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Abstract  Vaccines save millions of lives each year from various life-threatening 
infectious diseases, and there are more than 20 vaccines currently licensed for 
human use worldwide. Moreover, in recent decades immunotherapy has become the 
mainstream therapy, which highlights the tremendous potential of immune response 
mediators, including vaccines for prevention and treatment of various forms of can-
cer. However, despite the tremendous advances in microbiology and immunology, 
there are several vaccine preventable diseases which still lack effective vaccines. 
Classically, weakened forms (attenuated) of pathogenic microbes were used as vac-
cines. Although the attenuated microbes induce effective immune response, a 
significant risk of reversion to pathogenic forms remains. While in the twenty-first 
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century, with the advent of genetic engineering, microbes can be tailored with 
desired properties.

In this review, I have focused on the use of genetically modified bacteria for the 
delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived 
from pathogenic bacteria, possess many features that make them highly suitable vec-
tors for the delivery of vaccine antigens. Bacteria can theoretically express any heter-
ologous gene or can deliver mammalian expression vectors harboring vaccine 
antigens (DNA vaccines). These properties of live-attenuated microbes are being har-
nessed to make vaccines against several infectious and noninfectious diseases. In this 
regard, I have described the desired features of live-attenuated bacterial vectors 
and  the mechanisms of  immune responses manifested by live-attenuated bacterial 
vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make 
them suitable vehicles to deliver tumor-associated antigens  thus I have discussed 
important studies investigating the role of bacterial vectors in immunotherapy. Finally, 
I have provided important discussion on novel approaches for improvement and tai-
loring of live-attenuated bacterial vectors for the generation of desired immune 
responses.

2.1  �Introduction

Vaccines provide protection against numerous life-threatening infectious diseases, 
by activating the adaptive immunity against specific pathogen-derived antigens. 
Since the introduction of active immunization, several vaccines have been licensed 
for human use. These include some subunit vaccines, which are preferred for their 
superior safety profile. However, their success is limited by their poor immunoge-
nicity, as multiple booster immunizations and adjuvants are required to achieve an 
adequate level of protective immunity. Moreover, a subunit vaccine is only appli-
cable for pathogens where a well-defined protective antigen has been discovered. 
Subunit vaccines are also limited in their ability to induce cell-mediated immunity. 
In contrast, the live-attenuated/live-inactivated vaccines exhibit superior immuno-
genicity and induce humoral as well as cell-mediated immunity. Although attenu-
ated viruses and bacteria are both utilized as vaccine vectors, this review will focus 
only on attenuated bacterial vaccine vectors. Bacteria harbor natural adjuvants in 
the form of pathogen-associated molecular patterns (PAMPs) (Fig. 2.1). PAMPs, 
which are recognized by components of the innate immune system including Toll-
like receptors (TLRs), facilitate the release of pro-inflammatory mediators and 
recruitment of antigen-presenting cells (Fig. 2.2). Furthermore, even after attenua-
tion, a limited degree of proliferation and dissemination capacity is retained in the 
attenuated pathogens. Overall, these factors contribute to the superior immunoge-
nicity of live-attenuated bacteria, which consequently elicit a robust and durable 
immunity against the cognate antigens.

With the advent of molecular biology and genetics, it is feasible to effectively 
excise or insert desired genes into bacteria. Bacterial vectors can be engineered to 
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express and deliver heterologous proteins, such as antigens or therapeutic proteins, 
in mammalian hosts. Moreover, by genetic manipulation, bacterial vectors can be 
engineered with properties including reduced virulence, high immunogenicity, 
properties which are desirable in a vaccine vector. Thus far, a variety of live-
attenuated bacterial vectors including Mycobacterium bovis strain Bacillus 
Calmette-Guérin (BCG), Salmonella spp., Listeria monocytogenes (Lm), Vibrio 
cholerae, Escherichia coli, and Shigella spp. have been utilized for the delivery of 
heterologous proteins into mammalian hosts as vaccine antigens or therapeutic pro-
teins. Such bacteria are called, live-attenuated bacterial vectors (LABVs).

