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Abstract: Characterization of children exposure to extremely low frequency (ELF) magnetic fields
is an important issue because of the possible correlation of leukemia onset with ELF exposure.
Cluster analysis—a Machine Learning approach—was applied on personal exposure measurements
from 977 children in France to characterize real-life ELF exposure scenarios. Electric networks near
the child’s home or school were considered as environmental factors characterizing the exposure
scenarios. The following clusters were identified: children with the highest exposure living 120–200 m
from 225 kV/400 kV overhead lines; children with mid-to-high exposure living 70–100 m from
63 kV/150 kV overhead lines; children with mid-to-low exposure living 40 m from 400 V/20 kV
substations and underground networks; children with the lowest exposure and the lowest number of
electric networks in the vicinity. 63–225 kV underground networks within 20 m and 400 V/20 kV
overhead lines within 40 m played a marginal role in differentiating exposure clusters. Cluster
analysis is a viable approach to discovering variables best characterizing the exposure scenarios and
thus it might be potentially useful to better tailor epidemiological studies. The present study did not
assess the impact of indoor sources of exposure, which should be addressed in a further study.
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1. Introduction

Interest in the analysis of children exposure to extremely low frequency magnetic fields (ELF-MF,
40–800 Hz) was raised with the first epidemiological study where exposure to ELF was found to be
a possible health risk factor for childhood leukemia [1]. Although leukemia is the most common type
of cancer in children younger than 15 years, its etiology is still unknown. Previous studies evidenced
that daily average exposures >0.4 µT increased the risk of childhood leukemia’s onset, without any
causal relationship [2–4]. To further investigate their possible relationship with children leukemia,
several studies were conducted to measure personal exposure to ELF in children in Europe [5–9],
United States [10–15], and Asia [16–18].

The aim of the present study was to gain deeper insights on the variables (such as, sources of ELF
in the environment) that characterize real-life exposure scenarios and better characterize ELF exposure
in children. In particular, we focused on the characterization of electric networks in the proximity of
a child’s home or school as environmental factors that potentially could influence indoor exposure.
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We used cluster analysis, a non-parametric and unsupervised Machine Learning (ML) approach.
In contrast to parametric approaches, such as correlation analysis or multivariate analysis, cluster
analysis is applied in exploratory data mining to understand possible relationships within the
data without assuming any linear or non-linear parametric model to explain the observed data.
The application of ML approaches to problems related to electromagnetic field (EMF) exposure is at
the very beginning; to the best of our knowledge, sporadic examples of applications can be found
in the prediction of radiofrequency (RF) radiation effect on plants [19] or the prediction of wireless
local-area network (LAN) EMF in the indoor environment [20].

This is the first time that ML has been used for the characterization of ELF exposure scenarios in
children. Cluster analysis was applied to personal exposure measurements recorded in the EXPERS
study [5,6] from children living in France to identify clusters of children with similar exposure levels
and similar exposure scenarios (i.e., similar electric network configuration in the proximity of the
home or school). The aim of the paper was neither to demonstrate the influence of ELF exposure on
children Leukemia, nor to present a novel measurement study of personal ELF exposure. The aim
was to further analyze data coming from an already done measurement campaign—the EXPERS
study—with a novel approach in order to discover similarities in the exposure scenarios. In particular,
the focus was to understand (i) what were the main characteristics of the clusters of ELF exposure with
respect to the type of electric networks in the vicinity of the measurement location (i.e., a child’s home
and school), (ii) what were the main differences between the clusters, and (iii) which environmental
factors better discriminated the clusters. The paper is organized as follows: Section 2 “Materials and
Methods” reports the details of the source of the analyzed data (Section 2.1 Data Source) and the
description of the method used to perform cluster analysis and its validation (Section 2.2 Data Analysis);
Section 3 “Results” reports some statistics on the analyzed dataset (Section 3.1 Descriptive Results),
the results of the procedure used to determine the optimal number of clusters and the evaluation of the
cluster solution (Section 3.2 Choice of the Optimal Number of Clusters and Evaluation of Clustering
Performance), and the detailed description of the characteristics of the clusters we found (Section 3.3
Results of Clustering Analysis); Section 4 “Discussion” reports the discussion of the results, current
study limitations and future directions; the last section, Section 2 “Conclusions”, summarizes the main
findings of the study.

