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Abstract
Recently, using artificial intelligence (AI) in drug discovery has received much attention 
since it significantly shortens the time and cost of developing new drugs. Deep learning 
(DL)-based approaches are increasingly being used in all stages of drug development as 
DL technology advances, and drug-related data grows. Therefore, this paper presents a sys-
tematic Literature review (SLR) that integrates the recent DL technologies and applications 
in drug discovery Including, drug–target interactions (DTIs), drug–drug similarity inter-
actions (DDIs), drug sensitivity and responsiveness, and drug-side effect predictions. We 
present a review of more than 300 articles between 2000 and 2022. The benchmark data 
sets, the databases, and the evaluation measures are also presented. In addition, this paper 
provides an overview of how explainable AI (XAI) supports drug discovery problems. The 
drug dosing optimization and success stories are discussed as well. Finally, digital twining 
(DT) and open issues are suggested as future research challenges for drug discovery prob-
lems. Challenges to be addressed, future research directions are identified, and an extensive 
bibliography is also included.

Keywords Drug discovery · Artificial intelligence · Deep learning · Drug–target 
interactions · Drug–drug similarity · Drug side-effects · Drug sensitivity and response · 
Drug dosing optimization · Explainable artificial intelligence · Digital twining

1 Introduction

The examination of how various drugs interact with the body and how a medication needs 
to act on the body to have a therapeutic impact is known as drug discovery. Drug discovery 
strategy constitutes from different approaches as physiology-based and target based. This 
strategy is based on information about the ligand and the target. In this regard, our attention 
was directed in certain topics especially drug (ligand)–target interactions, drug sensitivity 
and response, drug–drug interaction, and drug–drug similarity. For certain diseases such as 
cancer or pandemic situations as COVID-19, more than one drug combination is required 
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to alleviate the prognosis and pathogenesis interactions. Despite all the recent advances in 
pharmaceuticals, medication development is still a labor-intensive and costly process. As a 
result, several computational algorithms are proposed to speed up the drug discovery pro-
cess (Betsabeh and Mansoor 2021).

As DL models progress and the drug data size is getting bigger, a slew of new DL-
based approaches is cropping up at every stage of the drug development process (Kim et al. 
2021). In addition, we’ve seen large pharmaceutical corporations migrate toward AI in the 
wake of the development of DL approaches, eschewing outmoded, ineffective procedures 
to increase patient profit while also increasing their own (Nag et al. 2022). Despite the DL 
impressive performance, it remains a critical and challenging task, and there is a chance for 
researchers to develop several algorithms that improve drug discovery performance. There-
fore, this paper presents a SLR that integrates the recent DL technologies and applications 
in drug discovery. This review study is the first one that incorporates the recent DL mod-
els and applications for the different categories of drug discovery problems such as DTIs, 
DDIs similarity, drug sensitivity and response, and drug-side effects predictions, as well 
as presenting new challenging topics such as XAI and DT and how they help the advance-
ment of the drug discovery problems. In addition, the paper supports the researchers with 
the most frequently used datasets in the field.

The paper is developed based on six building blocks as shown in Fig. 1. More than 300 
articles are presented in this paper, and they are divided across these building blocks. The 
papers are selected using the following criteria:

• The papers which published from 2000 to 2022.
• The papers which published in IEEE, ACM, Elsevier, and Springer have more priority.

Fig. 1  The main building blocks 
of the paper
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The following analytical questions are discussed and completely being answered in the 
paper:

– AQ1: What DL algorithms have been used to predict the different categories of drug 
discovery problems?

– AQ2: Which deep learning methods are mostly used in drug dosing optimization?
– AQ3: Are there any success stories about drug discovery and DL?
– AQ4: What about the newest technologies such as XAI and DT in drug discovery?
– AQ5: What are the future and open works related to drug discovery and DL?

The remainder of this review paper is organized as: Sect. 2 presents a review of related 
studies; Sect. 3 covers the various DL techniques as an overview. Section 4 presents the 
organization of DL applications in drug discovery problems through explaining each drug 
discovery problem category and gives a literature review of the DL techniques used. Sec-
tion 5 discusses the numerous benchmark data sets and databases that have been employed 
in the drug development process. Section 6 presents the evaluation metrics used for each 
drug discovery problem category. The drug dose optimization, successful stories, and XAI 
are introduced in Sect.  7, Sect.  8, and Sect.  9. DT and open problems are suggested as 
future research challenges in Sects. 10 and 11. Section 12 presents a discussion of the ana-
lytical questions. Finally, Sect. 13 concludes the paper.

2  Review of related studies

Although the drug discovery is a large field and has different research categories, there 
is a few review studies about this field and each related study has focused only on a one 
research category such as reviewing the DL applications for the DTIs. This section aims to 
review these related studies and a summary is presented in Table 1.

Kim et  al. (2021) presented a survey of DL models in the prediction of drug–target 
interaction (DTI) and new medication development. They start by providing a thorough 
summary of many depictions of drugs and proteins, DL applications, and widely used 
exemplary data sets to test and train models. One good point for this study, they identify a 
few obstacles to the bright future of de novo drug creation and DL-based DTI prediction. 
However, the major drawback of this study was that it did not consider the latest technol-
ogy in DL application for the DTIs such as XAI and DTs.

Rifaioglu et al. (2019) presented the recent ML applications in Virtual Screening (VS) 
with the techniques, instruments, databases, and materials utilized to create the model. 
They outline what VS is and how crucial it is to the process of finding new drugs. Good 
points for this study, they highlighted the DL technologies that are accessible as open 
access programming libraries and provided instances of VS investigations that resulted in 
the discovery of novel bioactive chemicals and medications, tool kits and frameworks, and 
can be employed for the foreseeable future’s computational drug discovery (including DTI 
prediction). However, they did not consider the drug dose optimization in their literature 
review.

Sachdev and Gupta (2019) presented the various feature based chemogenomic methods 
for DTIs prediction. They offer a thorough review of the different methodologies, datasets, 
tools, and measurements. They give a current overview of the various feature-based meth-
odologies. Additionally, it describes relevant datasets, methods for determining medication 
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or target properties, and evaluation measures. Although the study considered the initial 
integrated review which concentrate only on DTI feature-based techniques, they did not 
consider the latest technology in DL application for the DTIs such as XAI and DTs.

3  Deep learning (DL) techniques

Detecting spam, recommending videos, classifying images, and retrieving multimedia 
ideas are just a few of the techniques used are just a few of the applications where machine 
learning (ML) has lately gained favor in research. Deep learning (DL) is one of the most 
extensively utilized ML methods in these applications. The ongoing appearance of new 
DL studies is due to the unpredictability of data acquisition and the incredible progress 
made in hardware technologies. DL is based on conventional neural networks but outper-
forms them significantly. Furthermore, DL uses transformations and graph technology to 
build multi-layer learning models (Kim et al. 2021). With their groundbreaking invention, 
Machine Learning and Deep Learning have revolutionized the world’s perspective. Deep 
learning approaches have revolutionized the way we tackle problems. Deep learning mod-
els come in various shapes and sizes, capable of effectively resolving problems that are too 
complex for standard approaches to tackle. We’ll review the various deep learning models 
in this section (Sarker 2021).

3.1  Classic neural networks

As shown in Fig.  2, Multi-layer perceptron are frequently employed to recognize Fully 
Connected Neural Networks. It involves converting the algorithm into simple two-digit 
data inputs (Mukhamediev et al. 2021). This paradigm allows for both linear and nonlin-
ear functions to be included. The linear function is a single line with a constant multiplier 
that multiplies its inputs. Sigmoid Curve, Hyperbolic Tangent, and Rectified Linear Unit 
are three representations for nonlinear functions. This model is best for categorization and 
regression issues with real-valued data and a flexible model of any kind.

3.2  Convolutional neural networks (CNN)

As shown in Fig. 3, The classic convolutional neural network (CNN) model is an advanced 
and high-potential variant ANN Which developed to manage escalating complexity levels, 
as well as data pretreatment and compilation. It is based on how an animal’s visual cortex’s 
neurons are arranged (Amashita et al. 2018). One of the most flexible algorithms for the 

Table 1  Related studies included DL for drug discovery

Reference Main context Year Category

Kim et al. (2021) Survey of DL models in drug–target interaction (DTI) and 
new medication development

2021 DTI

Rifaioglu et al. 
(2019)

A discussion about the most recent uses of ML techniques in 
VS (DTI application), including DL

2019 DTI

Sachdev et al. 
(2019)

Survey of the feature based chemogenomic methods for DTIs 
prediction

2019 DTI
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processing of data with and without images is CNNs. CNN can be processed through 4 
phases:

– For analyzing basic visual data, such as picture pixels, it includes one input layer that is 
often the case a 2D array of neurons.

– Some CNNs analyze images on their inputs using a single-dimensional output layer of 
neurons coupled to distributed convolutional layers.

– Layer number 3, called as the sampling layer, is included in CNNs o restrict the number 
of neurons which It took part in the relevant network levels.

– The sampling and output layers are joined by one or more connected layers in CNNs.

This network concept can potentially aid in extracting relevant visual data in pieces or 
smaller units. In the CNN, the neurons are responsible for the group of neurons from the 
preceding layer.

After the input data has been included into the convolutional model, the CNN is con-
structed in four steps:

– Convolution: The method produces feature maps based on supplied data., which are 
then subjected to a purpose.

– Max-Pooling: It aids CNN in detecting an image based on supplied changes.
– Flattening: The data is flattened in this stage so that a CNN can analyze it.
– Full Connection: It’s sometimes referred to as a "hidden layer" which creates the loss 

function for a model.

Image recognition, image analysis, image segmentation, video analysis, and natural lan-
guage processing (NLP) (Chauhan et al. 2018; Tajbakhsh et al. May 2016; Mohamed et al. 
2020; Zhang et al. 2018) are among the tasks that CNNs are capable of.

3.3  Recurrent neural networks (RNNs)

RNNs were first created to help in sequence prediction. These networks rely solely on data 
streams with different lengths as inputs. For the most recent forecast, the knowledge of its 
previous state is used as an input value by the RNN. As a result, it can help a network’s 
short-term memory achievers (Tehseen et al. 2019). As shown in Fig. 4, The Long Short-
Term Memory (LSTM) method, for example, is renowned for its adaptability.

Fig. 2  Multilayer Perceptron or ANN
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LSTMs, which are advantageous in predicting data in time sequences using memory, 
and LSTMs, which are useful in predicting data in time sequences using memory, are two 
forms of RNN designs that aid in the study of problems. The three gates are Input, Output, 
and Forget. Gated RNNs are particularly helpful for temporal sequence prediction using 
memory-based data. Both types of algorithms can be used to address a range of issues, 
including image classification (Chandra and Sharma 2017), sentiment analysis (Failed 
2018), video classification (Abramovich et al. 2018), language translation (Hermanto et al. 
2015), and more.

3.4  Generative adversarial networks: GAN

As shown in Fig.  5, It combines a Generator and a Discriminator DL neural network 
approach. The Discriminator helps to discriminate between real and fake data while the 
Generator Network creates bogus data (Alankrita et al. 2021).

Both networks compete with one another as The Discriminator still distinguishes 
between actual and fake data, and the Generator keeps making fake data look like real 
data. The Generator network will generate simulated data for the authentic photos if a pic-
ture library is necessary. Then, a deconvolution neural network would be created. Then, 
an Image Detector network would be utilized to discriminate between fictitious and real 
images. This competition would eventually help the network’s performance. It can be 
employed in creating images and texts, enhancing the image and discovering new drugs.

3.5  Self‑organizing maps (SOM)

As shown in Fig.  6, Self-Organizing Maps operate by leveraging unsupervised data to 
decrease a model’s number of random variables (Kohonen 1990). Given that every synapse 
is linked to both its input and output nodes, the output dimension in this DL approach is 
set as a two-dimensional model. The competition between each data point and its model 
representation in the Self-Organizing Maps, the weight of the closest nodes or Best Match-
ing Units is adjusted (BMUs). The value of the weights varies based on how close a BMU 
is. The value represents the node’s position in the network because weights are a node 
attribute in and of themselves. It’s great for evaluating dataset frameworks that don’t have a 
Y-axis value or project explorations that don’t have a Y-axis value.

3.6  Boltzmann machines

As shown in Fig. 7, the nodes are connected in a circular pattern because there is no set ori-
entation in this network model. This deep learning technique is utilized to generate model 

Fig. 3  Convolutional Neural Networks (CNN)
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parameters because of its uniqueness. The Boltzmann Machines model is stochastic, unlike 
all preceding deterministic network models. It can monitor systems, create a binary recom-
mendation platform, and analyze specific datasets (Hinton 2011).

The architecture of the Boltzmann Machine is a two-layer neural network. The visible 
or input layer is the first, while the hidden layer is the second. They are made up of several 
neuron-like nodes that carry out computations. These nodes are interconnected at different 
levels but are not linked across nodes in the same layer. As a result, there is no connectivity 
between layers, which is one of the Boltzmann machine’s disadvantages. When data is sup-
plied into these nodes, it is transformed into a graph, and they process it and learn all the 
parameters, motifs, and relations between them before deciding whether to transmit it. As a 
result, an Unsupervised DL model is often known as a Boltzmann Machine.

Fig. 4  LSTM Network

Fig. 5  GAN: Generative Adversarial Networks 
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3.7  Autoencoders

As shown in Fig. 8, This algorithm, one of the most popular deep learning algorithms, 
automatically based on its inputs, applies an activation function, and decodes the result 
at the end. Because of the backlog, there are fewer types of data produced, and the built-
in data structures are used to their fullest extent (Zhai et al. 2018).