Vaccines elicit distinct immune responses depending on the route of immuniza-
tion. Mucosal immunization induces strong systemic as well as mucosal immune 

Fig. 2.1  Essential components of live-attenuated bacterial vectors: To construct live-attenuated 
bacterial vectors, the pathogenicity of bacteria is attenuated by creating mutations in various viru-
lence genes (1). The asd mutation in the chromosome (1) is complemented with a functional copy 
of asd gene, inserted into the plasmid (2); this feature ensures antibiotic-free maintenance of plas-
mids. The plasmid (2) also carries genes encoding antigenic proteins. Various pathogen-associated 
molecular patterns including flagellin (3), lipopolysaccharide (4), lipoprotein (5), and peptidogly-
can (6) facilitate the interaction with and signal the activation of antigen-presenting cells, while the 
additional appendages like autotransporters (7) facilitate surface display of antigens
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response, whereas parenteral immunization induces potent systemic but a poor 
mucosal immune response. Since birth, mucosal surfaces of the human body are 
constantly challenged with agents of the external environment that are either com-
pletely harmless (food ingredients and nonpathogenic microbes) or pathogenic 
(pathogenic microbes). Thus, in order to restrict pathogenic insults at mucosal sur-
faces, mucosa-associated lymphoid tissues (MALT) are organized. In fact, MALT 
constitutes the largest immune system of the human body. The oral route is the most 
favored route for mucosal immunization over other mucosal routes including nasal, 

Fig. 2.2  Activation of antigen-presenting cells by live-attenuated bacterial vectors leads to adap-
tive immune response: Various pathogen-associated molecular patterns present in the live-
attenuated bacterial vectors interact with Toll-like receptors expressed on the surface or in 
endosomal membranes. The signaling initiated by this interaction leads to the activation of antigen-
presenting cells. Activated antigen-presenting cells express costimulatory molecules CD80, CD86, 
and CD40 as well as enhance expression of MHC-II. Costimulatory molecules are required to 
deliver the essential second signal for T-cell activation, while the first signal is received via TCR-
MHC-peptide interaction. Importantly, CCR7 expressed by activated APCs help migration to 
draining lymph node. Moreover, the type of cytokines directs the fate of T-cell polarization to Th1, 
Th2, or TH17. Cytosolic delivery of antigens gives rise to CTL response
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vaginal, and rectal. Upon oral administration, antigens travel through the gastroin-
testinal tract and reach the mucosal inductive sites called Peyer’s patches. Peyer’s 
patches are lined with specialized epithelial cells called M cells which serve as a 
point of entry into the lamina propria. In the lamina propria, dendritic cells take up 
the antigens and migrate to the draining lymph nodes where they present the anti-
gens to T cells. A specialized feature of dendritic cells from Peyer’s patches and 
mesenteric lymph nodes is that they induce gut-homing receptors α4/β7 and CCR9 
on T and B cells. This feature is not found in the dendritic cells from cervical lymph 
nodes and spleen. Thereby, T and B cells primed at the mucosal sites are destined to 
migrate to mucosal tissues (Pasetti et al. 2011) (Fig. 2.3). Live-attenuated microbes 
exhibit superior ability to deliver vaccine antigens to the mucosal immune system, 
as many of them are derived from natural mucosal pathogens, including Salmonella 
spp., Lm, E. coli, V. cholerae, and Shigella spp.

This review explores the current knowledge about the LABV application in the 
delivery of vaccine antigens (to the mucosal immune system), DNA vaccine, and 
immunotherapy. Mechanism of immune responses elicited by LABV-based vac-
cines, the recent advances, and future perspectives have been discussed.

Fig. 2.3  Mucosal immune response elicited by live-attenuated bacterial vectors: Mucosal induc-
tive sites including gut-associated lymphoid tissues and nasal-associated lymphoid tissues facili-
tate sampling of antigens through M cells. M cells allow the passage of bacteria through the 
mucosal epithelium, where they are taken up by antigen-presenting cells including DCs and mac-
rophages. APCs undergo activation upon interaction with live-attenuated bacterial vectors, and the 
associated antigens are presented to T cells in the lymphoid follicles or the draining lymph nodes. 
Activated T cells help B cells differentiate into IgA-producing plasma cells. The secreted IgA 
provide effective protection against mucosal pathogens. The T and B cells primed at mucosal sites 
migrate back to mucosal sites where they perform their effector functions
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2.2  �Desired Features of Live-Attenuated Bacterial Vectors

Nonpathogenic commensals including the lactic acid bacteria and Bacillus subtilis 
as well as the attenuated versions of the pathogenic bacteria including Salmonella 
spp., E. coli, Shigella spp., Lm, and V. cholerae have been utilized as LABVs. While 
the commensal microbes are generally regarded as safe or food grade, the virulence 
of the pathogenic microbes needs to be significantly attenuated before they can be 
considered safe to deliver vaccine antigens into humans (Fig. 2.1).