2. Materials and Methods

2.1. Data Source

A database of personal exposure measurements to ELF MF in children was analyzed. The data
came from the EXPERS study [5,6] and consisted of exposure measurements recorded from children
aged 0–14 years located in France. The database contained the recordings from 977 children located
in rural or urban places (948 children) and in Paris (29 children) (for more details about the areas
under test, see [6]). Measurements were performed during cold seasons (February–April 2007, October
2007–April 2008, and October 2008–January 2009). An EMDEX II (Enertech, Campbell, CA, USA (https:
//www.enertech.net/html/EMDEXII.html)) personal dosimeter was used to measure broadband
(40–800 Hz) and harmonic (100–800 Hz) MF amplitudes with a sensitivity of 0.01–300 µT. Measurements
were recorded with a sampling rate of 3 s over 24 h for one day. For each child, the database contained
the number of power lines and substations close to the measurement site, i.e., the child’s home or
school, as identified by the French grid operators (RTE for high voltage and Enedis for mid and low
voltage) from the Lambert II coordinates of home and school addresses. The following 10 types of
the electric networks were considered: 400 kV overhead lines within 200 m from home or school
(OVHD_ultra-high), 225 kV overhead lines within 120 m (OVHD_extra-high), 150 kV or 90 or 63 kV
overhead lines within 100 m (for 150 kV lines) or 70 m (for 63 and 90 kV lines) (OVHD_high), 20 kV
overhead lines within 40 m (OVHD_mid), 400 V overhead lines within 40 m (OVHD_low), 225 kV
underground cables within 20 m (UND_extra-high), 63 to 150 kV underground cables within 20 m

https://www.enertech.net/html/EMDEXII.html
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(UND_high), 20 kV underground cables within 40 m (UND_mid), 400 V underground cables within
40 m (UND_low), and 20 kV/400 V substations inside a building within 40 m (Substation). Also,
the database contained a timetable reporting time, duration, and location (e.g., at home, at school,
indoors, outdoors, etc.) of child activities during the 24 h of exposure measurement.

2.2. Data Analysis

Using the information available in the daily activity tables, the geometric mean (GM) of the 50 Hz
component of B field was computed for exposure measurements that were recorded indoors when
the child was at home and, where available, at school. As in previous reference studies on ELF MF
exposure [21], we decided to consider GM as the metric to represent B field values to facilitate the
comparison of our results with similar studies. We also decided to analyze only exposures recorded
during the day and not during the night to exclude any confounding effect due to the presence of
the alarm clock in night recordings, as evidenced in [6]. As written above, in this study, we decided
to analyze as variables the B field measured indoor and the type of electric networks in the vicinity
of the measurement site; at the moment, we did not analyze indoor sources of exposure. A total of
1793 measurements were available for the analysis, including 977 recordings made at home and 816
at school.

Cluster analysis was performed on a matrix of 1793 × 11 real data, each representing a child
exposure (row) and its characterization (column) in terms of B field and number of power lines and
substations in close proximity to home or school for each of the 10 types of the electric networks
described in the section above.

Data were analyzed with K-means clustering (Matlab (ver. R2018a), MatWorks Inc., Natick MA,
USA) [22]. The goal of K-means clustering is to partition the data into K clusters so that the pairwise
dissimilarities between data of the same cluster are smaller than those in the other clusters. In K-means
clustering, dissimilarity d(xi, xi′) between two data vectors xi and xi′ (i, i′ = 1, · · · , N) of P components
is measured with the squared Euclidean distance:

d(xi, xi′) =
P

∑
j=1

(
xij − xi′j

)2, (1)

where xij and xi′j are the jth components (j = 1, · · · , P) of vectors xi and xi′.
In K-means clustering, the user has to specify the number of partitions K < N into which the data

points have to be clustered; then, the K-means algorithm assigns each data point to one and only one
of the K clusters by minimizing the so-called “within cluster” point scatter W(C):