There are various types of autoencoders:

– Sparse: The generalization technique is used when the hidden layers outnumber the 
input layer to decrease the overfitting. It constrains the loss function and restricts the 
autoencoder from utilizing all its nodes simultaneously.

– Denoising: In this case, randomly, the inputs are adjusted and made to equal 0.
– Contractive: When the hidden layer outnumbers the input layer, to avoid overfitting and 

data duplication, a penalty factor is introduced to the loss function.
– Stacked: When another hidden layer is added to an autoencoder, it results in two stages 

of encoding and Initial stages of decoding.

Feature identification, establishing a strong recommendation model, and adding features 
to enormous datasets are some of the difficulties it can solve.

4  Organization of DL applications in drug discovery problems

The evolution of safe and effective treatments for human is the primary goal of drug dis-
covery (Kim et al. 2021). Drug discovery is the problem of finding the suitable drugs to 
treat a disease (i.e., a target protein) which relies on several interactions. This paper divides 
the drug discovery problems into four main categories, as presented in Fig. 9. They are 
drug–target interactions, drug–drug similarity, drug combinations side effects, and drug 
sensitivity and response predictions. The following subsections provide a literature review 
of DL with these problems and some of the investigated literature articles related to each 
category are summarized in Table 2.

Fig. 6  Self-Organizing Maps (SOM)



Deep learning in drug discovery: an integrative review and future…

1 3

4.1  Drug–target interactions prediction using DL

Drug repurposing attempts to uncover new uses for drugs that are already on the market 
and have been approved. It has attracted much attention since it takes less time, costs less 
money, and has a greater success rate than traditional de novo drug development (Thafar 
et  al. 2022). The discovery of drug–target interactions is the initial step in creating new 
medications, as well as one of the most crucial aspects of drug screening and drug-guided 
synthesis (Wang et al. 2020a). Exploring the link between possible medications and targets 
can aid researchers in better understanding the pathophysiology of targets at the drug level, 
which can help with the disease’s early detection, treatment prognosis, and drug design. 
This is well known as drug–target interactions (DTIs) (Lian et al. 2021). Achieving success 
to the drug repositioning mechanism largely reliant on DTI’s forecast because it reduces 
the number of potential medication candidates for specific targets. The approaches based 
on molecular docking and the approaches based on drugs are the two basic tactics used in 
traditional computational methods. When target proteins’ 3D structures aren’t available, the 
effectiveness of molecular docking is limited. When there are only a few known binding 
molecules for a target, drug-based techniques typically produce subpar prediction results. 

Fig. 7  Boltzmann Machines

Fig. 8  Autoencoders
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DL technologies overcome the restrictions of the high-dimensional structure of drug and 
target protein by using unstructured-based approaches which do not need 3D structural 
data or docking for DTI prediction. Therefore, this section provides a recent comprehen-
sive review of DL-based DTIs prediction models (Chen et al. 2012).

As shown in Fig. 10, there are known interactions (solid lines) and unknown interac-
tions (dashed lines) between diseases (proteins) and drugs. DTIs forecast unknown interac-
tions or what diseases (or target proteins) a new drug might treat. According to their input 
features, we divided the latest DL models used to predict DTIs into three categories: drug-
based models, structure (graph)-based models, and drug-protein(disease)-based models.

4.1.1  Drug‑based models

Figure 10A shows drug-based models that assume a potential drug will be like known 
drugs for the target proteins. It calculates the DTI using the target’s medication informa-
tion. Similarity search strategies are used in these models, which postulate that structur-
ally similar substances have similar biological functions (Thafar et al. 2019; Matsuzaka 
and Uesawa 2019). These methods have been used for decades to select compounds 
in vast compound libraries employing massive computer jobs or solve problems using 
human calculations. Deep neural network models gradually narrow the gap between in 
silico prediction and empirical study, and DL technology can shorten these time-con-
suming procedures and manual operations.

D
ru
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y

Drug-target interactions

Drug-based models

Drug-protein (disease)-
based models 

Graph-based models Drug sensitivity and 
response

Drug-combinations side 
effects

Drug-Drug similarity

The similarity in chemical 
structure

Target protein sequence-
based similarity

Target Protein func�onal 
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Drug-induced pathway
similarity

Fig. 9  Drug discovery problem categories
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Researchers may now use deep neural networks to analyze medicines and predict 
drug-related features, including as bioactivities and physicochemical qualities, thanks 
to using benchmark packages like MoleculeNet (Wu et al. 2018) and DeepChem (). As 
a result, basic neural networks like MLP and CNN have been used in numerous drug-
based DL approaches (Zeng et al. 2020; Yang et al. 2019; Liu et al. 2017). The repre-
sentation power of molecular descriptors was often the focus of ADMET investigations 
rather than the model itself (Zhai et  al. 2018; Liu et  al. 2017; Kim et  al. 2016; Tang 
et al. 2014). Hirohara et al. trained a CNN model with the SMILES string and then used 
learned attributes to discover motifs using significant structures for locations that bind 
proteins or unidentified functional groupings (Hirohara et  al. 2018). Atom pairs and 
pharmacophoric donor–acceptor pairings have been employed by Wenzel et al. (2019) 
as adjectives in multi-task deep neural networks to predict microsomal metabolic liabil-
ity. Gao et al. (2019) compared 6 different kinds of 2D fingerprints in the prediction of 
affinity between proteins and drugs using ML methods such as RF, single-task DNN, 
and multi-task DNN models. Matsuzaka and Uesawa (2019) used 2D pictures of 3D 
chemical compounds to train a CNN model to predict constitutive androstane recep-
tor agonists. They optimized the greatest performance in snapshots of a 3D ball-and-
stick model taken at various angles or coordinates. Therefore, the method outperformed 
seven common 3D chemical structure forecasts.

Since the GCN’s development, drug related GCN models have created depictions of 
graphs which concerned with molecules that incorporate details on the chemical structures 
by adding up the adjacent atoms’ properties (Gilmer et al. 2017).

GCNs have been employed as 3D descriptors instead of SMILES strings in a lot 
of research, and it’s been discovered that these learned descriptors outperform standard 
descriptors in prediction tests and are easier to understand (Shin et al. 2019; Ozturk et al. 
2018; Yu et al. 2019). Chemi-net employed GCN models to represent molecules and com-
pared the performance of single-task and multi-task DNNs on their own QSAR datasets 

Fig. 10  DL models used for predicting the DTIs are grouped into three categories: a drug-based models, b 
structure (graph)-based models, and c drug-protein(disease)-based models
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(Liu et  al. 2019a). Yang et  al. (2019) introduced the directed message passing neural 
network, which uses a directed message-passing paradigm, as a more advanced model 
(D-MPNN). They tested their approaches on 19 publicly available and 16 privately held 
datasets and discovered that in most situations, they were correct. The D-MPNN mod-
els outperformed the previous models. In two datasets, they underperformed and were 
not as resilient as typical 3D descriptors when the sample was small or unbalanced. The 
D-MPNN model was then employed by another research group to correctly forecast a kind 
of antibiotic named HALICIN, which demonstrated bactericide effects in models for mice 
(Stokes et al. 2020). This was the first incident that resulted in the finding of an antibiotic 
by using DL methods to explore a large-scale chemical space that current experimental 
methodologies cannot afford. The application of attention-based graph neural networks is 
another interesting contemporary method (Sun et al. 2020a). Edge weights and node fea-
tures can be learned together since a molecule’s graph representations can be altered by 
edge properties. As a result, Shang et al. suggested a multi-relational GCN with edge atten-
tion (Shang et al. 2018). For each edge, they created a reference guide on attention spans. 
Because it is used throughout the molecule, the approach can handle a wide range of input 
sizes.

In the Tox21 and HIV benchmark datasets, they found that this model performed bet-
ter than the random forest model. As a result, the model may effectively learn pre-aligned 
features from the molecular graph’s inherent qualities. Withnall et  al. (2020) extended 
the MPNN model with AMPNN (attention MPNN), which is an attention technique that 
the message forwarding step employs weighted summation. Moreover, they termed the 
D-MPNN model the edge memory neural network because it was extended by the same 
attention mechanism as the AMPNN (EMNN). Although it is computationally more inten-
sive than other models, this model fared better than others on the uniformly absent infor-
mation from the maximal unbiased validation (MUV) reference.

4.1.2  Structure (graph)‑based models

Unlike the drug- and structure-based models in Fig. 10b, protein targets and medication 
information should be included. Typical molecular docking simulation methods aim to 
predict the geometrically possible binding of known tertiary structure drugs and proteins. 
Atom sequences and amino acid residues can be used to express both the medicine as well 
as the target. Descriptors based on sequences were selected because DL approaches may be 
implemented right away with non-significant pre-processing of the entering data.

The Davis kinase binding affinity dataset (Davis et al. 2011) and the KIBA dataset (Sun 
et al. 2020a) were used in that study. DeepDTA, suggested by Ozturk et al. (2018), out-
performed moderate ML approaches such as KronRLS (Nascimento et al. 2016) and Sim-
Boosts (Tong et  al. 2017) by applying solely information about the sequence of a CNN 
model based on the SMILES string and amino acid sequences. Wen et al. used ECFPs and 
protein sequence composition descriptors as examples of common and basic features and 
trained them using semi-supervised learning via a deep belief network (Wen et al. 2017). 
Another study, DeepConv-DTI, built a deep CNN model using only an RDKit Morgan fin-
gerprint and protein sequences (Lee et al. 2019). They also used the pooled convolution 
findings to capture local residue patterns of target protein sequences, resulting in high val-
ues for critical protein areas like actual binding sites.

The scoring feature, which ranks the protein-drug interaction with 3D structures and 
makes the training data parametric to forecast values for binding affinities of targeted 
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proteins, is used to predict binding affinity values or binding pocket sites of the tar-
get proteins as a key metric for the structure-based regression model. The protein–drug 
complexes’ 3D structural characteristics were included in the CNNs by AtomNet (Wal-
lach et al. 2015). They placed 3D grids with set sizes (i.e., voxels) in comparison to pro-
tein–drug combinations, with every cell in the grid representing structural properties at that 
position. Several researchers have examined the situation since then, deep CNN models 
that use voxels to predict binding pocket location or binding affinity (Wang et al. 2020b; 
Ashburner et al. 2000; Zhao et al. 2019). In comparison to common docking approaches 
such as AutoDock Vina (Trott and Olson 2010) or Smina (Koes et al. 2013), these models 
have shown enhanced performance. This is since CNN models are relatively impervious 
even with large input sizes. It can be taught and is resilient to input data noise.

Many DTI investigations using GCNs based on structure-based approaches have been 
reported (Feng et al. 2018; Liu et al. 2016). Feng et al. (2018) used both ECFPs and GCNs 
as pharmacological characteristics. In the Davis et al. (2011), Metz et al. (2011), and KIBA 
Tang et  al. (2014) benchmark datasets, their methods outperformed prior models such 
as KronRLS (Nascimento et  al. 2016) and SimBoost (Tong et  al. 2017). However, they 
did agree that their GCN model couldn’t beat their ECFP model due to time and resource 
constraints in implementing the GCN. In a different DTI investigation study, Torng et al. 
employed a graph without supervision to become familiar with constant size depictions 
of protein binding sites (Torng and Altman 2019). The pre-trained GCN model was then 
trained using the newly created protein pocket GCN, the drug GCN model, on the other 
hand, used attributes to be trained and which were generated automatically. They con-
cluded that without relying on target–drug complexes, their model effectively captured pro-
tein–drug binding interactions.

Because the models that implement the attention mechanism have key qualities that ena-
ble the model to be interpreted, attention-based DTI prediction approaches have evolved 
(Hirohara et al. 2018; Liu et al. 2016; Perozzi et al. 2014).

For protein sequences, Gao et al. (2017) employed compressed vectors with the LSTM 
RNNs and the GCN for drug structures. They concentrated on demonstrating their meth-
od’s capacity to deliver biological insights into DTI predictions. To do so, Mechanisms for 
two-way attention were employed. to calculate the binding of drug–target pairs (DTPs), 
allowing for flexible interpretation of superior data from target proteins, such as GO key-
words. Shin et al. (2019) introduced the Molecule transformer DTI (MT-DTI) approach for 
drug representations, which uses the self-attention mechanism. The MT-DTI model was 
tweaked to perfection and assessed using two Davis models Using pre-trained parameters 
from the 97 million chemicals PubChem (Davis et al. 2011) and (KIBA) (Tang et al. 2014) 
benchmark datasets, which are both publicly available. However, the attention mechanism 
was not used to depict the protein targets because it would take too long to calculate the 
target sequence in an acceptable amount of time. Pre-training is impossible due to a lack of 
target information.

On the other hand, attention DTA presented by Zhao et al. incorporates a CNN atten-
tion mechanism model to establish the weighted connections between drug and protein 
sequences (Zhao et al. 2019). They showed that these attention-based drug and protein rep-
resentations have good MLP model affinity prediction task performance. DeepDTIs used 
external, experimental DTPs to infer the probability of interaction for any given DTP. Four 
of the top ten predicted DTIs have previously been identified, and one was discovered to 
have a poor glucocorticoid receptor binding affinity (Huang et al. 2018). DeepCPI was used 
to predict drug–target interactions. Small-molecule interactions with the glucagon-like 
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peptide one receptor, the glucagon receptor, and the vasoactive intestinal peptide receptor 
have been tested in experiments (Wan et al. 2019).