Generally, plasmids are employed for the expression of heterologous antigens in 
LABVs. Plasmids can be easily manipulated in E. coli (a universal tool for genetic 
engineering) and subsequently introduced into the desired bacterial strains. Shuttle 
vectors (plasmids) carry genetic elements for replication in E. coli and promoter 
elements for gene expression in other bacterial or mammalian cells. Thus, mam-
malian expression vectors can be first manipulated and propagated in E. coli and 
then delivered via LABVs to mammalian cells, where the desired antigens are 
expressed (Fig. 2.1).

2.2.1  �Attenuation

In early days, attenuation of the pathogenic microbes was achieved by in vitro cul-
tivation for several generations, followed by the evaluation of virulence in succes-
sive generations. The classic example is BCG, where Albert Calmette and Camille 
Guerin, by culturing a virulent strain of M. bovis for more than 230 serial passages 
in vitro (between 1908 and 1921), generated the attenuated strain BCG. BCG is still 
the only vaccine available for prevention against tuberculosis. Subsequent genetic 
analysis revealed that BCG lack multiple virulence factors associated with M. bovis 
(Zheng et al. 2015). Similarly, the search for vaccines against typhoid fever led to 
the generation of attenuated live vaccine strains of Salmonella. Salmonella enterica 
serotype Typhi (ST) strain Ty21a (ST-Ty21a) was generated by chemical mutagen-
esis of wild-type ST strain Ty2. The ST-Ty21a is considerably attenuated which is 
now licensed for humans use as an oral vaccine (Wang et al. 2001). However, the 
strain exhibits low immunogenicity, as 3–4 doses are required to achieve adequate 
levels of protection. With the advances in microbial genetics and genetic engineer-
ing techniques, it has now become routine to identify and inactivate virulence genes. 
Interestingly, various auxotrophic mutant Salmonella strains, which lack the ability 
to synthesize aromatic amino acids, were found to be avirulent (Hoiseth and Stocker 
1981). It is known that in Salmonella, the gene products of aroA, aroC, and aroD 
are required for the biosynthesis of aromatic amino acids, as well as several essen-
tial vitamins. Hoiseth and Stocker note that these factors are not found in mamma-
lian hosts in sufficient amount; thus Salmonella aroA mutants cannot proliferate in 
mammalian hosts (Hoiseth and Stocker 1981). Harnessing this knowledge, various 
Salmonella enterica serovar Typhi (ST) or Typhimurium (STm) have been created, 
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with mutations in aroA (Dalla Pozza et al. 1998; Roberts et al. 2000; Arnold et al. 
2004), aroC (Khan et al. 2003; Capozzo et al. 2004), aroD (Capozzo et al. 2004; 
Sevil Domènech et al. 2008), or aroAD (Strugnell et al. 1992; Roberts et al. 2000). 
Notably, the ST strain CVD908 which carries aroC and aroD mutations exhibits 
residual virulence in humans (Wang et al. 2001), while other investigators have also 
targeted genes in nucleotide biosynthesis pathways for creating attenuated 
Salmonella. Wang et al. engineered a Salmonella strain with a mutation in guaBA 
operon, which interferes in the guanine nucleotide biosynthesis. The resultant strain, 
called CVD 915, exhibits safety profile comparable to that of the typhoid vaccine 
strain ST-Ty21a. Importantly, ST-Ty21a, CVD-908-htrA (harboring mutations at 
aroC, aroD, and htrA), and CVD 915 all exhibit a high level of immunogenicity 
(Wang et al. 2001). Not surprisingly, ST strains with guaBA mutations have been 
widely utilized as LABV (Pasetti et  al. 1999, 2000; Wang et  al. 2001). Another 
approach of attenuation of Salmonella is to introduce mutations in cya (adenylate 
cyclase) and crp (cyclic AMP) receptor genes. These proteins are transcriptional 
regulators of many important genes. Although cAMP is found in mammalian cells, 
their concentrations in gastrointestinal tissues are below the requirement of 
Salmonella. Thus cya and crp mutants show reduced virulence (Tacket et al. 1992; 
Chen and Schifferli 2003; Wyszyńska et  al. 2004; Ferreira Oliveira et  al. 2012). 
Mutations in the two-component regulatory system PhoP/PhoQ, which controls 
more than 40 virulence genes involved in resistance to antimicrobial peptides, nutri-
ent scavenging, and lipid A modifications, significantly decrease Salmonella viru-
lence (Raupach and Kaufmann 2001). Salmonella strains with PhoP/PhoQ mutations 
have been used in a number of studies as LABV (Angelakopoulos and Hohmann 
2000; Kotton et al. 2006; Galen et al. 2009; Wang et al. 2013). RpoS is an alternate 
sigma factor that regulates resistance under stress induced during gastrointestinal 
infection such as pH, nutrient starvation, change in osmolarity, and temperature. 
ST-Ty21a contains multiple mutations including rpoS (Wang et al. 2001). SsaV is a 
component of Salmonella type III secretion system, which is required for secretion 
of SPI-2 genes (essential for growth in macrophages). The ST strain ZH9 which 
contains aroC and ssaV mutations is highly attenuated and immunogenic in humans 
(Hindle et al. 2002). Tacket et al. generated mutations in htrA gene, which encodes 
a heat shock protein. The resultant strain was avirulent because of reduced ability to 
survive and replicate in host tissues (Tacket et al. 2000). HtrA mutant Salmonella 
strains have been used in multiple studies as LABVs (Galen et al. 1999; Roberts 
et al. 2000; Pasetti et al. 2002; Capozzo et al. 2004; Fraillery et al. 2007).