W(C) =
1
2

K

∑
k=1

∑
i, i′∈Sk

d(xi, xi′), (2)

where Sk is the set of observations in the kth cluster (k = 1, · · · , K). Minimization of W(C) is obtained
by an iterative procedure that at each step searches among the possible assignments of the N data
points to the K clusters that one that improves (i.e., minimizes) W(C) from its value obtained at the
previous step. The iteration is stopped when the new assignment solution is unable to improve W(C)
further. In K-means clustering, it is possible to demonstrate [22] that minimization of (2) is equivalent
to minimizing the average distance of the data points of the same cluster from the cluster centroid
xk = (x1k, · · · , xPk), which is the mean vector of the data assigned to the same cluster. As such,
each cluster centroid can be regarded as the “representative” of the characteristics of the pool of data
assigned to the cluster. Centroid initialization was obtained from the algorithm published by [23] (as
implemented in Matlab), which uses heuristics to find centroid seeds and improves the running times
of the K-means clustering algorithm. To be sure that the partitioning solution was stable, we repeated
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the clustering using new initial cluster centroid positions by choosing from 30 possibly different sets of
seeds, according to the algorithm by [23].

The average silhouette score was used to determine K (i.e., the optimal number of clusters) and
the appropriateness of the cluster solution (i.e., it was used for the validation of the cluster solution).
The silhouette score Si for a data point xi is a measure of the similarity between xi and the other data
of the same cluster, when compared to data in other clusters [24]. It is computed as:

Si =
bi − ai

max(ai, bi)
, (3)

where ai is the average distance of xi to the other points in the same cluster, bi is the minimum
average distance of xi to all the other points in different clusters, minimized over the clusters,
and −1 ≤ Si ≤ 1. A high silhouette value close to 1 indicates that xi is far away from neighboring
clusters and well-matched to its own cluster, that is, xi has been assigned to the proper cluster. A value
close to −1 indicates that xi has been assigned to the wrong cluster. The average of Si across all data
points (i = 1, · · · , N) is a measure of the overall appropriateness of the clustering solution over the
entire dataset. The average silhouette score can be used to determine the optimal number of clusters
K: by computing the average silhouette score as a function of K, it is possible to determine the best
value of K as the value for which the average silhouette reaches a maximum. The value of the average
silhouette score is also used as a metric to assess the robustness of the clustering solution, with values
greater than 0.5 indicating a good quality in the partitioning of the data.

3. Results

3.1. Descriptive Results

The average value of B field (GM) across all 1793 recordings was 0.02 µT (1st quartile Q1: 0.006 µT;
3rd quartile Q3: 0.042 µT), and the maximum was 1.09 µT; one should note that B field was >0.4 µT
only in 5 (five) recordings out of 1793.

Table 1 shows the distribution of the different types of electric networks in the analyzed dataset
of indoor measurements. It is possible to see that more than two thirds of the measurements (66.8%) in
the dataset came from children living or going to schools near underground networks of low voltage,
while nearly half of them were from children living or going to school near underground networks
of mid voltage (45.7%) or overhead lines of low voltage (43.8%), and fewer than 15% (13.7%) of the
measurements were from children living or going to school near a substation. A small number of
measurements (below 4%) were from children living or going to school near underground networks of
high or extra-high voltage or overhead lines of mid to ultra-high voltage. A total of 201 out of 1793
(11.2%) measurements came from sites that apparently were far from any of the electric networks
considered in the present study; in other words, none of the electric networks mentioned above was
found near the measurement site of these last data. This group of data may consist of measurements
from places served by local distributors of electricity rather than by RTE and Enedis, representing 5%
of the distribution of electricity in France. In addition, this group included measurements made in
rural areas where the precision of geolocalization might have been less than in urban areas, and thus
might have influenced the localization of the electric grid near the measurement site, especially if the
precision was larger than 40 m.

Table 1 also shows the maximum and mean number of power lines and substations found in the
proximity of the measurement site. The maximum number of underground cables of low voltage close
to the measurement site was 59, followed by 27 underground cables of mid voltage and 16 overhead
lines of low voltage; the number of underground cables of high or extra-high voltage or overhead lines
of mid to ultra-high voltage or substations close to the measurement site was at maximum five.
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Table 1. Distribution of electric networks in the analyzed dataset. The table shows the number of
indoor measurements close to each network type. The last two columns on the right show, for each
network type, the maximum and mean number of power lines and substations near the measurement
site (i.e., home or school).