4.1.3  Drug–protein(disease)‑based models

According to poly pharmacology, most medicines have multiple effects on both primary 
and secondary targets. The biological networks involved, as well as the drug’s dose, 
influence these effects. As a result, the drug–protein(disease)-based models shown in 
Fig. 10c are particularly beneficial when evaluating protein promiscuity or drug selec-
tivity (Cortes-Ciriano et al. 2015). Furthermore, Neural networks that can do multiple 
tasks are ideal for simultaneously learning the properties of many sorts of data (Cama-
cho et al. 2018). Several DL model applications, such as drug-induced gene-expression 
patterns and DTI-related heterogeneous networks, leverage relational information for 
distinct views. A network-based strategy employs heterogeneous networks includes a 
variety of nodes and edges kinds (Luo et al. 2017; David et al. 2019). The nodes in these 
networks have a local similarity, which is a significant aspect of these models. One can 
anticipate DTIs using their connections and topological features when a network of sim-
ilarity with medications as its nodes and drug–drug similarity values as a measure of 
the edges’ weights is investigated. Machine to support vectors (Bleakley and Yamanishi 
2009; Keum and Nam 2017), Machine learning techniques that use heterogeneous net-
works as prediction frameworks include the regularized least square model (RLS) (Liu 
et al. 2016; Xia et al. 2010; Hao et al. 2016) and random walk with the restart model 
Nascimento (Lian et al. 2021; Nascimento et al. 2016). DTI prediction research using 
networks have employed DL to enhance the methods used to forecast associations today 
for evaluating the comparable topological structures of drug and target networks that 
are bipartite and tripartite linked networks, owing to the increased interest in the usage 
of DL technologies (drug, target, and disease networks) (Hassan-Harrirou et al. 2020; 
Lamb et al. 2006; Korkmaz 2020; Townshend et al. 2012; Vazquez et al. 2020). Zong 
et  al. (2017) used the DeepWalk approach to collect local latent data, compute topol-
ogy-based similarity in tripartite networks, and demonstrate the technology’s promise as 
a medication repurposing solution.

Relationship-based features collected by training the AE were used in some network-
based DTI prediction studies. Zhao et al. (2020) developed a DTI-CNN prediction model 
that combined depth information that is low-dimensional but rich with a heterogeneous 
network that has been taught using the stacked AE technique. To construct the topological 
similarity matrix of drug and target, Wang et al. used a deep AE and mutually beneficial 
pointwise information in their analysis (Wang et al. 2020b). Peng et al. (2020) employed 
a denoising Autoencoder to pick network-based attributes and decrease the representation 
dimensions in another investigation.

By helping the self-encoder learn to denoise, the anti-aliasing effect (Autoencoder) 
enhances high-dimensional images with noise, input data that is noisy and incomplete, 
allowing the encoder to learn more reliably. These approaches, however, have a drawback 
in that it is challenging to foresee recent medications or targets, a problem. The problem 
of recommendation systems’ "cold start" is known as the "cold start" problem (Bedi et al. 
2015). The size and form of the network have a big impact on these models, so if the net-
work isn’t big enough, they will not be able to collect all the medications or targets that 
aren’t in the network (Lamb et al. 2006).
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Various investigations have also utilized Gene expression patterns as chemogenomic 
traits to predict DTIs. This research presumes that medications with similar expression pat-
terns have similar effects on the same targets (Hizukuri et al. 2015; Sawada et al. 2018).

The revised version of CMAP, the LINCS-L1000 database, has been integrated into 
the DL DTI models in recent works (Subramanian et al. 2017; Thafar et al. 2020; Karpov 
et al. 2020; Arus-Pous et al. 2020). Based on the LINCS pharmacological perturbation and 
knockout gene data, using a deep neural network, Xie et al. developed a binary classifica-
tion model (Xie et al. 2018).

On the other hand, Lee and Kim employed as a source of expression signature genes 
medication and target features. They used node2vec to train the rich data by examining 
three elements of protein function, including pathway-level memberships and PPI (Lee 
and Kim 2019). Saho and Zhang employed a GCN model to extract drug and target attrib-
utes from LINCS data and a CNN model to forecast DTPs by extracting latent features in 
DTIGCCN (Shao et al. 2020). The Gaussian kernel function was identified to aid in the 
production of high-quality graphs, and as a result, this hybrid model scored better on clas-
sification tests.

DeepDTnet employs a heterogeneous drug–gene-disease network to uncover known 
drug targets containing fifteen types of chemicals and genomic, phenotypic, and cellular 
network properties. DeepDTnet predicted and experimentally confirmed topotecan, a new 
direct inhibitor of the orphan receptor linked to the human retinoic acid receptor (Zeng 
et al. 2020).

4.2  Drug sensitivity and response prediction using DL

Drug response is  the clinical outcome treated by the drug of interest (https:// www. scien 
cedir ect. com/ topics/ drug- respo nse). This is due to the normally low ratio of samples to 
measurements each sample, which makes traditional feedforward neural networks unsuit-
able. The main idea of drug response prediction is shown in Fig.  11. The DL method 
takes the heterogenous network of drug and protein interactions as inputs and predicts 
the response scores. Although the widespread use of the deep neural network (DNN) 
approaches in various domains and sectors, including related topics like computational 
chemistry (Gómez-Bombarelli et  al. 2018), DNNs have only lately made their way into 
drug response prediction. Overparameterization, overfitting, and poor generalization are 
common outcomes of recent simulation datasets. However, more public data has become 
available recently, and freshly built DNN models have shown promise. As a result, this 
section summarizes current DL computational problems and drug response prediction 
breakthroughs.

Since the 1990s, neural networks have been used to predict drug response (El-Deredy 
et  al. 1997) revealed that data from tumor nuclear magnetic resonance (NMR) spectra 
might be used to train a neural network and can be utilized to predict drug response in glio-
mas and offer information on the metabolic pathways involved in drug response.

In 2018, The DRscan model was created by Chang et  al. (2018), and it uses a CNN 
architecture that was trained on 1000 drug reaction studies per molecule. Compared to 
other traditional ML algorithms like RF and SVM, their model performed much better. 
CDRscan’s ability to incorporate genomic data and molecular fingerprints is one of the 
reasons it outperformed these baseline models. Furthermore, its convolutional design 
has been demonstrated to be useful in various machine learning areas. A neural network 
called an autoencoder attempts to recreate the original data from the compressed form after 

https://www.sciencedirect.com/topics/drug-response
https://www.sciencedirect.com/topics/drug-response
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compressing its input. As proven by Way and Greene (2018), this is very useful for fea-
ture extraction, which condensed a gene expression profile with 5000 dimensions with a 
maximum of 100 dimensions, some of which revealed to significant characteristics such as 
the patient’s sexual orientation or melanoma status. Using variational autoencoders, Dincer 
et al. (2018) created DeepProfile, a technique for learning a depiction of gene expression in 
AML patients in eight dimensions that is then fitted to a Lasso linear model for treatment 
response prediction with superior results to that of no extracting features.

Ding et  al. (2018) proposed a deep autoencoder model for representation learning of 
cancer cells from input data consisting of gene expression, CNV, and somatic mutations.

In 2019, MOLI (Multi-omics Late Integration) (Sharifi-Noghabi et al. 2019) was a deep 
learning model that incorporates multi-omics data and somatic mutations to characterize a 
cell line. Three separate subnetworks of MOLI learn representations for each type of omics 
data. A final network identifies a cell’s response as responder or non-responder based on 
concatenated attributes. Those methods share two characteristics: integrating multiple 
input data (multi-omics) and binary classification of the drug response. Although combin-
ing several forms of omics data can improve the learning of cell line status, it may limit 
the method’s applicability for testing on different cell lines or patients because the model 
requires extra data beyond gene expression.

Furthermore, a certain threshold of the IC50 values should be set before binary clas-
sification of the drug response, which may vary depending on the experimental condition, 
such as drug or tumor types. Twin CNN for drugs in SMILES format (TCNNS) (Liu et al. 
2019b) takes a one-hot encoded representation of drugs and feature vectors of cell lines as 
the inputs for two encoding subnetworks of a One-Dimensional (1D) CNN. One-hot encod-
ings of drugs in TCNNS are Simplified Molecular Input Line Entry System (SMILES) 
strings which describe a drug compound’s chemical composition. Binary feature vectors 
of cell lines represent 735 mutation states or CNVs of a cell. KekuleScope (Cortés-Ciriano 
and Bender 2019) adopts transfer learning, using a pre-trained CNN on ImageNet data. 
The pre-trained CNN is trained with images of drug compounds represented as Kekulé 
structures to predict the drug response.

Yuan et al. (2019) offer GNNDR, a GNN-based technique with a high learning capac-
ity and allows drug response prediction by combining protein–protein interactions (PPI) 

Fig. 11  Drug binding with proteins and drug sensitivity (response) scores prediction
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information with genomic characteristics. The value of including protein information has 
been empirically proven. The proposed method offers a viable avenue for the discovery 
of anti-cancer medicines. Semi-supervised variational autoencoders for the prediction of 
monotherapy response were examined by the Rampášek et al. (2019). In contrast to many 
conventional ML methodologies, together developed a model for predicting medication 
reaction that took advantage of expression of genes before and after therapy in cell lines 
and demonstrated enhanced evaluation on a variety of FDA-approved pharmaceuticals. 
Chiu et al. (2019) trained a deep drug response predictor after pre-training autoencoders 
using mutation data and expression features from the TCGA dataset. The use of pretrain-
ing distinguishes their strategy from others. Compared to using only the labeled data, the 
pretraining process permits un-labelled data from outside sources, like TCGA, as opposed 
to just gene expression profiles obtained from drug reaction tests, resulting in a significant 
increase in the number of samples available and improved performance.

Chiu et  al. (2019) and Li et  al. (2019) used a combination of auto-encoders and pre-
dicted drug reactions in cell lines with deep neural networks and malignancies that had 
been gnomically characterized. To anticipate cell lines reactions to drug combinations, in 
https:// string- db. org/ cgi/ downl oad. pl? sessi onId= uKr0o dAK9h Ps used deep neural encod-
ers to link genetic characteristics with drug profiles.

In 2020, Wei et al. (2020) anticipate drug risk levels (ADRs) based on adverse drug reac-
tions. They use SMOTE and machine learning techniques in their studies. The proposed 
framework was used to investigate the mechanism of ADRs to estimate degrees of drug risk 
and to assist with and direct decision-making during the changeover from prescription to 
over-the-counter medications. They demonstrated that the best combination, PRR-SMOTE-
RF, was built using the above architecture and that the macro-ROC curve had a strong clas-
sification prediction effect. They suggested that this framework could be used by several drug 
regulatory organizations, including the FDA and CFDA, to provide a simple but dependable 
method for ADR signal detection and drug classification, as well as an auxiliary judgement 
basis for experts deciding on the status change of Rx drugs to OTC drugs. They propose 
that more ML or DL categorization algorithms be tested in the future and that computational 
complexity be factored into the comparison process. Kuenzi et al. (2020) built DrugCell, an 
interpretable DL algorithm of personal cancer cells based on the reactions of 1235 tumor cell 
lines to 684 drugs. Genotypes of cancer cause conditions in cellular systems combined with 
medication composition to forecast therapeutic outcome while also learning the molecular 
mechanisms underlying the response. Predictions made by DrugCell in cell lines are pre-
cise and help to categorize clinical outcomes. The study of DrugCell processes results in the 
development of medication combinations with synergistic effects, which we test using com-
binatorial CRISPR, in  vitro drug–drug screening, and xenografts generated from patients. 
DrugCell is a step-by-step guide to building interpretable predictive medicine models.

Artificial Neural Networks (ANNs) that operate on graphs as inputs are known as Graph 
Neural Networks (GNNs). Deep GNNs were recently employed for learning representa-
tions of low-dimensional biomolecular networks (Hamilton 2020; Wu et al. 2020). Ahmed 
et al. (2020) used two separate GNN methods to develop a GNN using GE and a network 
of genes that are expressed together. This is a network that depicts the relationship between 
gene pairs’ expression.

The CNN is one of the neural network models adopted for drug response prediction. 
The CNN has been actively used for image, video, text, and sound data due to its strong 
ability to preserve the local structure of data and learn hierarchies of features. In 2021, 
several methods had been developed for drug response prediction, each of which utilizes 
different input data for prediction (Baptista et al. 2021).

https://string-db.org/cgi/download.pl?sessionId=uKr0odAK9hPs
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Nguyen et  al. (2021) proposed a method to predict drug response called GraphDRP, 
which integrates two subnetworks for drug and cell line features, like CNN in Liu et al. 
(2019b) and Qiu et al. (2021). Gene expression data from cancer cell lines and medication 
response data, the author finds predictor genes for medications of interest and provides a 
reliable and accurate drug response prediction model. Using the Pearson correlation coef-
ficient, they employed the ElasticNet regression model to predict drug response and fine-
tune gene selection after pre-selecting genes. They ran a regression on each drug twice, 
once using the IC50 and once with the area under the curve (AUC), to obtain a more trust-
worthy collection of predictor genes (or activity area). The Pearson correlation coefficient 
for each of the 12 medicines they examined was greater than 0.6. With 17-AAG, IC50 has 
the highest Pearson correlation coefficient of 0.811.

In contrast, AUC has the highest Pearson correlation coefficient of 0.81. Even though 
the model developed in this study has excellent predictive performance for GDSC, it still 
has certain flaws. First, the cancer cell line’s properties may differ significantly from those 
of in vivo malignancies, and it must be determined whether this will be advantageous in 
a clinical trial. Second, they primarily use gene expression data to predict drug response. 
While drug response is influenced by structural changes such as gene mutations, it is also 
influenced by gene expression levels. To improve the prediction capacity of the model, 
more research is needed to use such data and integrate it into the model.