Similarly, for attenuation of Lm, multiple virulence factors have been targeted. 
ActA which encodes for a surface protein required for actin polymerization in host 
cells and helps in intracellular migration has been a prominent target for Lm attenu-
ation. Together with the mutation in internalin B (inlB), the actA mutation renders 
Lm unable to infect hepatocytes; thus these strains are highly attenuated (Brockstedt 
et al. 2004). Phospholipase-C B (PlcB) is required for efficient escape from phago-
somal vacuoles. PlcB mutants are thus attenuated due to defect in escape from sec-
ondary vacuoles (Peters et al. 2003; Starks et al. 2004; Stevens et al. 2004; Johnson 
et  al. 2011; Jia et  al. 2012; Liang et  al. 2014). Cell wall biosynthesis genes 
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specifically dal (alanine racemase) and dat (D-amino acid aminotransferase) have 
been mutated in several attenuated Lm vaccine vectors (Friedman et al. 2000; Verch 
et al. 2004; Jiang et al. 2007; Im et al. 2013). The double mutant of Lm requires 
D-alanine for cell wall biosynthesis and is highly attenuated. Recently McLaughlin 
et al. demonstrated that deletion of Lm fur-regulated virulence factor A (frvA) results 
in attenuation in murine models of infection, due to the inability of iron homeostasis 
(McLaughlin et al. 2013).

Attenuated strains of Shigella are also being used as LABV. Noriega et al. (Noriega 
et al. 1996) generated guaBA mutant of Shigella CVD1204, which is highly attenu-
ated in animals and is widely used as LABV. Other approaches of mutations include 
SC602, with deletions on icsA (mediate intra- and intercellular spread) and iucA 
(aerobactin); this strain is highly attenuated and immunogenic (Ranallo et al. 2005).