Network Type
Number of Indoor Measurements
(% of All Indoor Measurements) 1

Number of Power Cables, Power Lines and Substations

Max Mean

UND_low 1198 (66.8%) 59 3.9
UND_mid 820 (45.7%) 27 1.3
UND_high 5 (0.3%) 2 0.0

UND_extra-high 7 (0.4%) 2 0.0
OVHD_low 786 (43.8%) 16 1.1
OVHD_mid 58 (3.2%) 5 0.0
OVHD_high 10 (0.6%) 1 0.0

OVHD_extra-high 9 (0.5%) 2 0.0
OVDH_ultra-high 4 (0.2%) 3 0.0

Substation 246 (13.7%) 2 0.1
1 Number of all indoor measurements = 1793.

The analysis of the dataset also revealed that a significant percentage of measurements came
from children who live or go to schools near two different types of electric networks at the same time.
Data in Table 2 show that children who lived near underground networks of mid voltage also had
underground networks of low voltage in the vicinity (38.8% of the total number of measurements);
as expected by grid construction, those near a substation were found to have underground networks
of low (12.7% of the measurements) or mid voltage (13.2% of the measurements) and overhead lines of
low voltage (4.9% of the measurements) in the vicinity; those near an overhead line of low voltage also
had underground networks of low (24%) or mid voltage (19.6%) in the vicinity; children living or going
to schools near overhead lines of mid to ultra-high voltage were found to have underground networks
of low and mid voltage (up to 1.2% of total number of measurements) and overhead lines of low voltage
(up to 2.3%) in the vicinity. None of the children near overhead lines of mid to ultra-high voltage lived
or went to schools that are also in the vicinity of underground networks of high and extra-high voltage.
This is another finding which is due to construction on the 63 kV–400 kV grid; as a matter of fact, it is
very rare, except for sites near high voltage substations, to live near underground and overhead lines
of 63 kV–400 kV at the same time. Overhead lines of this type are mainly found in the country side,
whereas underground lines are found in big cities.

Table 2. Distribution of electric networks in the analyzed dataset (cont.d). The main diagonal (shaded
background) shows the number (and %) of measurements from children whose home or school is in
proximity of only a single type of network, whereas data below the main diagonal show the number
(and %) of measurements in close proximity to two different types of networks at the same time.

Network Type UND OVHD
Substations

Low Mid High Extra-High Low Mid High Extra-High Ultra-High

UND

low 317 (17.7) 1

mid 696 (38.8) 23 (1.3)
high 4 (0.2) 5 (0.3) 0

extra-high 7 (0.4) 6 (0.3) 0 0

OVHD

low 431 (24.0) 352 (19.6) 4 (0.2) 1 (0.1) 228 (12.7)
mid 22 (1.2) 11 (0.6) 0 0 41 (2.3) 4 (0.2)
high 4 (0.2) 3 (0.2) 0 0 6 (0.3) 2 (0.1) 1 (0.1)

extra-high 5 (0.3) 2 (0.1) 0 0 5 (0.3) 0 1 (0.1) 0
ultra-high 2 (0.1) 1 (0.1) 0 0 1 (0.1) 0 0 2 (0.1) 0
Substation 228 (12.7) 237 (13.2) 1 (0.1) 1 (0.1) 87 (4.9) 11 (0.6) 2 (0.1) 2 (0.1) 0 0

1 Number of all measurements = 1793.

Figure 1 illustrates, with an interconnected graph, the distributions of electric network types
reported in Table 2. Links in the graph show which electric networks are found in the vicinity of
the others. As commented above (see Table 2), substations are typically found in the vicinity of
underground networks of low and mid voltage and overhead lines of low voltage.
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Figure 1. Pictorial representation of the distribution of electric networks in the analyzed dataset and
their interconnections. Nodes (circles) represent the electric networks. Node size is proportional to the
number of children in the dataset living or going to a school near that particular electric network. A link
(straight line) between electric networks “A” and “B” means that there are some children in the dataset
whose home or school is near both “A” and “B” networks at the same time. Loop links represent
children that are near to only one single type of electric networks. Link thickness is proportional to
the number of children for which the link is valid. Numbers in or next to the nodes are the type of
electric networks: 1 = UND_low; 2 = UND_mid; 3 = UND_high; 4 = UND_extra; 5 = OVHD_low;
6 = OVDH_mid; 7 = OVHD_high; 8 = OVHD_extra-high; 9 = OVHD_ultra-high; 10 = substations.