In 2022, Ren et al. (2022) suggested a graph regularized matrix factorization based on 
deep learning (DeepGRMF), which uses a variety of information, including information 
on drug chemical composition, their effects on cell biology signaling mechanisms, and the 
conditions of cancer cells, to integrate neural networks, graph models, and matrix-factori-
zation approaches to forecast cell response to medications. DeepGRMF trains drug embed-
dings so that drugs in the embedding space with similar structures and action mechanisms, 
(MOAs) are intimately linked. DeepGRMF learns the same representation embeddings 
for cells, allowing cells with similar biological states and pharmacological reactions to be 
linked. The Cancer Cell Line Encyclopedia (CCLE) and On the Genomics of Drug Sen-
sitivity in Cancer (GDSC) datasets, DeepGRMF outperforms competing models in pre-
diction performance. In the Cancer Genome Atlas (TCGA) dataset, the suggested model 
might anticipate the effectiveness of a treatment plan on lung cancer patients’ outcomes. 
The limited expressiveness of our VAE-based chemical structure representation may 
explain why new cell line prediction outperforms innovative drug sensitivity prediction in 
terms of accuracy. A family of neural graph networks has recently been shown to depict 
better chemical structures that can be investigated in the future. Pouryahya et  al. (2022) 
proposed a new network-based clustering approach for predicting medication response 
based on OMT theory. Gene-expression profiles and cheminformatic drug characteristics 
were used to cluster cell lines and medicines, and data networks were used to represent the 
data. Then, RF model was used regarding each pair of cell-line drug clusters. by compari-
son, prediction-clustered based models regarding the homogenous data are anticipated to 
enhance drug sensitivity and precise forecasting and biological interpretability.

4.3  Drug–drug interactions (DDIs) side effect prediction using DL

Drugs are chemical compounds consumed by people and interact with protein targets to 
create a change. The drugs may alter the human body positively or negatively. Drug side 
effects are the undesirable alterations medications cause in the human body. These adverse 
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effects might range from moderate headaches to life-threatening reactions like cardiac 
arrest, malignancy, and death. They differ depending on the person’s age, gender, stage of 
sickness, and other factors (Kuijper et al. 2019). In the laboratory, to determine whether the 
medications have any unfavorable side effects, several tests are conducted on them. How-
ever, these examinations are both pricey and additionally lengthy. Recently, many compu-
tational algorithms for detecting medication adverse effects have been created. Computa-
tional methodologies are replacing laboratory experiments.

On the other hand, these methods do not provide adequate data to predict drug–drug 
interactions (DDIs). The phenomenon of DDIs is discussed in Fig. 12. The desired effects 
of a drug resulting from its interaction with the intended target and the unfavorable reper-
cussions emerging from drug interactions with off targets make up a drug’s entire reaction 
on the human body (undesirable effects). Even though A medication has a strong affinity 
for binding to one target, it binds to several proteins as well with varied affinities, which 
might cause adverse consequences (Liu et al. 2021). Predicting DDIs can assist in reducing 
the likelihood of adverse reactions and optimizing the medication development and post-
market monitoring processes (Arshed et al. 2022). Side effects of DDIs are often regarded 
as the leading cause of drug failure in pharmacological development. When drugs have 
major side effects, the market is quickly removed from them. As a result, predicting side 
effects is a fundamental requirement in the drug discovery process to keep drug develop-
ment costs and timelines in check and launch a beneficial drug in terms of patient health 
recovery.

Furthermore, the average drug research and development cost is $2.6 billion (Liu et al. 
2019). As a result, determining the possibility of negative consequences is important for 
lowering the expense and risk of medication development. The researchers use various 
computer tools to speed up the process. In pharmacology and clinical application, DDI pre-
diction is a difficult topic, and correctly detecting possible DDIs in clinical studies is cru-
cial for patients and the public. Researchers have recently produced a series of successes 
utilizing deep learning as an AI technique to predict DDIs by using drug structural proper-
ties and graph theory (Han et  al. 2022). AI successfully detected potential drug interac-
tions, allowing doctors to make informed decisions before prescribing prescription combi-
nations to patients with complex or numerous conditions (Fokoue et al. 2016).

Therefore, this section comprehensively reviews the researchers’ most popular DL algo-
rithms to predict DDIs.

In 2016, Tiresias is a framework proposed by Achille Fokoue et al. (2017) for discover-
ing DDIs. The Tiresias framework uses a large amount of drug-related data as input to gen-
erate DDI predictions. The detection of the DDI approach begins using input data that has 
been semantically integrated, resulting in a knowledge network that represents drug prop-
erties and interactions using additional components like enzymes, chemical structures, and 
routes. Numerous similarity metrics between all pharmacological categories were deter-
mined using a knowledge graph in a scalable and distributed setting. To forecast the DDIs, 
a large-scale logistic regression prediction model employs calculated similarity metrics. 
According to the findings, the Tiresias framework was proven to help identify new interac-
tions between currently available medications and freshly designed and existing drugs. The 
suggested Tiresias model’s necessity for big, scaled medication information was negative, 
resulting in the developed model’s high cost.

In 2017, Reza et  al. (2017) developed a computational technique for predicting DDIs 
based on functional similarities among all medicines. Several major biological aspects 
were used to create the suggested model: carriers, enzymes, transporters, and targets 
(CETT). The suggested approach was implemented on 2189 approved medications, for 
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which the associated CETTs were obtained, and binary vectors to find the DDIs were cre-
ated. Two million three hundred ninety-four thousand seven hundred sixty-seven potential 
drug–drug interactions were assessed, with over 250,000 unidentified possible DDIs dis-
covered. Inner product-based similarity measures (IPSMs) offered good values predicted 
for detecting DDIs among the several similarity measures used. The lack of pharmaco-
logical data was a key flaw in this strategy, which resulted in the erroneous detection of all 
potential pairs of DDIs.

In 2018, Ryu et  al. (2018) proposed a model that predicts more DDI kinds using the 
drug’s chemical structures as inputs and applied multi-task learning to DDI type prediction 
in the same vein Decagon (Zitnik et al. 2018) models polypharmacy side effects using a 
relational GNN. To comprehend the representations of intricate nonlinear pharmacological 
interactions, Chu et al. (2018) utilized an auto-encoder for factoring. To predict DDIs, Liu 
et  al. (2019c) presented the DDI-MDAE based on shared latent representation, a multi-
modal deep auto-encoder. Recently, interest in employing graph neural networks (GNNs) 
to forecast DDI has increased. Distinct aggregation algorithms lead to different versions 
of GNNs to efficiently assemble the vectors of its neighbors’ feature vectors (Asada et al. 
2018) uses a convolutional graph network (GCN) to encode the molecular structures to 
extract DDIs from text. Furthermore, Ma et al. (2018) has incorporated attentive Multiview 
graph auto-encoders into a coherent model.

Chen (2018) devised a model for predicting Adverse Drug Reactions (ADR). SVM, LR, 
RF, and GBT were all used in the predictive model. The DEMO dataset, which contains 
properties such as the patient’s age, weight, and sex, and the DRUG dataset, which includes 
features such as the drug’s name, role, and dosage, were employed in this model. Males 
make up 46% of the sample, while females make up 54%. The developed model had a fair 
forecasting accuracy for a representative sample set. Furthermore, the outputs revealed that 
the suggested model is only accurate for a significant number of datasets.

To anticipate the possible DDI, Kastrin et  al. (2018) employed statistical learning 
approaches. The DDI was depicted as a complex network, with nodes representing medica-
tions and links representing their potential interactions. On networks of DDIs, the proce-
dure for predicting links was represented as a binary classification job. A big DDI database 
was picked randomly to forecast. Several supervised and unsupervised ML approaches, 
such as SVM, classification tree, boosting, and RF, are applied for edge prediction in vari-
ous DDIs. Compared to unsupervised techniques, the supervised link prediction strategy 

Fig. 12  Drug binding with proteins and DDI side effects
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generated encouraging results. To detect the link between the pharmaceuticals, The pro-
posed method necessitates Unified Medical Language System (UMLS) filtering, which 
provided a dilemma for the scientists. Furthermore, the suggested system only considers 
fixed network snapshots, which is problematic for DDI’s system because It’s a fluid system.

In 2019, Lee et al. (2019) proposed a deep learning system for accurately forecasting 
the results of DDIs. To learn more about the pharmacological effects of a variety of DDIs, 
an assortment of auto-encoders and a deep feed-forward neural network was employed 
in the suggested method that were honed utilizing a mix of well-known techniques. The 
results revealed that using SSP alone improves GSP and TSP prediction accuracy, and 
the autoencoder is more powerful than PCA at reducing profile features. In addition, the 
model outperformed existing approaches and included numerous novel DDIs relevant to 
the current study Yue et al. (2020) combines numerous graphs embedding methods for the 
DDI job, while models DDI as link prediction with the help of a knowledge graph (Karim 
et al. 2019). There’s also a system for co-attention (Andreea and Huang 2019), which pre-
sented a deep learning model based solely on side-effect data and molecular drug structure. 
CASTER in Huang et al. (2020) also based on drug chemical structures, develops a frame-
work for dictionary learning to anticipate DDIs (Chu et al. 2019) and proposes using semi-
supervised learning to extract meaningful information for DDI prediction in both labeled 
and unlabeled drug data. Shtar et  al. (2019) used a mix of computational techniques to 
predict medication interactions, including artificial neural networks and graph node factor 
propagation methods such as adjacency matrix factorization (AMF) and adjacency matrix 
factorization with propagation (AMFP). The Drug-bank database was used to train the 
model, containing 1142 medications and 45,297 drug drugs. With 1442 drugs and 248,146 
drug–drug interactions, the trained model was tested from the drug bank’s most recent ver-
sion. AMF and AMFP were also used to develop an ensemble-based classifier, and the 
outcomes were assessed using the receiver operating characteristic (ROC) curve. The find-
ings revealed that the suggested a classifier that uses an ensemble delivers important drug 
development data and noisy data for drug prescription. In addition, drug embedding, which 
was developed during the training of models utilizing interaction networks, has been made 
available. To anticipate adverse drug events caused by DDIs, Hou et al. (2019) suggested 
a deep neural network architecture model. The suggested model is based on a database of 
5000 medication codes obtained from Drug Bank. Using the computed features, it discov-
ers 80 different types of DDIs. Tensor Flow-GPU was also used to create the model, which 
takes 4432 drug characteristics as input.

Medicines for inflammatory bowel disease (IBD) can predict how they will react; the 
trained model has an accuracy of 88 percent. The findings also revealed that the model per-
forms best when many datasets are used. Detecting negative effects of drugs with a DNN 
Model was proposed by Wang et al. (2019). The model predicts ADRs by using synthetic, 
biological, and biomedical knowledge of drugs. Drug data from SIDER databases was also 
incorporated into the model. The proposed system’s performance was improved by distrib-
uting. Using a word-embedding approach, determine the association between medications 
using the target drug representations in a vector space. The suggested system’s fundamen-
tal flaw was that it only worked well with ordinary SIDER databases.

In 2020, numerous AI-based methods were developed for DDI event prediction, includ-
ing evaluating chemical structural similarity using neural graph networks (Huang et  al. 
2020). Attempts to forecast DDI utilizing different data sources have also been made, such 
as leveraging similarity features to create pharmacological features for the DDI job predict-
ing occurrences (Deng et al. 2020).
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With the help of word embeddings, part-of-speech tags, and distance embeddings. Bai 
et  al. (2020) suggested a deep learning technique that executes the DDI extraction task 
and supports the drug development cycle and drug repurposing. According to experimental 
data, the technique can better avoid instance misclassifications with minimal pre-process-
ing. Moreover, the model employs an attention technique to emphasize the significance of 
each hidden state in the Bi-LSTM layers.

A tool for extracting features regarding a graph convolutional network (GCN) and a 
predictor based on a DNN. Feng et al. (2020) suggested DPDDI, an effective and robust 
approach for predicting potential DDIs by utilizing data from the DDI network lack-
ing a thought of drug characteristics (i.e., drug chemical and biological properties). The 
proposed DPDDI is a useful tool for forecasting DDIs. It should benefit from other DDI-
related circumstances, such as recognizing unanticipated side effects and guiding drug 
combinations. The disadvantage of this paradigm is that it ignores drug characteristics.

Zaikis and Vlahavas (2020), by developing a bi-level network with a more advanced 
level reflecting the network of biological entities’ interactions, suggested a multi-level 
GNN framework for predicting biological entity links. Lower levels, however, reflect indi-
vidual biological entities such as drugs and proteins, although the proposed model’s accu-
racy needs to be enhanced.

