactive control (Incongruent–Neutral blocks).

Voxels x y z Peak T

DLPFC (L) 502 -42 8 28 7.1

DLPFC (R) 467 48 35 28 7.0

IPL (L) 198 -42 –49 46 6.6

IPL (R) 195 51 –49 49 6.3

ACC (B) 120 6 32 43 4.8

Note: R, right; L, left; B, bilateral; DLPFC = Dorsolateral prefrontal cortex; IPL = Inferior Parietal Lobule;

ACC = Anterior Cingulate Cortex.

https://doi.org/10.1371/journal.pone.0176102.t002

Fig 1. Significant brain regions for proactive control (Incongruent-Neutral blocks) in all participants.

https://doi.org/10.1371/journal.pone.0176102.g001
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other two BIS subscale scores, age and sex were controlled (r = -0.44, p< 0.05) (Fig 5A). Inter-

estingly, the brain signal in the ACC was also significantly correlated with motor impulsiveness

(r = -0.66, p< 0.001), and the significance remained when the other two BIS subscale scores,

age and sex were controlled (r = -0.67, p< 0.001) (Fig 5B).

Discussion

To investigate the correlation between cognitive control and impulsivity, the present study

adopted a mixed design in the Stroop paradigm to isolate proactive and reactive control and

examined their correlations with BIS scores. Although not correlated with composite BIS

scores, the proactive and reactive control related interference effects significantly correlated

with BIS subscale scores. Specifically, during proactive control, attention impulsiveness was

correlated with brain activity in the right DLPFC, and motor impulsiveness was correlated

with brain activity in the left IPL. During reactive control, motor impulsiveness was correlated

with brain activity in both the right DLPFC and the ACC. The results provide insights for

understanding the relationships between cognitive control and impulsivity traits.

Fig 2. Partial correlation between proactive control related activity and self-report measure of motor impulsiveness, after

controlling for age, sex, attentional and non-planning scores. Residuals were used in the scatter plot. Beta estimation (percent

signal change) (Incongruent—Neutral blocks) was extracted from the left IPL.

https://doi.org/10.1371/journal.pone.0176102.g002
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Inconsistent results were found when investigating the relationship between cognitive con-

trol and BIS in previous studies [8, 9, 11, 12]. While some studies found correlations between

cognitive control and BIS scores, other studies found no such correlation. One reason for this

discrepancy may be the heterogeneity of the BIS subscales and the complexity of the cognitive

control processes. Indeed, when the subscale scores were used in our analyses, the results

revealed significant correlations between impulsivity and cognitive control, in line with results

in a recent ERP study [13]. Importantly, the present study extended previous results in two

Fig 3. Partial correlation between proactive control related activity and self-report measure of attention impulsiveness,

after controlling for age, sex, non-planning and motor scores. Residuals were used in the scatter plot. Beta estimation

(percent signal change) (Incongruent—Neutral blocks) was extracted from the right DLPFC.

https://doi.org/10.1371/journal.pone.0176102.g003

Table 3. Significant brain regions for reactive control (Ii-In).

Voxels x y z Peak T

DLPFC (R) 105 45 14 28 5.09

DLPFC (L) 76 -54 –4 43 4.99

Note: L, left; R, right; DLPFC = Dorsolateral prefrontal cortex. Ii, incongruent trials in Incongruent blocks; In,

neutral trials in Incongruent blocks.

https://doi.org/10.1371/journal.pone.0176102.t003
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ways. First, we investigated not only the subscales of the BIS but also subcognitive control pro-

cesses (i.e., proactive and reactive control). Secondly, the present study investigated the corre-

lations between BIS subscale scores and brain activation during proactive and reactive control.

Significant brain activation in the fronto-parietal network, including regions of DLPFC,

IPL, and ACC on both sides of the brain, was found during proactive control. These results

were in line with previously published findings on the brain regions engaged in proactive con-

trol [16, 20, 29]. Moreover, a significant negative correlation between activity in the right

Fig 4. Significant brain regions for trial-related fMRI Stroop activity (Ii-In) in all participants. Note: Ii, incongruent trials in Incongruent blocks; In,

neutral trials in Incongruent blocks.

https://doi.org/10.1371/journal.pone.0176102.g004
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DLPFC and attention impulsiveness was found. The DLPFC is thought to proactively bias

attention towards task-relevant goals and representations [30]. Previous studies found that

highly impulsive individuals might manifest a decreased sustained brain activity in lateral pre-

frontal regions including the DLPFC [27, 31–33], results that are consisted with supported the

current negative correlation between DLPFC activation and attention impulsiveness found in

the current study.

The results revealed a significant proactive control effect in the IPL on both sides of the

brain, with increased brain activity associated and higher motor impulsiveness. This result is

in agreement with previous findings showing that gray matter volume in the IPL is negatively

correlated with extraversion [34]. Activation in the IPL was also found in previous Stroop

studies [4, 35] and was associated with working memory, which is important for proactive

control [36–38]. In the present study, people with higher motor impulsiveness may have had

difficulty in completing proactive control processes, which enhanced activation in the IPL.