3.2. Choice of the Optimal Number of Clusters and Evaluation of Clustering Performance

Figure 2 shows the average silhouette score (see Equation (3)) as a function of the number of
clusters used for partitioning the matrix of 1793 × 11 real data. It is possible to see that the score
increases as the number of partitions increases from two to six. The increase is steep up to four clusters;
at five and six clusters, there is still an increase, but it is minimal if compared to the increase observed
from two to four clusters. This means that, using five or six partitions, the quality of the clustering
solution would not significantly be better than that obtained with four partitions.

Table 3 shows the number of measurements that the K-means algorithm assigned to each cluster
(i.e., the cluster size), by varying the number of partitions. As expected, the size of the clusters generally
decreased as the number of partitions increased (a deviation from this behavior was seen at cluster #5
in the six-partition solution where the cluster size slightly increased from 264 to 268 if compared to the
five-partition solution). In particular, the minimum size of the clusters was seven for the five-partition
solution and three for the six-partition solution.
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Figure 2. Average silhouette score as a function of the number of partitions.

Table 3. Cluster size (i.e., number of measurements) for different partitioning solutions, from 2- to
6-cluster solutions.

Cluster #
Number of Partitions

2 3 4 5 6

1 269 10 9 7 3
2 1524 267 10 9 5
3 1516 267 10 7
4 1507 264 10
5 1503 268
6 1500

It is a good and consolidated practice to choose the number of partitions so as to maximize the
silhouette score and, at the same time, have a reasonable cluster size. For the dataset analyzed in
the study, a good compromise between silhouette and cluster size was obtained by partitioning the
data with four clusters. Last but not least, it is important to note that the solution with four partitions
resulted in a silhouette score of nearly 0.65 which is indicative of good quality of the partitioning.

3.3. Results of Clustering Analysis

The results obtained with the four-partition solution can be seen in Table 4 which displays
the coordinates (in absolute values) of the centroids of the four clusters. Each centroid is
a multi-dimensional vector with 11 components, one for each of the 11 analyzed measurement variables.
The number of measurements assigned to each cluster can be found in Table 3, in correspondence to
the solution with four partitions.

Table 4. Coordinates of the centroids of the four clusters for each of the 11 analyzed measurement
variables (from “B” to “Substation”).

Cluster # B (µT)
UND (N) OVHD (N)