In 2021, To overcome the DDI prediction, Lin et al. (2021) suggested an end-to-end sys-
tem called Knowledge Graph Neural Network (KGNN). KGNN expands the use of spatial 
GNN algorithms to the knowledge graph by selectively various aggregators of neighbor-
hood data, allowing it to learn the knowledge graph’s topological structural information, 
semantic relations, and the neighborhood of drugs and drug-related entities. Medical risks 
are reduced when numerous medications are used correctly, and drug synergy advantages 
are maximized. For multi-typed DDI pharmacological effect prediction, Yue et al. (2021) 
used knowledge graph summarization. Lyu et al. (2021) also introduced a Multimodal Deep 
Neural Network (MDNN) framework for DDI event prediction. On the drug knowledge 
graph, a graph neural network was used, MDNN effectively utilizes topological informa-
tion and semantic relations. MDNN additionally uses joint representation structure informa-
tion, and heterogeneous traits are studied, which successfully investigates the multimodal 
data’s complementarity across modes. Karim et al. (2019) built a knowledge graph that used 
CNN and LSTM models to extract local and global pharmacological properties across the 
network. DANN-DDI is a deep attention neural network framework proposed by Liu et al. 
(2021). To anticipate unknown DDIs, it carefully incorporates different pharmacological 
properties (Chun and Yi-Ping Phoebe 2021) and developed a deep hybrid learning (DL) 
model to provide a descriptive forecasting of pharmacological adverse reactions. It was one 
of the initial hybrid DL models through conception models that could be interpreted. The 
model includes a graph CNN through conception models to improve the learning efficiency 
of chemical drug properties and bidirectional long short-term memory (BiLSTM) recurrent 
neural networks to link drug structure to adverse effects. After concatenating the outputs 
of the two networks (GCNN and BiLSTM), a fully connected network is utilized to fore-
cast pharmacological adverse reactions. Regardless of the classification threshold, the model 
obtains an AUC of 0.846. It has a 0.925 precision score. Even though a tiny drug data set 
was used for adverse drug response (ADR) prediction, the Bilingual Evaluation Understudy 
(BLEU) concluded results were 0.973, 0.938, 0.927, and 0.318, indicating considerable 
achievements. Furthermore, the model can correctly form words to explain pharmacological 
adverse reactions and link them to the drug’s name and molecular structure. The projected 
drug structure and ADR relationship will guide safety pharmacology research at the preclin-
ical stage and make ADR detection easier early in the drug development process. It can also 
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aid in the detection of unknown ADRs in existing medications. DDI extraction using a deep 
neural network model from medical literature was proposed by Mohsen and Hossein (). This 
model employs an innovative approach of attracting attention to improve the separation of 
essential words from other terms based on word similarity and location concerning candi-
date medications. Before recognizing the type of DDIs, this method calculates the results of 
a bi-directional long short-term memory (Bi-LSTM) model’s attention weights in the deep 
network architecture. On the standard DDI Extraction 2013 dataset, the proposed approach 
was tested. According to the findings of the experiments, they were able to get an F1-Score 
of 78.30, which is comparable to the greatest outcomes for stated existing approaches.

In 2022, Pietro et al. (2022) introduced DruGNN, a GNN-based technique for predicting 
DDI side effects. Each DDI corresponds to a class in the prediction, a multi-class, multi-
label node classification issue. To forecast the side effects of novel pharmaceuticals, they 
use a combination inductive-transudative learning system that takes advantage of drug and 
gene traits (induction path) and knowledge of known drug side effects (transduction path). 
The entire procedure is adaptable because the base for machine learning can still be used if 
the graph dataset is enlarged to include more node properties and associations. Zhang et al. 
(2022) proposed CNN-DDI, a new semi-supervised algorithm for predicting DDIs that 
uses a CNN architecture. They first extracted interaction features from pharmacological 
categories, targets, pathways, and enzymes as feature vectors. They then suggested a novel 
convolution neural network as a predictor of DDIs-related events based on feature repre-
sentation. Five convolutional layers, two full-connected layers, and a CNN-based SoftMax 
layer make up the predictor. The results reveal that CNN-DDI superior to other cutting-
edge techniques, but it takes longer to complete (Jing et al. 2022) presented DTSyn. This 
unique dual-transformer-based approach can select probable cancer medication combina-
tions. It uses a multi-head attention technique to extract chemical substructure-gene, chem-
ical-chemical, and chemical-cell-line connections. DTSyn is the initial model that incorpo-
rates two transformer blocks to extract linkages between interactions between genes, drugs, 
and cell lines, allowing a better understanding of drug action processes. Despite DTSyn’s 
excellent performance, it was discovered that balanced accuracy on independent data sets 
is still limited. Collecting more training data is expected to solve the problem. Another 
issue is that the fine-granularity transformer was only trained on 978 signature genes, 
which could result in some chemical-target interactions being lost.

Furthermore, DTSyn used expression data as the only cell line attributes. To fully repre-
sent the cell line, additional omics data may be added going forward, including methylation 
and genetic data. He et al. (2022) proposed MFFGNN, a new end-to-end learning frame-
work for DDI forecasting that can effectively combine information from molecular drug 
diagrams, SMILES sequences, and DDI graphs. The MFFGNN model used the molecular 
graph feature extraction module to extract global and local features from molecular graphs.

They run thorough tests on a variety of real-world datasets. The MFFGNN model rou-
tinely beats further cutting-edge models, according to the findings. Furthermore, the mod-
ule for multi-type feature fusion configures the gating mechanism to limit the amount of 
neighborhood data provided to the node.

4.4  Drug–drug similarity prediction using DL

Drug similarity studies presume that medications with comparable pharmacological quali-
ties have similar activation mechanisms, and side effects are used to treat problems like 
each other (Brown 2017; Zeng et al. 2019).
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The drug-pharmacological similarity is critical for various purposes, including identi-
fying drug targets, predicting side effects, predicting drug–drug interactions, and reposi-
tioning drugs. Features of the chemical structure (Lu et al. 2017; O’Boyle 2016), protein 
targets (Vilar 2016; Wang et al. 2014), side-effect profiles (Campillos et al. 2008; Tatonetti 
et  al. 2012), and gene expression profiles (Iorio et  al. 2010) provide a multi-perspective 
viewpoint for forecasting medications that are similar and can correct for data gaps in dif-
ferent data sources and offer fresh perspectives on drug repositioning and other uses. The 
main idea of drug–drug similarity is presented in Fig. 13. The vector represents the drug 
features, and the links reflect the similarity between the two drugs.

4.4.1  Drug similarity measures

The similarity estimations are calculated based on chemical structure, target protein 
sequence-based, target protein functional, and drug-induced pathway similarities.

4.4.1.1 The similarity in  chemical structure DrugBank (2019) provides tiny molecule 
medicine chemical structures in SDF molecular format. Invalid SDFs can be recognized 
and eliminated, such as those with a NA value or fewer than three columns in atom or 
bond blocks. For valid compounds, atom pair descriptors can be computed, pairwise 
comparison of compounds, δc (di, dj), was evaluated using atom pairs using the Tanimoto 
coefficient, which is defined as the number of atom pairs in each fraction shared by two 
different compounds divided by their union (Eq. 1).

where  APi and  APj are atom pairs from pharmaceuticals  di and dj, respectively, the numer-
ator is the total number of atom pairs in both compounds, while the denominator is the 
number of common atom pairs in both compounds.

4.4.1.2 Target protein sequence‑based similarity DrugBank provides all small mole-
cule drugs have target sequences in FASTA format. The basic Needleman-Wunsch et al. 
(1970) dynamic programming approach for global alignment can be used to compare 
pairwise protein sequences. The proportion of pairwise sequence identity (Raghava 
2006) can be represented as the corresponding sequence similarity. Equation 2 was used 
to calculate drug–drug similarity based on target sequence similarities:

where δt (di, dj) denotes target-based similarity between medicines di and dj. Drugs di 
target a group of proteins known as Ti. Tj is a set of proteins that pharmaceuticals dj target 
and S(x,y) is a similarity metric based on symmetric sequences between two targeted pro-
teins, x ∈ Ti and y ∈ Tj. Overall, Eq. 2 calculates the average of the best matches, wherein 
each first medicine’s target is only connected to the second medicine’s most comparable 
phrase, and vice versa.

(1)�c(di, dj) =
|||APi ∩ APj

|||
/|||APi ∪ APj

|||

(2)�t

�
di, dj

�
=

�∑
x∈Ti

max∀y∈Tj
{S(x, y)} +

∑
x∈Tj

max∀x∈Ti
{S(y, x)}

�

�
��Ti

��∗
���Tj

���
�
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4.4.1.3 Target protein functional similarity Protein targets that are overrepresented by 
comparable biological functions and have similar sequences imply shared pharmacological 
mechanisms and downstream effects (Passi et al. 2018). As a result, each protein has a set of 
Gene Ontology (GO) concepts from all three categories associated with it, such as cellular 
components (CC), molecular functions (MF), and biological processes (BP). We filtered 
out GO keywords that were either very specialized (with 15 linked genes) or very general 
(with 100 genes). DrugBank (2019) provided the Human Protein–Protein Interaction (PPI) 
network. Wang et al. (2007) proposed leveraging the topology of the GO graph structure to 
determine the semantic similarity of their linked GO terms, which was used to determine 
how functionally comparable two drugs are, such as δf  (di,  dj). Using a best-match average 
technique, any two GO keywords are compared for pairwise semantic similarity connected 
with di and  dj were aggregated into a single semantic similarity measure and presented into 
a final similarity matrix.

4.4.1.4 Drug‑induced pathway similarity A medication pair that triggers similar pathways 
or overlaps shows that the drugs’ mechanisms of action are similar, which is useful informa-
tion for drug similarities and repositioning research (Zeng et al. 2015). Kanehisa and Goto 
(2000) was used to find the pathways activated by each small molecule medication. Using 
dice similarity, the similarity in pairs of any two options was calculated based on their con-
stituent genes’ closeness. After that, a pathway-based similarity score was calculated for 
each medication pair  di and  dj, i.e., δp (di, dj), was calculated using Eq. 3:

where Pi and Pj are a group of drug-induced pathways di and dj, respectively; x and 
y are two paths represented by a group of genes that make up their constituents, and 
DSC(x, y) = 2|x ∩ y|∕(|x| + |y|) is the probability of a pair of dice matching, this deter-
mines how much the two trajectories overlap. When no gene is shared by any two pathways 

(3)�p

(
di, dj

)
= max

∀x∈Pi,∀y∈Pj

{DSC(x, y)},

Fig. 13  Drug–drug similarity main idea
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produced by the comparing drug pair, the similarity is set to 0.0. Overall, Eq. 3 implies that 
if two medications stimulate one or more identical pathways, the maximum pathway-based 
similarity will be achieved (s).

4.4.2  DL for drug similarity prediction

Wang et al. (2019) introduced a gated recurrent units (GRUs) model that employs similar-
ity to predict drug–disease interactions. In this approach, CDK turned the SMILES into 2D 
chemical fingerprints, and the Jaccard score of the 2D chemical fingerprints was used to 
compare the two medicines. This section comprehensively reviews the researchers’ most 
popular DL algorithms to predict drug similarity.

Hirohara et al. (2018) employed a CNN to learn molecular representation. The network 
is given the molecule’s SMILES notation as input to feed into the convolutional layers in 
this scenario. The TOX 21 dataset was used.

To conduct similarity analysis, Cheng et  al. (2019) used the Anatomical Therapeutic 
Chemical (ATC) based on the drug ATC classification systems and code-based commonal-
ities of drug pairs. The authors created interaction networks, performed drug pair similarity 
analyses, and developed a network-based methodology for identifying clinically effective 
treatment combinations for a specific condition.

Xin et  al. (2016) presented a Ranking-based k-Nearest Neighbour (Re-KNN) tech-
nique for medication repositioning. The method’s key feature combines the Ranking 
SVM (Support Vector Machine) algorithm and the traditional KNN algorithm. Chemi-
cal structural similarity, target-based similarity, side-effect similarity, and topological 
similarity are the types of similarity computation methodologies they used. The Tani-
moto score was then used to determine the similarity between the two profiles.

Seo et al. (2020) proposed an approach that combined drug–drug interactions from 
DrugBank, network-based drug–drug interactions, polymorphisms in a single nucleo-
tide, and anatomical hierarchy of side effects, as well as indications, targets, and chemi-
cal structures.

Zeng et al. (2019) developed an assessment of clinical drug–drug similarity derived 
from data from the clinic and used EHRs to analyse and establish drug–diagnosis con-
nections. Using the Bonferroni adjusted hypergeometric P value, they created connec-
tions between drugs and diagnoses in an EMR dataset. The distances between medica-
tions were assessed using the Jaccard similarity coefficient to form drug clusters, and a 
k-means algorithm was devised.

Dai et al. (2020) reviewed, summarized representative methods, and discussed appli-
cations of patient similarity. The authors talked about the values and applications of 
patient similarity networks. Also, they discussed the ways to measure similarity or dis-
tance between each pair of patients and classified it into unsupervised, supervised, and 
semi-supervised.

Yan et  al. (2019) created BiRWDDA, a new computational methodology for medi-
cation repositioning that combines bi-random walk and various similarity measures to 
uncover potential correlations between diseases and pharmaceuticals. First drug and 
disease–disease similarities are assessed to identify optimal drug and disease similari-
ties. The information entropy is evaluated between the similarity of medicine and dis-
ease to determine the right similarities. Four drug–drug similarity metrics and three 
disease–disease similarity measurements were calculated depending on some drug- and 
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disease-related characteristics to create a heterogeneous network. The drug’s protein 
sequence information, the extracted drug interaction from DrugBank then utilized 
the Jaccard score to determine this similarity, the chemical structure, derived canoni-
cal SMILES from DrugBank, and the side effect, respectively the four drug–drug 
similarities.

Yi et al. (2021) constructed the model of a deep gated recurrent unit to foresee drug–dis-
ease interactions that likely employ a wide range of similarity metrics and a kernel with a 
Gaussian interaction profile. Based on their chemical fingerprints, the similarity measure 
is utilized to detect a distinguishing trait in medications. Meanwhile, based on established 
disease–disease relationships, the Gaussian interactions profile kernel is used to derive 
efficient disease features. After that, a model with a deep gated recurrent cycle is created 
to anticipate drug-disease interactions that could occur. The outputs of the experiments 
showed that the suggested algorithm could be used to anticipate novel drug indications 
or disease treatments and speed up drug repositioning and associated drug research and 
discovery.

To forecast DDIs, Yan et  al. (2022) suggested a semi-supervised learning technique 
(DDI-IS-SL). DDI-IS-SL uses the cosine similarity method to calculate drug feature simi-
larity by combining chemical, biological, and phenotypic data. Drug chemical structures, 
drug–target interactions, drug enzymes, drug transporters, drug routes, drug indications, 
drug side effects, harmful effects of drug discontinuation, and DDIs that have been identi-
fied are all included in the integrated drug information.