The left IPL may be involved in representing and comparing conflict information to serve the

proactive goal. Attention impulsiveness was associated with the right DLPFC, a region that has

been previously found to be activated during the Stroop task, the stop-signal task, and the Go/

NoGo task [39]. Activation of the right DLPFC plays important roles in sustained attention

[40], especially attention selection in an inteference information context [41] and during

response inhibition [42].

For reactive control, the results revealed significant brain activation in the DLPFC on both

sides of the brain, in line with previous results [16, 20, 29]. Reactive control, which reflects flex-

ibility in transient event change or monitoring, is associated with brain activity in both the

DLPFC and ACC [16, 43]. Interestingly, the present study revealed significant reactive control

effects in the DLPFC but not the ACC. However, as ACC activation was found during proac-

tive control, the lack of activation in the ACC during reactive control does not appear to be

due to a lack of statistical power or inappropriate task design. Moreover, a significant correla-

tion between activation in the ACC during reactive control and BIS score was found. Specifi-

cally, motor impulsiveness was significantly correlated with the magnitude of brain activity in

the ACC (r = -0.44), which is similar to the correlation between motor impulsiveness and

Fig 5. Partial correlation between reactive control activity and self-report measure of motor impulsiveness, after controlling for age, sex,

attentional and non-planning scores. Residuals were used in the scatter plot. Beta estimation (percent signal change) in the contrast of Ii vs. In were

extracted from the right DLPFC (A) and ACC (B).

https://doi.org/10.1371/journal.pone.0176102.g005
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brain activity observed in the DLPFC (r = -0.67). These results suggest that higher motor

impulsiveness was associated with a smaller change in brain activity during reactive control.

By incorporating proactive and reactive control, the present study extends previous results

by showing unbalanced correlations between impulsivity components and cognitive control

subsystems. Motor and attention impulsiveness were correlated with both proactive and reac-

tive control, while non-planning impulsiveness was only correlated with behavioral measure-

ments. Unbalanced correlations between cognitive control and BIS components [44, 13] or

different impulsivity scales [11, 45] were reported previously. Attention and motor impulsive-

ness showed consistent correlations with cognitive control subsystems.

Attention and motor impulsiveness were highly correlated with cognitive control. These

results are consistent with previous studies that have suggested that brain regions involved in

cognitive control include the DLPFC, especially the right DLPFC [46, 47]. For example, response

inhibition, a key component of cognitive control, has been associated with significant activation

of the right DLPFC in healthy volunteers [42], whereas dysfunctional activity in the right DLPFC

during response inhibition has repeatedly been reported as a prominent hallmark in drug addic-

tion [48]. More recently, hypo-activation in the right DLPFC in adult attention-deficit/hyperac-

tivity syndrome was specifically related to impaired response inhibition [49]. Hence, although

the present results cannot be generalized to any clinical population directly, they suggest the

potential utility of such paradigms (i.e., assessing multiple cognitive control measurements rela-

tive to individual impulsivity traits) in impulsivity disorders or other psychiatric disorders with

increased trait impulsivity (e.g., substance abuse disorders and eating disorders).

The unbalanced correlation pattern might also explain the correlation between non-plan-

ning impulsiveness and behavioral indices but not brain activity during cognitive control. Pre-

vious studies [45] have found that the non-planning score was associated with brain activity in

the striatal region, which is not a typical cognitive control region in the Stroop task. The non-

planning score is considered an index of temporal impulsivity and may thus differ from atten-

tion and motor impulsiveness.

There are limitations in the present study. First, although the activation found in DLPFC

for reactive control suggest the design has enough power to detect reactive control related

brain activity, we did not found significant activation in the ACC. Given the ACC may initially

monitor conflict during cognitive control [50], it might need enough of an inter-trial interval

to isolated the monitoring and later-on processes. Future studies are required to test this possi-

bility. Second, only a Stroop task was used to measure cognitive control; future studies may

use multiple cognitive control paradigms to better target the complex relationship between

cognitive control subsystems and BIS components. Third, a recent study [51] has suggested

two dimension structure for BIS (cognitive impulsivity, behavioral impulsivity) based on the

western cultural context. It would be interesting to test whether the two dimensions are corre-

lated with cognitive control subsystems differently and if the two dimensions structure would

be validated in Chinese sample.

In conclusion, by employing the DMC framework to target proactive control and reactive

control on the one hand, and measuring impulsivity using the subscales of the BIS on the

other hand, the present study revealed that motor impulsiveness was correlated with both pro-

active and reactive control systems. The results suggest that specific impulsivity components

have different associations with cognitive control subsystems.

Conclusions

1. Proactive and reactive control involved increased activity in the fronto-parietal network,

and brain activity was associated with impulsivity scores.
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2. Higher motor impulsiveness was associated with a larger proactive control effect in the left

inferior parietal lobule and a smaller reactive control effect in the right dorsolateral prefron-

tal cortex (DLPFC) and anterior cingulate cortex.

3. Higher attention impulsivity was associated with a smaller proactive control effect in the

right DLPFC.
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