Substation (N)
Low Mid High Extra-High Low Mid High Extra-High Ultra-High

1 0.146 2.4 0.9 0.0 0.0 1.0 0.0 0.0 1.0 0.8 0.2
2 0.053 1.2 1.3 0.0 0.0 1.3 0.2 1.0 0.1 0.0 0.2
3 0.025 11.4 4.6 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.9
4 0.019 2.6 0.7 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0
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By definition, in K-means clustering, the centroid is obtained as the mean of the data assigned
to the cluster. As explained in the Methods Section, each cluster centroid can be regarded as the
“representative” of the characteristics of the pool of data assigned to the cluster. The analysis of the
coordinates of the centroids is thus useful to understand (i) what are the main characteristics of the
clusters, (ii) what are the main differences between the clusters, and (iii) which are the variables that
better discriminate the clusters. With regard to points (i) and (ii), from the inspection of Table 4,
it is possible to see that cluster #1 pooled together children with the highest exposures (average GM
value of B in the cluster: 0.146 µT; Q1: 0.066 µT; Q3: 0.220 µT) and the highest number of extra-high
and ultra-high voltage overhead lines close to their home or school (mean OVHD_extra-high: 1 line;
mean OVHD_ultra-high: 0.8 lines). Cluster #2 contained children with the highest number of high
voltage overhead lines (mean OVHD_high: 1 line) in the vicinity and a mid-to-high exposure (average
GM value of B in the cluster: 0.053 µT; Q1: 0.014 µT; Q3: 0.051 µT) (please note that here and in other
cases reported below, it may happen that the average would be lower than Q3; this is not an error
because quartiles are calculated with respect to the median value of the sample distribution and not the
mean). Cluster #3 was for children with a mid-to-low GM B value (average: 0.025 µT; Q1: 0.003 µT; Q3:
0.034 µT) and with the highest number of substations (mean value: 0.9 substations) and underground
networks of low and mid voltage (mean UND_low: 11.4 cables; mean UND_mid: 4.6 cables) near home
or school; finally, cluster #4 contained children with the lowest exposure (average GM value of B in the
cluster: 0.019 µT; Q1: 0.002 µT; Q3: 0.016 µT) and the lowest number of underground cables, overhead
lines, and substations near their home or school. Cluster #4 contained all 201 measurements coming
from sites that apparently were far from any electric network. For these measurements, the average GM
value of B was 0.014 µT (Q1: 0.001 µT; Q3: 0.013 µT) which was well comparable to that obtained from
the other measurements assigned to the same cluster #4 (average GM value of B: 0.019 µT; Q1: 0.002 µT;
Q3: 0.016 µT). In addition, cluster #4 contained all five samples with B > 0.4 µT (GM). As observed in
the other samples assigned to the same cluster, these latter samples corresponded to children with the
lowest number of underground cables, substations, and overhead lines of mid to ultra-high voltage in
the vicinity. This explains why cluster analysis assigned these latter data to cluster #4; from an overall
point of view, the characteristics of these samples were very similar to the other samples of cluster
#4. A deeper inspection revealed that these five samples were characterized by a slightly higher
number of low voltage overhead lines (Q1: 1 line; Q3: 4 lines) than the other samples in the same
cluster (Q1: 0 lines; Q2: 2 lines); this might explain the higher exposure values that characterized these
latter measurements.

With regard to point (iii), to identify which variables better discriminated each exposure cluster,
the centroids displayed in Table 4 were normalized by scaling each coordinate separately to the
maximum of each column, i.e., to the maximum along each variable. Figure 3 displays the normalized
values of the centroid coordinates for each of the 11 variables considered in the study.

From Figure 3, it can be seen that the coordinates of the centroids along the variables UND_high,
UND_extra-high, OVHD_low, and OVHD_mid did not vary across the clusters; this means that,
on average, data across the different clusters did not show significant differences along these variables.
We can thus conclude that these latter variables did not contribute to differentiating the clusters.
From a practical point of view, this means that the number of underground networks of high or
extra-high voltage and the number of overhead lines of low or mid voltage near home or school were
not relevant, alone, to differentiating the characteristics of the four clusters (i.e., the four patterns
of exposition).
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Figure 3. Normalized values of the centroids of the four clusters. Each panel shows the centroid
coordinate scaled to the maximum of each of the 11 analyzed variables (as displayed in the
panel legends).

On the other hand (see Figure 3), all the remaining variables seem to contribute to differentiating
the clusters; as a matter of fact, the coordinate of the centroids along these latter variables varied
across the clusters, thus meaning that the data assigned to the different clusters have different and
unique characteristics. In particular, it is clear that variables OVHD_extra-high and OVHD_ultra-high
contributed to differentiating and characterizing cluster #1 (the one with the highest value of B).
From Figure 3, it is possible to comment that children living or going to schools near overhead lines
of extra-high and ultra-high voltage are most likely characterized by a high value of B. Variable
OVHD_high contributed to differentiating cluster #2 (the one with a B field of mid-to-high value);
this suggested that children living or going to schools near overhead lines of high voltage are most
likely characterized by a mid-to-high B value. Finally, variables substation, UND_low, and UND_mid
contributed to differentiating and characterizing cluster #3 (the one with a B field of mid-to-low value);
this suggested that children living or going to schools near substations and underground cables of low
and mid voltage are most likely characterized by a B field of mid-to-low value.

To go deeper in understanding the main features of the four clusters, Figure 4 displays the
distribution of indoor measurements within each cluster as a function of the electric network type
found near the measurement site.
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White bars: The complement to 100%.