Heba et al. (2021) used DrugBank to develop a machine learning framework based on sim-
ilarities called "SMDIP" (Similarity-based ML for Drug Interaction Prediction), where they 
calculated drug–drug similarity utilizing a Russell–Rao metric for the biological and structural 
data that is currently accessible on DrugBank to represent the limited feature area. The DDI 
classification is carried out using logistic regression, emphasizing finding the main predictors 
of similarity. The DDI key features are subjected to six machine learning models (NB: naive 
Bayes; LR: logistic regression; KNN: k-nearest neighbours; ANN: neural network; RFC: ran-
dom forest classifier; SVM: support vector machine).

For large-scale DDI prediction, Vilar et  al. (2014) provided a procedure combining five 
similar drug fingerprints (Two-dimensional structural fingerprints, fingerprinting of interac-
tion profiles, fingerprints of the target profile, Fingerprints of ADE profiles, and pharmacoph-
oric techniques in three dimensions).

Song et  al. (2022) used similarity theory and a convolutional neural network to create 
global structural similarity characteristics. They employed a transformer to extract and pro-
duce local chemical sub-structure semantic characteristics for drugs and proteins. To create 
drug and protein global structural similarity characteristics, The Tanimoto coefficient, Leven-
shtein distance, and CNN are all utilized in this study.

5  Benchmark datasets and databases

Drug development or discovery has been based on a range of direct and indirect data sources 
and has regularly demonstrated strong predictive capability in finding confirmed repositioning 
candidates and other applications for computer-aided drug design. This section reviews the 
most important and available benchmark datasets and databases used in the drug discovery 
problem and which the researchers may need according to each problem category. Thirty-five 
datasets are summarized in Table 3.



 H. Askr et al.

1 3

6  Evaluation metrics

Performance measures are required for evaluating machine learning models (Benedek et al. 
2021). The measures serve as a tool for comparing different techniques. They aid in compar-
ing many approaches to identify the best one for execution. This section describes the many 
metrics defined for the four categories of drug discovery difficulties below.

Table 4 shows the metrics employed in drug discovery problems—understanding the met-
rics aids in assessing the effectiveness of various prediction systems. True positives (TP) are 
drug side effects that have been recognized appropriately, False positives (FP) are adverse 
pharmacological effects that aren’t present but were detected by the model, and True nega-
tives (TN) are pharmacological side effects that do not exist but that the model failed to detect. 
False negatives (FN) are adverse pharmacological effects the model did not predict.

7  Drug dosing optimization

Drugs are vital to human health and choosing the proper treatment and dose for the right 
patient is a constant problem for clinicians. Even when taken as studied and prescribed, 
drugs have adverse impact profiles with varying response rates. As a result, all medications 
must be well-managed, especially those utilized in treating critical ailments or with a tight 
exposure window between efficacy and toxicity. Clinicians follow typical guidelines for 
the first dosage, which is not always optimal or secure for every patient, especially if the 
medicine no longer is evaluated in various dosages for various patient types. Precision dos-
age can revolutionize by increasing perks in health care while reducing drug therapy risks. 
While precise dosing will probably influence some pharmaceuticals significantly, perhaps 
not essential or practical to apply to all drugs or therapeutic classes. As a result, recogniz-
ing the characteristics that make medications suitable for precision dosage targets will aid 
in directing resources to where they’ll have the most impact. Precision-dosing meds with 
a high priority and therapeutic classes could be crucial in achieving increased health care 
performance, safety, and cost-effectiveness (Tyson et al. 2020).

Due to standard, fixed dosing procedures or gaps in knowledge, imprecise drug dosing 
in specific subpopulations increases the risk of potentiating adverse effects due to supra-
therapeutic or subtherapeutic concentrations (Watanabe et al. 2018). Currently, the Food 
and Medicine Administration (FDA) simply requires a drug to be statistically better than a 
non-inferior to placebo of the existing treatment standard. This does not guarantee that the 
medicine will benefit most patients in clinical trials, especially if malignancies treatment 
can be tough, like diffuse intrinsic pontine glioma (DIPG) and unresectable meningioma, 
where rates of therapy response can be exceedingly low (Fleischhack et al. 2019).

There are essential aspects for dose optimization (https:// frien dsofc ancer resea rch. org/ 
wpcon tent/ uploa ds/ Optim izing_ Dosing_ in_ Oncol ogy_ Drug_ Devel opment. pdf) that vary 
based on the product, the target population, and the available data to find the most effective 
dose, which varies based on the product, the target population, and the available data:

• Therapeutic properties: Drug features such as small molecule vs. large molecule and 
agonist vs. antagonist impact how drugs interact with the body regarding safety and 
efficacy. The therapeutic characteristics impact the first doses used in dose-finding 
studies and the procedures used to determine which doses should be used in registra-
tional trials.

https://friendsofcancerresearch.org/wpcontent/uploads/Optimizing_Dosing_in_Oncology_Drug_Development.pdf
https://friendsofcancerresearch.org/wpcontent/uploads/Optimizing_Dosing_in_Oncology_Drug_Development.pdf
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• Patient populations: Patient demographics vary depending on tumour kind, stage of 
disease, and comorbidities. Understanding how diverse factors influence the drug’s 
efficacy may justify modifying the dose correspondingly, especially in the context of 
enlarged clinical trial populations.

• Supplemental versus original approval: Differences in disease features and patient 
demographics between tumour types and treatment settings, such as monotherapy ver-
sus combination therapy, must be considered when assessing whether additional dose 
exploration is required for a supplemental application. In cases when more dose explo-
ration is required, the research design can include previous exposure-response knowl-
edge from the initial approval.

8  Drug discovery and XAI

The topic of XAI addresses one of the most serious flaws in ML and DL algorithms: model 
interpretability and explain ability. Understanding how and why a prediction is formed 
becomes increasingly crucial as algorithms grow more sophisticated and can forecast with 
greater accuracy. It would be impossible to trust the forecasts of real-world AI applica-
tions without interpretability and explain ability. Human-comprehensible explanations will 
increase system safety while encouraging trust and sustained acceptance of machine learn-
ing technologies (). XAI has been studied to circumvent the limitations of AI technolo-
gies due to their black-box nature. In contrast to making decisions and model justifications 
which may be provided by AI approaches like DL and XAI (Zhang et al. 2022). Attention 
has been attracted to XAI approaches (Lipton 2018; Murdoch et al. 2019) to compensate 
for the lack of interpretability of some ML models as well as to aid human decision-making 
and reasoning (Goebel et al. 2018). The purpose of presenting relevant explanations along-
side mathematical models is to help students understand them better by (1) Making the 
decision-making process more transparent (Doshi-Velez and Kim 2017), (2) correct predic-
tions should not be made for the wrong motives (Lapuschkin et al. 2019), (3) avoid biases 
and discrimination that are unjust or unethical (Miller 2019), and (4) close the gap between 
ML and other scientific disciplines. Effective XAI can also help scientists in navigating the 
scientific process (Goebel et al. 2018), enabling people to fine-tune their understanding and 
opinions on the process under inquiry (Chander et al. 2018). We hope to provide an over-
view of recent XAI drug discovery research in this section.

XAI has a place in drug development. While the precise definition of XAI is still up for 
controversy (Guidotti et al. 2018), the following characteristics of XAI are unquestionably 
beneficial in applications of drug design (Lipton 2018):

• Transparency is accomplished by understanding how the system came to a specific 
result.

• The explanation of why the model’s response is suitable serves as justification. It is 
instructive to provide new information to human decision-makers.

• Determining the reliability of a prediction to estimate uncertainty.

The molecular explanation of pharmacological activity is already possible with XAI 
(Xu et al. 2017; Ciallella and Zhu 2019), as well as drug safety and organic synthesis plan-
ning (Dey et al. 2018). If It’s working overtime, XAI will be important in processing and 
interpreting increasingly complex chemical data, as well as creating new pharmaceutical 
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ideas, all while preventing human bias (Boobier et  al. 2017). Application-specific XAI 
techniques are being developed to quickly reply to unique scientific issues relating to the 
Pathophysiology and biology of the human may be boosted by pressing drug discovery dif-
ficulties such as the coronavirus pandemic.

AI tools can increase their prediction performance by increasing model complexity. As 
a result, these models become opaque, with no clear grasp of how they operate. Because of 
this ambiguity, AI models are not generally utilized in important industries such as medi-
cal care. As a result, XAI focuses on understanding what goes into AI model prediction to 
meet the demand for transparency in AI tools. AI model interpretability approaches can 
be categorized depending on the algorithms used, a scale for interpreting, and the kind 
of information (Adadi and Mohammed 2018). Regarding the objectives of interpretabil-
ity, approaches grouped as white-box model development, black-box model explanation, 
model fairness enhancement, and predictive sensitivity testing (Guidotti et al. 2018).

According to the gradient-based attribution technique (Simonyan et al. 2014), the net-
work’s input features are to blame for the forecast. Because this strategy is commonly 
employed when producing a DNN system’s predictions, it may be a suitable solution for 
various black-box DNN models in DDI prediction (Quan, et al. 2016; Sun et al. 2018). In 
addition, DeepLIFT is a frequent strategy for implementing on top of DNN models that 
have been demonstrated to be superior to techniques based on gradients (Shrikumar et al. 
2017). As opposed to that, the Guided Backpropagation model may be used to construct 
network architectures (Springenberg 2015). A convolutional layer with improved stride can 
be used instead of max pooling in CNN to deal with loss of precision. This method could 
be employed in CNN-based DDI prediction, as shown in Zeng et al. (2015).

Furthermore, in the Tao et al. (2016) was implemented neural networks that parse natu-
ral language. Using rationales, this method aimed to achieve the small pieces of input text. 
This method’s design comprises two parts: a generator and an encoder that seek for text 
subsets that are closely connected to the predicted outcome. Because NLP-based models 
are used to extract DDIs (Quan et al. 2016), the above methods should be examined for 
usage in improving the model’s clarity.

Aside from that, XAI has created methods for developing white-box models, includ-
ing linear, decision tree, rule-based, and advanced but transparent models. However, these 
approaches are receiving less attention due to their weak ability to predict, particularly in 
the NLP-based sector, such as in the DDIs the job of extracting. Several ideas to address 
AI fairness have also been offered. Nonetheless, while extracting DDIs, only a small num-
ber of these scholarly studies looked at non-tabular data impartiality, such as text-based 
data. Many DDIs experiments used the word embedding method (Quan et al. 2016; Zhang 
2020; Bolukbasi 2016). As a result, attempts to ensure fairness in DDI research should be 
considered more. To ensure the reliability of AI models, numerous methods also make an 
effort to examine the sensitivity of the models. Regarding their Adversarial Example-based 
Sensitivity Analysis, Zügner et al. (2018) used this model to explore graph-structured data. 
The technique looks at making changes to links between nodes or node properties to tar-
get node categorization models. Because graph-based methods are frequently utilized in 
DDIs research (Lin et al. 2021; Sun et al. 2020b), methods like those used in the previous 
study suggest that they might be used in a DDIs prediction model. In RNN, word embed-
ding perturbations (Miyato et al. 1605) are also worth addressing. Significantly, the input 
reduction strategy utilized by Feng et al. (2018) to expose hypersensitivity in NLP mod-
els could be applied to DDI extraction studies. The DDIs study of Schwarz et al. (2021) 
attempted to provide model interpretability using Attention ratings derived at all levels of 
modeling in their DDIs study. The significance of similarity matrices to the vectors for 
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medication depiction is determined using these scores, and drug properties that contribute 
to improved encoding are identified using these scores. This method makes use of data that 
travels through all tiers of the network.

Graph neural networks (GNNs) and their explain ability are rapidly evolving in the field 
of graph data. GNNExplainer in Ying et al. (2019) uses mask optimization to learn soft 
masks for edge and node attributes to elaborate on the forecasts. Soft masks have been 
initiated at random and regarded as trainable variables. After that, the masks are then 
combined in comparison to the first graph using multiplications on a per-element basis by 
GNNExplainer. After that, by enhancing the exchange of information between the forecasts 
from the first graph and the recently acquired graph, the masks are maximized. Even when 
various regularization terms, such as element-by-element entropy, motivate optimal dis-
guises for stealth, the resulting Masks remain supple.

In addition, because the masks are tuned for each input graph separately, it’s possible 
that the explanations aren’t comprehensive enough. To elaborate on the forecasts, PGEx-
plainer (Luo et  al. 2020) discovers approximated discrete edge masks. To forecast edge 
masks, it develops a mask predictor that is parameterized. It starts by concatenating node 
embeddings to get the embeddings for each edge in an input graph. The predictor then 
forecasts the chances of each edge being selected using the edge embeddings, that regarded 
as an evaluation of significance. The reparameterization approach is then used to sample 
the approximated discrete masks. Finally, the mutual information between the previous 
and new forecasts is optimized to train the mask predictor. GraphMask (Schlichtkrull et al. 
2010) describes the relevance of edges in each GNN layer after the fact. It uses a classifier, 
like the PGExplainer, to forecast if an edge may be eliminated and does not impact the 
original predictions. A binary concrete distribution (Louizos et al. 1712) and a reparam-
eterization method are used to roughly represent separate masks. The classifier is addition-
ally trained by removing a term for a difference, which evaluates the difference between 
network predictions over the entire dataset. ZORRO (Thorben et al. 2021) employs discrete 
masks to pinpoint key input nodes and characteristics. A greedy method is used to choose 
nodes or node attributes from an input network. ZORRO chooses one node characteristic 
with the greatest fidelity score for each stage. The objective function, fidelity score, meas-
ures the degree of the recent forecasts resemble the model’s original predictions by replac-
ing the rest of the nodes/features with random noise values and repairing chosen nodes/
features. The non-differentiable limitation of discrete masks is overcome because no train-
ing process is used.

Furthermore, ZORRO avoids the problem of "introduced evidence" by wearing protec-
tive masks. The greedy mask selection process, on the other hand, may result in optimal 
local explanations. Furthermore, because masks are generated for each graph separately, 
the explanations may lack a global understanding. Causal Screening (Xiang et  al. 2021) 
investigates the attribution of causality to various edges in the input graph. It locates the 
explanatory subgraph’s edge mask. The essential concept behind causal attribution is to 
look at how predictions change when an edge is added to the present explanatory subgraph, 
called the influence of causality. It examines the causal consequences of many edges at 
each step and selects one to include in the paragraph. It selects edges using the individual 
causal effect (ICE), which assesses the difference in information between parties after addi-
tional edges are introduced to the subgraph.

Causal Screening, like ZORRO, is a rapacious algorithm that generates undetectable 
masks without any prior training. As a result, it does not suffer due to the issue of the evi-
dence presented. However, it is possible to lack worldwide comprehension and be caught 
in optimum local explanations. SubgraphX (Yuan et  al. 2102) investigates deep graph 
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model subgraph-level explanations. It uses the Monte Carlo Tree Search (MCTS) method 
(Silver et  al. 2017) to effectively investigate various subgraphs by trimming nodes and 
choose the most significant subgraph from the search tree’s leaves as the explanation for 
the prediction.

Furthermore, the Shapley values can be used to update the mask generation algorithm’s 
objective function. Its produced subgraphs are more understandable by humans and suited 
for graph data than previous perturbation-based approaches. However, the computational 
cost is higher because the MCTS algorithm explores distinct subgraphs.

9  Success stories about using DL in drug discovery

Big pharmaceutical companies have migrated toward AI as DL methodologies have 
advanced, abandoning conventional approaches to maximize patient and company profit. 
AstraZeneca is a multinational, science-driven, worldwide pharmaceutical company that 
has successfully used artificial intelligence in each stage of drug development, from virtual 
screening to clinical trials. They could comprehend current diseases better, identify new 
targets, plan clinical trials with higher quality, and speed up the entire process by incor-
porating AI into medical science. AstraZeneca’s success is a shining illustration of how 
combining AI with medical science can yield incredible results. Their collaborations with 
other AI-based companies demonstrate their continual attempts to increase AI utilization. 
One such cooperation is with Ali Health, an Alibaba subsidiary that wants to provide AI-
assisted screening and diagnosis systems in China (Nag et al. 2022).

SARS-CoV-2 virus outbreak placed many businesses under duress to develop the best 
medicine in the shortest amount of time feasible. These businesses have turned to employ 
AI in conjunction based on the data available to attain their goals. Below are some exam-
ples of firms that have been successful in identifying viable strategies to combat the 
COVID-19 virus because of their efforts.

Deargen, a South Korean startup, developed the MT-DTI (Molecule Transformer Drug 
Target Interaction Model), a DL-based drug-protein interaction prediction model. In this 
approach, the strength of an interaction between a drug and its target protein is predicted 
using simplified chemical sequences rather than 2D or 3D molecular structures. A critical 
protein on the COVID-19-causing virus SARS-CoV-2 is highly likely to bind to and inhibit 
the FDA-approved antiviral drug atazanavir, a therapy for HIV. It also discovered three 
more antivirals, as well as Remdesivir, a not-yet-approved medicine that is currently being 
studied in patients. Deagen’s ability to uncover antivirals utilizing DL approaches is a sig-
nificant step forward in pharmaceutical research, making it less time-consuming and more 
efficient. If such treatments are thoroughly evaluated, there is a good chance that we will be 
able to stop the epidemic in its tracks (Beck et al. 2020; Scudellari 2020).

Another example is Benevolent AI, a biotechnology company in London leverages med-
ical information, AI, and machine learning to speed up health-related research. They’ve 
identified six medicines so far, one of which, Ruxolitinib, is claimed to be in clinical trials 
for COVID19 (Gatti et al. 2021). To find prospective medications that might impede the 
procedure for viral replication of SARS-CoV-2, The business has been utilizing a massive 
reservoir of information pertaining to medicine, together Utilizing data obtained from the 
scientific literature by their AI system and ML. They received FDA permission to use their 
planned Baricitinib medication in conjunction with Remdesivir, which resulted in a higher 
recovery rate for hospitalized COVID19 patients (Richardson et al. 2020).
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Skin cancer is a form of cancer that is very frequent around the globe. As the rate at 
which skin cancer continues to rise, it is becoming increasingly crucial to diagnose it ini-
tially developed, research demonstrate that early identification and therapy improve the 
survival rate of skin cancer patients. With the advancement of medical research and AI, 
several skin cancer smartphone applications have been introduced to the market, allowing 
people with worrisome lesions to use a specialized technique to determine whether they 
should seek medical care. According to studies, over 235 dermatology smartphone apps 
were developed between 2014 and 2017 (Flaten et al. 2020). Previously, they worked by 
sending a snapshot of the lesion over the internet to a health care provider. Still, thanks to 
smartphones’ internal AI algorithms, these applications can detect and classify images of 
lesions as high or low risk and Immediately assess the patient’s risk and offer advice. Skin-
Vison (Carvalho et al. 2019) is an example of a successful application.

10  Future challenges

10.1  Digital twinning in drug discovery

The development and implementation of Industry 4.0 emerging technologies allow for 
creation of digital twins (DTs), that promotes the modification of the industrial sector 
into a more agile and intelligent one. A DT is a digital depiction of a real entity that 
interacts in dynamic, two-way links with the original. Today, DTs are being used in a 
variety of industries. Even though the pharmaceutical sector has grown to accept digi-
tization to embrace Industry 4.0, there is yet to be a comprehensive implementation of 
DT in pharmaceutical manufacture. As a result, it is vital to assess the pharmaceutical 
industry’s success in applying DT solutions (Chen et al. 1088).

New digital technologies are essential in today’s competitive marketplaces to pro-
mote innovation, increase efficiency, and increase profitability (Legner et al. 2017). AI 
(Venkatasubramanian 2019), Internet of Things (IoT) devices (Venkatasubramanian 
2019; Oztemel and Gursev 2018), and DTs have all piqued the interest of governments, 
agencies, academic institutions, and corporations (Bao et  al. 2018). Industry 4.0 is a 
concept offered by a professional community to increase the level of automation to 
boost productivity and efficiency in the workplace.

This section provides a quick look at the evolution of DT and its application in phar-
maceutical and biopharmaceutical production. We begin with an overview of the tech-
nology’s principles and a brief history, then present various examples of DTs in phar-
macology and drug discovery. After then, there will be a discussion of the significant 
technical and other issues that arise in these kinds of applications.

10.1.1  History and main concepts of digital twin

The idea of making a "twin" of a process or a product returned to NASA’s Apollo pro-
ject in the late 1960s (Rosen et al. 2015; Mayani et al. 2018; Schleich et al. 2017), when 
it assembled two identical space spacecraft. In this scenario, the "twin" was employed to 
imitate the counterpart’s action in real-time.

The DT, according to Guo et al. (2018), is a type of digital data structure that is gen-
erated as a separate entity and linked to the actual system. Michael Grieves presented 
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the original meaning of a DT in 2002 at the University of Michigan as part of an indus-
try presentation on product lifecycle management (PLM) (Grieves 2014; Grieves and 
Vickers 2017; Stark et  al. 2019). However, the first actual use of this notion, which 
gave origin to the current moniker, occurred in 2010, when NASA (the United States 
National Aeronautics and Space Administration) attempted to create virtual spaceship 
simulators for testing (Glaessgen and Stargel 2012).

A digital reproduction or representation of a physical thing, process, or service is 
what a DT is in theory. It’s a computer simulation with unique features that dynamically 
connect the physical and digital worlds. The purpose of DTs is to model, evaluate, and 
improve a physical object in virtual space til it matches predicted performance, at which 
time it can be created or enhanced (if already built) in the real world (Kamel et al. 2021; 
Marr 2017).

Since then, DT technology has acquired popularity in both business and academia. 
Main components of DTs presently exist, as shown in Fig.  14. Still, the theoretical 
model comprises three parts: the real entity in the actual world, the digital entity in the 
virtual space, and the interconnection between them (Glaessgen and Stargel 2012).

In an ideal world, the digital component would have all the system’s information that 
could be acquired from its physical counterpart (Kritzinger et al. 2018). When integrated 
with AI, IoT, and other recent intelligent systems, a DT can forecast how an object or pro-
cess will perform.

10.1.2  Digital twin in pharmaceutical manufacturing

Developing a drug is lengthy and costly, requiring efforts in biology, chemistry, and manu-
facturing, and it has a low success rate. An estimated 50,000 hits (trial versions of com-
pounds that are subsequently tweaked to develop a medication in the future) are evaluated 
to develop a successful drug. Only one in every 12 therapeutic compounds, clinical trials 
have been performed on humans, makes it to market successfully. Toxicity (A medication’s 
capacity to offer a patient with respite and slow the progression of a disease) and lack of 
effectiveness contribute to more than 60% of all drug failures (Subramanian 2020).

Making the appropriate decisions about which targets, hits, leads, and compounds to 
pursue is important to a drug’s successful market introduction. However, the decision is 
based on in vitro (Experimental system in a test tube or petri dish.) and in vivo (experi-
ments in animals.) systems, both of which have a shaky correlation with clinical outcomes 
(Mak et al. 2014). Answers to the following inquiries would be provided by a perfect deci-
sion support system for drug discovery:

• What is the magnitude of any target’s influence on the desired clinical result?
• Is the potential compound changing the target enough to change clinical outcomes?
• Is the chemical sufficiently selective and free of side effects or harmful conse-

quences?
• Is the ineffectiveness attributable to the drug’s failure to reach its target?
• Has the trial chosen the appropriate dose and dosing regimen?
• Are there any surrogate or biomarkers such as cholesterol that serves as a proxy for the 

illness’s root cause that can forecast a drug’s success or failure?
• Have the correct patients been chosen for the study?
• Is it possible to identify hyper- and hypo-responders before the study begins?
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Therapeutic failures are prevalent and difficult to address, given the complex process of 
developing drugs based on the points above. This issue must be addressed by combining 
data and observations from many stages of the drug development process and develop-
ing a system that can forecast an experiment’s outcome or a chemical modification’s influ-
ence on a therapeutic molecule. This highlights the significance of DT in the field of drug 
discovery.

In the United States, funding organizations such as DARPA, NSF, and DOE have 
aggressively supported bioprocess modeling at the genomic and cellular levels, resulting 
in high-profile programs such as BioSPICE (Kumar and Feidler 2003). These groups have 
shown that smaller models built to answer specific issues can greatly influence drug devel-
opment efficiency. This would make it possible to apply the prediction methodology to 
various stages of the drug discovery and research process, including confirmation of the 
target, enhancing leads, and choosing candidates, Recognition of biomarkers, fabrication of 
assays and screens, and the improvement of clinical trials.

The pharmaceutical business is embracing the overall digitization trend in tandem with 
the US FDA’s ambition to establish an agile, adaptable pharmaceutical manufacturing sec-
tor that delivers high-quality pharmaceuticals without considerable regulatory scrutiny 
(O’Connor et al. 2016). Industries are beginning to implement Industry 4.0 and DT prin-
ciples and use them for development and research (Barenji et al. 2019; Steinwandter et al. 
2019; Lopes et al. 2019; Kumar et al. 2020; Reinhardt et al. 2020). Pharma 4.0 (Ierapetri-
tou et al. 2016) is a digitalization initiative that integrates Industry 4.0 with International 
Council for Harmonisation (ICH) criteria to model a combined operational model and pro-
duction control plan.

Fig. 14  Main components of DT



 H. Askr et al.

1 3

As shown in Fig. 15, live monitoring of the system `by the Process Analytical Tech-
nology (PAT), data collection from the machinery, the supplementary and finished goods, 
and a worldwide modelling and software for data analysis are some of the key require-
ments for achieving smart manufacturing with DT (Barenji et al. 2019). Quality-by-Design 
(QbD) and Continuous Manufacturing (CM) (Boukouvala et al. 2012), flowsheet modeling 
(Kamble et al. 2013), and PAT implementations (James et al. 2006) have all been used by 
the pharmaceutical industry to achieve this. Although some of the instruments have been 
thoroughly examined, DTs’ entire integration and development is still a work in progress.

The pharmaceutical industry has used PAT in different programs across the steps 
involved in producing drugs (Nagy et al. 2013). Even though this has resulted in a rise in 
the use of PAT instruments, their implementations are limited to research and development 
rather than manufacturing on a large scale (Papadakis et al. 2018). They have been success-
ful in decreasing production costs and enhancing product quality monitoring in the small 
number of examples where they have been used in manufacturing (Simon et al. 2019). The 
development of various PAT approaches, as well as their convincing implementation is a 
vital component of a scheme for surveillance and control (Boukouvala et al. 2012) and has 
given a foundation for obtaining essential data from the physical component.

Papadakis et  al. (2018) recently provided a framework for identifying efficient reac-
tion paths for pharmaceutical manufacture (Rantanen and Khinast 2015), which comprises 
modeling reaction route workflows discovery, analysis of reactions and separations, pro-
cess simulation, assessment, optimization, and the use (Sajjia et al. 2017).

To develop models, data-driven modeling methods require the gathering and using of 
many substantial experiments, and the resulting models are solely reliant on the datasets 
provided. Artificial neural networks (ANN) (Pandey et al. 2006; Cao et al. 2018), multivar-
iate statistical analysis, and in Monte Carlo Badr and Sugiyama (2020) are all commonly 
used in pharmaceutical manufacturing. These methods are less computationally costly, 
but the prediction outside the dataset space is frequently unsatisfactory due to the trained 
absence of underlying physics understanding in models. Using IoT devices in pharmaceuti-
cal manufacturing lines results in massive data collection volumes. The virtual component 
must receive this collection of process data and CQAs quickly and effectively. Addition-
ally, for accurate prediction, several pharmaceutical process models need material proper-
ties. As a result, to provide virtual component access to all datasets, a central database site 
is necessary (Lin-Gibson and Srinivasan 2019).