The first panel of Figure 4 shows that more than 80% of the measurements assigned to cluster #1
were from children near overhead lines of extra-high voltage and that nearly 40% of the measurements
were from children near overhead lines of ultra-high voltage. More than 40% of the measurements in
cluster #1 were from children near underground low voltage cables and a small percentage (below
10%) were from children close to underground networks of mid voltage or to substations. None of the
measurements in cluster #1 were from children near underground networks of high and extra-high
voltage or to overhead lines of mid and high voltage.

With regard to cluster #2, 100% of the measurements were from children near at least one
overhead line of high voltage; 60% were from children close to overhead lines of low voltage and 40%
from children close to underground networks of low voltage. Only a smaller percentage (<30%) of
measurements in this cluster were from children who live close to underground cables of mid voltage
or overhead lines of mid and extra-high voltage or substations. None of the measurements in cluster
#2 were from children near underground networks of high and extra-high voltage or overhead lines
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of ultra-high voltage. Cluster #3 appears to be mainly characterized by measurements from children
living near underground networks of low (97% of the measurements) and mid voltage (100%) and
substations (87%). It is important to note that, as displayed in Table 2 and Figure 1, children living near
substations are also close to underground cables of low and mid voltage. A very small proportion (1%)
of the measurements were from children who live near underground networks of extra-high voltage
and overhead lines of mid voltage; none of the measurements in cluster #3 were from children near
underground networks of high voltage and overhead lines of high, extra-high, and ultra-high voltage.
Finally, cluster #4 was characterized by measurements from children living only near underground
cables of low and mid voltage and overhead lines of low voltage.

4. Discussion

K-means cluster analysis revealed significant and recurrent patterns in personal exposure to ELF
MF. The first pattern (cluster #1) corresponded to children living or going to school near overhead lines
of extra (225 kV) and ultra-high voltage (400 kV); these children were all characterized by the highest
values of MF observed in the dataset (the average GM value of B within the cluster was 0.146 µT).
The second pattern (cluster #2) was found for children who live or go to school near overhead lines of
high voltage (63/90/150 kV); these children were characterized by a mid-to-high value of MF (the GM
value of B averaged within the cluster was 0.0523 µT). The third pattern corresponded to children with
the highest number of underground cables of low (400 V) and mid voltage (20 kV) and substations
in the vicinity of their home or school; they were characterized by a mid-to-low MF (the average
GM value of B within the cluster was 0.025 µT). Finally, the last pattern (Cluster #4) corresponded
to children far from power lines and substations; these children were characterized by the lowest
values of MF (the average GM value of B within the cluster was 0.019 µT). All these results are in
line with [6] (see, in particular, Table 6 in [6] which reports the variables correlated with 24h GM),
where the 24 h GM MF exposure was found to be correlated with overhead lines of high to ultra-high
voltage, underground cables of low to mid voltage, and substations.

Interestingly, the analysis revealed that underground electric networks of high (63 to 150 kV)
and extra-high voltage (225 kV) and overhead lines of low (400 V) and mid voltage (20 kV) were not
relevant, alone, to differentiating the characteristics of the four clusters. With regard to underground
networks of high and extra-high voltage, the probability of being close to these types of networks is
typically low. As expected, because our sample size of 977 children was representative of the French
population [6], the resulting dataset contained a small number (12 out of 1793) of measurements
made near these types of networks. This would mean that, from a methodological point of view,
measurements near underground networks of high and extra-high voltage might have a lower impact
on cluster analysis than those made near other types of networks that are more frequently seen in
real practice. In parallel, it is also important to note that the contribution of underground networks to
total indoor exposure can be small. Although the MF at the centerline of underground cables can be
higher than that generated by an equivalent overhead line, the spatial attenuation of the MF is much
steeper in these networks than in overhead lines. As a result, the MF to the sides of the cable is usually
significantly lower than that of a power line [25–27]; for example, the field at 1 m above ground level
at a distance of 20 m from the centerline of a 400 kV cable is of the order of 0.10 ÷ 0.20 µT [25,26],
whereas the MF of an overhead line of equivalent power is about 2 µT. If measurements are done at
more than 1 m above ground level (as in the current study), it is expected that the field will be even
lower and of less contribution to total exposure.