10.1.3  Digital twin in biopharmaceutical manufacturing

The synthesis of big molecule-based entities in various combinations that has applications 
in the treatment of inflammatory, microbial, and cancer issues, is the focus of biopharma-
ceutical manufacturing (Glaessgen and Stargel 2012; Narayanan et al. 2020). The demand 
for biologic-based medications has risen in recent years, necessitating greater production 
efficiency and efficacy (Kamel et  al. 2021). As a result, many businesses are switching 
from batch to continuous production and implementing intelligent manufacturing systems 
(Lin-Gibson and Srinivasan 2019). DT can aid in decision-making, risk analysis, product 
creation, and process prediction., which incorporates the physical plant, data collecting, 
data analysis, and system control (Tao et al. 2018).

biological products’ components and structures are intimately connected to treatment effec-
tiveness (Read et al. 2010) and are very sensitive to cell-line. Operating conditions thorough 



Deep learning in drug discovery: an integrative review and future…

1 3

actual plant’s virtual description in a simulation environment is required to apply DT in biop-
harmaceutical manufacturing (Tao et al. 2018). This means that each unit activity inside an 
integrated model’s simulation should accurately reflect the crucial process dynamics. Previous 
reviews Narayanan et al. (2020) Tang et al. (2020) Farzan et al. (2017) Baumann and Hubbuch 
(2017) Smiatek et al. (2020) and Olughu et al. (2019) focused on process modelling method-
ologies for both upstream and downstream operations.

Data from a biopharmaceutical monitoring system is typically diverse regarding data kinds 
and time scales. A considerable amount of data is collected during biopharmaceutical manu-
facture thanks to the deployment of real-time PAT sensors. As a result, data pre-processing is 
required to deal with missing data, visualize data, and reduce dimensions (Gangadharan et al. 
2019). In batch biopharmaceutical production, Casola et  al. (2019) presented data mining-
based techniques for stemming, classifying, filtering, and clustering historical real-time data. 
Lee et al. (2012) combined different spectroscopic techniques and used data fusion to forecast 
the composition of raw materials.

10.2  AI‑driven digital twins in today’s pharmaceutical drug discovery

In the pharmaceutical industry, challenges are emerging from clinical studies that make drug 
development incomplete, sluggish, uncertain, and maybe dangerous. For example, It is not a 
true reflection of reality where clinical trials can take into account that in the real world, just a 
small portion of a big and diverse population is depicted among the many billions of humans 
on the planet where it is not possible to get a view of how each person based on how they will 
respond to a medicine. Clinical trials’ rigorous requirements for physical and mental health 
in some cases also result in failure because of a lack of qualified participants. Pharmaceutical 
firms battle to provide the precise number and kind of participants needed to comply with the 
stringent requirements of clinical trial designs. Also, in most trials, the actual drug is replaced 
by a placebo as this helps contrast how sick individuals behave when they are not adminis-
tered the experimental medication; This implies that at least some trial participants do not 
receive it. Here, These issues can be solved by using digital twins, which can imitate a range 
of patient features, giving a fair representation of how a medicine affects a larger population. 
AI-enabled digital twinning may reduce the trial’s setup by revealing how susceptible a patient 

Smart manufacturing with DT 

PAT methods

Process modelling

Data integeration

Fig. 15  Main categories of smart manufacturing with DT
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is to various inclusion and exclusion criteria as a result, patients can be rapidly identified, and 
digital twins can predict a patient’s reaction, and placebos won’t be required. Therefore, the 
new treatment can be assured for every patient in the trial, and digital twins can reduce the 
dangerous impact of drugs in the early stages by decreasing the number of patients who need 
to be tested in the real world. Figure 16 illustrates a framework by running all possible combi-
nations. All treatment protocols are tested on a digital twin of the patient to discover an appro-
priate treatment protocol for this patient. Doing this quickly and accurately can lead to provid-
ing the best quality treatment for the patient without experimenting with the patient, which 
saves effort, cost, and accuracy in determining an appropriate treatment protocol for patients.

11  Open problems

This section discusses important issues to consider regarding progression from preclinical 
to clinical and implementation in practice that necessitate new ML solutions to assist trans-
parent, usable, and data-driven decision-making procedures to accelerate drug discovery 
and decrease the number of failures in clinical development phases.

– Complex disorders, such as viral infections and advanced malignancies frequently 
necessitate drug combinations (Julkunen et al. 2020; White et al. 2021). For example, 
kinase inhibitor combos or single compounds that block several kinases may improve 
therapeutic efficacy and duration while combating treatment resistance in cancer 
(Attwood et al. 2021). While several ML models have been created to predict response 
pairs of drug–dose combinations, higher-order combination effects can be predicted in 
a systematic way involving more than two medicines or targets is still a problem. In 
cancer cell lines, tensor learning methods have permitted reliable prediction of paired 
drug combination dose-response matrices (Smiatek et  al. 2020). This computation-
ally efficient learning approach could use extensive pharmacogenomic data, determine 
which drug combinations are most successful for additional in vitro or in vivo testing 
in many kinds of preclinical models, such as higher-order combinations among novel 
therapeutic compounds and doses.

– While possible toxicity and effectiveness that is targeted are important criteria for clini-
cal development success, most existing ML models for predicting response to the ther-
apy accentuate effectiveness as the primary result. As a result, careful examination, and 
harmful effects prediction of instances in simulated and preclinical settings is required 
to strike a balance between the effectiveness of the toxicity and therapy that is accept-
able to accelerate the next stages of drug development (Narayanan et al. 2020). Apply-
ing single-cell data and ML algorithms to develop combinations of anticancer drugs 
has shown the potential to boost the likelihood of clinical success (Tao et  al. 2018). 
Transfer of knowledge and deconvolution techniques for in silico cell set (Avila et al. 
2020) may offer effective ways to reduce the requirement to generate a lot of single-cell 
data to predict combination therapy responders and impacts of toxicity, as well as the 
recommended dosage that optimizes both efficacy and safety.

– In addition, patient data and clinical profiles must be used to validate the in-silico 
therapy response forecasts. This real data for ML predictions is crucial for progress in 
medicine and establishing the practical value and providing clinical guidance in making 
decisions. A no-go decision was made early, for example, if the substance has harmful 
consequences. Many of the present issues encountered when using machine learning 
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for drug discovery, particularly in clinical development, are since current AI algorithms 
do not meet the requirements for clinical research. As a result, ML model validation 
requires systematic and comprehensive high-quality clinical data sets. The discovery 
methods must be thoroughly evaluated for accuracy and reproducibility using com-
munity-agreed performance measures in various settings, not just a small collection of 
exemplary data sets. sharing and exploiting private patient information is possible with 
systems that isolate the code from the data or use the model to data method (Guinney 
and Saez-Rodriguez 2018), which It makes it possible for federated learning to utilise 
patient-level data for model construction and thorough assessment.

– Even if there are many applications for drug discovery, The majority of ML and par-
ticularly DL models remain "black boxes”, and interpretation by a human specialist is 
sometimes tricky (Jiménez-Luna et  al. 2020). Implementing mathematical models as 
online decision support tools must be understandable to users to obtain confidence. 
Comprehensible, accessible, and explainable models should clearly state the optimiza-
tion goals, such as synergy, efficacy, and/or toxicity.

– DTI prediction is a notable example of fields of drug discovery research. It has been 
ongoing more than 10 years and aims to enhance the effectiveness of computational 
models using various technologies. The most recent computational approaches for pre-
dicting DTIs are DL technologies. These use unstructured-based approaches that don’t 
need 3D structural data or docking to get over the drug and target protein’s high-dimen-
sional structure restrictions. Despite the DL’s outstanding performance, regression 
inside the DTI prediction remains a critical and difficult issue, and researchers could 
develop several strategies to improve prediction accuracy. Furthermore, data scarcity 
and the lack of a standardized benchmark database are still considered current research 
gaps.

Fig. 16  AI-driven digital twins in today’s pharmaceutical drug discovery
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– While DL approaches show promise in detecting drug responses, especially when deal-
ing with large amounts of data, drug response prediction research is in its first stages, 
and more efficient and relevant models are needed.

– While DL techniques have shown to be effective in detecting DDIs, especially when 
dealing with large amounts of data, more promising algorithms that focus on complex 
molecular reactions need to be developed.

– Only a few studies in the drug discovery field have investigated their models’ explain 
ability, leaving much room for improvement. The explanations generated by XAI for 
human decision-making must be not insignificant, not artificial, and helpful to the 
scientific community. Until now, ensuring that XAI techniques achieve their goals 
and produce trustworthy responses would necessitate a combined effort amongst DL 
specialists, chemo informaticians and chemists, biologists, data scientists, and other 
subject matter experts. As a result, we believe that more developed methodologies to 
explain black-box models for drug discovery fields like DDIs, drug–target interactions, 
drug sensitivity, and drug side effects must be considered in the future to ensure model 
fairness or strict sensitivity evaluations of models. Further exploration of the capabili-
ties and constraints of the existing chemical language for defining these models will be 
critical. The development of novel interpretable molecular representations for DL and 
the deployment of self-explanatory algorithms alongside sufficiently accurate predic-
tions will be a critical area of research in the coming years. Because there are currently 
no methods that combine all the stated advantageous XAI characteristics (transpar-
ency, justification, informativeness, and uncertainty estimation), consensus techniques 
that draw on the advantages of many XAI approaches and boost model dependability 
will play a major role in the short and midterm. Currently, there is no open-community 
platform for exchanging and refining XAI software and model interpretations in drug 
discovery. As a result, we believe that future study into XAI in drug development has 
much potential.

12  Discussion

This section presents a brief about how the proposed analytical questions in Sect.  2 are 
being answered through the paper.

– AQ1: What DL algorithms have been used to predict the different categories of drug 
discovery problems?

  Several DL algorithms have been used to predict the different categories of drug dis-
covery problems as deeply illustrated in Sect. 4 with respect to the main categories of 
drug discovery problems in Fig. 8. In addition, a summary of a sample of these algo-
rithms, their methods, advantages and weaknesses are presented in Table 2.

– AQ2: Which deep learning methods are mostly used in drug dosing optimization?
  Recognizing the characteristics that make medications suitable for precision dosage 

targets will aid in directing resources to where they’ll have the most impact. Employing 
DL in drug dosing optimization is a big challenge which increases the health care per-
formance, safety, and cost-effectiveness as presented in Sect. 7.

– AQ3: Are there any success stories about drug discovery and DL?
  With the advancement of DL methods, we’ve seen big pharmaceutical businesses 

migrate toward AI, such as ‘AstraZeneca’ which is a global multinational pharmaceuti-
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cal business that has successfully used AI in every stage of drug development. Several 
success stories have been presented in Sect. 9.

– AQ4: What about using the newest technologies such as XAI and DT in drug discovery?
  The topic of XAI addresses one of the most serious flaws in ML and DL algorithms: 

model interpretability and explain ability. It would be impossible to trust the forecasts 
of real-world AI applications without interpretability and explain ability. Section 8 pre-
sents the literature that address this issue. A digital twin (DT) is a virtual representation 
of a living thing that is connected to the real thing in dynamic, reciprocal ways. Today, 
DTs are being used in a variety of industries. Even though the pharmaceutical sector 
has grown to accept digitization to embrace Industry 4.0, there is yet to be a compre-
hensive implementation of DT in pharmaceutical manufacture. Success stories regard-
ing employing DT into drug discovery is presented in Sect. 10.

– AQ5: What are the future and open works related to the drug discovery and DL?.
  Through the paper, we present how DL succeed in all aspects of drug discovery 

problems, However, it is still a very important challenge for future research. Section 11 
covers these challenges.

Figure  17 presents the percentage of the different DL applications for each building 
block of our study. It is well observed that the most percentage segment is dedicated for the 
drug discovery and DL because it is the main core of our research.

13  Conclusion

Despite all the breakthroughs in pharmacology, developing new drugs still requires a lot of 
time and costs. As DL technology advances and the amount of drug-related data grows, a 
slew of new DL-based approaches is cropping up at every stage of the drug development 
process. In addition, we’ve seen large pharmaceutical corporations migrate toward AI in 
the wake of the development of DL approaches.

Although the drug discovery is a large field and has different research categories, there 
is a few review studies about this field and each related study has focused only on a one 
research category such as reviewing the DL applications for the DTIs. So, the main goal of 
our research is to present a systematic Literature review (SLR) which integrates the recent 
DL technologies and applications for the different categories of drug discovery problems 
Including, Drug–target interactions (DTIs), drug–drug similarity interactions (DDIs), drug 
sensitivity and responsiveness, and drug-side effect predictions. That is associated with the 
benchmark data sets and databases. Related topics such as XAI and DT and how they sup-
port the drug discovery problems are also discussed. In addition, the drug dosing optimiza-
tion and success stories are presented as well. Finally, we suggest open problems as future 
research challenges.

Although the DL has proved its strength in drug discovery problems, it is still a promis-
ing open research area for the interested researchers. In this paper, they can find all they 
want to know about using DL in various drug discovery problems. In addition, they can 
find success stories and open areas for future research.

Given the recent success of DL approaches and their use by pharmaceuticals in identify-
ing new medications, it seems clear that current DL techniques being highly regarded in 
the next generation of enormous data investigation and evaluation for drug discovery and 
development.
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