A significant percentage of the measurements in the dataset were from children (43.8%) living
near overhead lines of low voltage which were found to be of low efficacy in differentiating the clusters.
A possible explanation for this aspect could be that these networks marginally contributed to the
measured exposure. This is also in line with [6], where no correlation was found between the 24 h
GM MF exposure and low voltage lines. Finally, with regard to mid voltage overhead lines, they were
found to have a marginal contribution in differentiating the clusters; again, one possible explanation
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for this result could be the small number of children in the dataset that live near mid voltage overhead
lines (58 out of 1793). In addition, as commented in [6], mid voltage lines were mainly found in
rural areas characterized by lower exposure values if compared to the exposure measured in highly
urbanized areas, such as in Paris. This last evidence would mean that, if present, mid voltage lines
marginally contribute to the exposure.

As described above, the pattern observed in cluster #3 concerned children who live or go to school
near substations and underground networks of low and mid voltage. As commented above, the MF of
underground networks could be very low when measured at a distance of 20 m and even lower at
greater distances. Our dataset contained information regarding the presence of low and mid voltage
cables within 40 m from a child’s home or school; thus it could be that the contribution of low and mid
voltage cables to our exposure data might be very low. On the other hand, according to the network
distribution observed in our dataset, children who live near substations usually have underground
networks of low and mid voltage in close proximity. Thus, we can conclude that the true differentiating
variable that characterized mainly cluster #3 was the presence of substations near home or school,
whereas the presence of underground networks of low and mid voltage was only a consequence of the
configuration of power grids in the analyzed dataset.

The scarce contribution of underground networks to MF at distances greater than 20 m and the
results from cluster analysis seem to suggest that, in future personal exposure campaigns, it would be
interesting to record the presence of underground networks at distances below 20 m (i.e., at a distance
where their MF is not marginal). This would provide additional information needed to better determine
the role of these networks in differentiating the exposure patterns.

With regard to the uncertainty due to measurements of the B field near the sensitivity threshold
of the personal dosimeter, it could be that the GM calculated from the values of B measured with
the device was below the sensitivity threshold (equal to 0.001 µT). However, we can assume that the
impact of this aspect should be marginal because clusters were identified by the K-means algorithm by
considering not only the value of B but also all the other 10 variables related to the number of electric
networks in the vicinity of the measurement position.

It is important to note that the geolocalization of electric networks might have some slight
uncertainties. As a matter of fact, the geolocalization of electric networks was done from the physical
address of a child’s home or school; that is from the mailbox, which is a point closer to the street.
This means that the exact and real position of the child with respect to the electric network nearby
cannot be known without uncertainties, especially in those locations where the child can move around
large areas, such as in schools. It seems reasonable to assume that the impact of this uncertainty should
be marginal. At the moment, it is not possible to give an exact and quantitative estimation of this
aspect using the data analyzed in the present study. It could be interesting in further studies to go
deeper in analyzing the impact of this uncertainty, for example by considering both the approximate
locations (derived from the physical address of the child’s home or school) and, if available, the exact
GPS position of the child.

Last but not least, we are planning to extend this cluster analysis by also considering as additional
variables indoor sources of the exposure, such as the type of heating in the child’s home or school,
to discover how they might impact on the exposure scenario.

5. Conclusions

Cluster analysis was applied on personal exposure measurements recorded 24 h for one day from
children living in France. The analysis revealed four clusters of indoor ELF MF exposure characterized
by significantly different patterns of underground networks, power lines, and substations near a child’s
home or school. Among the electric networks considered in the study, the analysis also revealed that
the presence of overhead lines of high to ultra-high voltage and substations near home or school
greatly contributed to differentiating the four clusters of indoor MF exposure. The present analysis
seems to indicate that the presence of underground networks and low to mid voltage overhead lines
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within 20 ÷ 40 m from home or school did not contribute to cluster differentiation (probably because
of the spatial attenuation of the B field which is not negligible at such distances). Although the present
analysis revealed that children living within 20 ÷ 40 m from these latter networks were typically
characterized by the lowest exposures, it might be interesting, in future measurement campaigns,
to collect more samples at distances lower than 20 ÷ 40 m, i.e., at distances where the B field generated
by these networks would only be partially attenuated. This would give us the chance to assess if the
lowest exposures evidenced in the present study were due to the type of network, irrespective of the
distance, or if they were due to a combined effect of the type of network and the distance from the
measurement location.
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