2.2.2  �Plasmid Maintenance

Introduction of heterologous genes into bacterial vectors is facilitated by plasmids. 
Plasmids are extrachromosomal circular DNA, which are introduced into bacteria 
by a process called transformation. Generally, bacteria maintain the plasmids utiliz-
ing antibiotic resistance mechanism. During in  vitro growth, antibiotic selection 
pressure ensures stable plasmid maintenance; however, in the in vivo conditions, the 
lack of antibiotic selection pressure plasmid-less bacteria outgrows plasmid-bearing 
bacteria. Moreover, the use of antibiotic markers are also discouraged, due to the 
risk of horizontal gene transfer to other microbes with pathogenic potential (Lin 
et al. 2015; Mignon et al. 2015). Novel antibiotic-free approaches of plasmid main-
tenance have been devised to mitigate these concerns. One such approach, known as 
the balanced lethal system, utilizes mutation in an essential gene in the bacterial 
chromosome, while the plasmid carries the functional copy of the same gene, 
thereby ensuring its maintenance by the bacteria (Fig. 2.1). Galen et al. generated a 
balanced lethal system for STm based on mutation in asd gene. Asd encodes aspar-
tate semialdehyde dehydrogenase, an enzyme required in the biosynthesis pathway 
of DAP (diaminopimelic acid), which is an essential component of bacterial cell 
wall. DAP is needed for growth and maintenance of asd mutants. A copy of asd 
gene is inserted into the plasmid; thus asd-deficient bacteria are forced to maintain 
the plasmid in order to survive in DAP-deprived conditions, such as in the mam-
malian tissues. The resultant Salmonella typhimurium (STm)-based balanced lethal 
system exhibits high degree of plasmid stability. This system also exhibits stable 
expression of the associated heterologous genes (Galán et al. 1990). Balanced lethal 
system has been most widely used in various LABVs including ST (Tacket et al. 
1997), STm (Kang et al. 2002), and S. flexneri (Zheng et al. 2005). Similarly, thymi-
dine auxotrophy has also been utilized in ST (Bumann et al. 2010), STm (Mignon 
et al. 2015), and lactic acid bacteria (Bermúdez-Humarán et al. 2011) for balanced 
lethal system approach of plasmid maintenance. Glutamine auxotroph V. cholerae 
complemented with glnA gene is another example of the balanced lethal system 
utilized for antibiotic-free plasmid maintenance (Ryan et al. 2000).
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2.3  �Immune Mechanisms of Vaccines Delivered by Live-
Attenuated Bacterial Vectors

Various mucosal pathogens and nonpathogenic food grade microbes have been 
extensively utilized for LABV development. Salmonella infect via orogastric route 
and enter the intestinal lamina propria by transcytosis via M cells, which are present 
in the mucosal inductive sites (Peyer’s patches). In the lamina propria, Salmonella is 
taken up by various phagocytes including neutrophils, macrophages, and dendritic 
cells. The infected phagocytes then carry Salmonella to various organs including the 
liver and spleen via blood or to the mesenteric lymph nodes via lymph. The virulence 
factors, clustered in Salmonella pathogenicity islands (SPI-1 and SPI-2), facilitate 
invasion, survival, and proliferation in the intracellular spaces of macrophages (Pham 
and McSorley 2015). Salmonella possess a variety of pathogen-associated molecular 
patterns (PAMPs) including lipoprotein, lipopolysaccharide (LPS), flagellin (FliC), 
and CpG. These PAMPs are recognized by host pattern recognition receptors (PRRs) 
including TLR 2(1/6) (lipoproteins), TLR4 (LPS), TLR 5 (FliC), or TLR9 (CpG). 
Activation of these PRRs leads to the expression and secretion of cytokines such as 
TNFα, IL1β, IL6, IL8, IL12, IL-18, and IL-23 (Broz et al. 2012). These pro-inflam-
matory factors recruit neutrophils, macrophages, and dendritic cells. On the other 
hand, upon interaction with Salmonella LPS and flagellin, dendritic cells increase 
the expression of CCR7, CD80, CD86, and CD40. These mature dendritic cells with 
enhanced capability to process and present antigens can migrate to T-cell areas and 
initiate adaptive immune responses to cognate antigens. Studies suggest that 
Salmonella induces humoral as well as CD4+-, CD8+-, and Th17-dependent cell-
mediated immune responses (Pham and McSorley 2015). Heterologous antigens 
carried by Salmonella elicit serum IgG (Frey et al. 2013), mucosal IgA (Allen et al. 
2000; Ferreira Oliveira et  al. 2012; Pei et  al. 2015; Lalsiamthara and Lee 2017), 
CD4+ (Ramirez et al. 2009; Ashraf et al. 2011), and CD8+ T cells (Luria-Perez et al. 
2007; Sevil Domènech et  al. 2008; Berchtold et  al. 2009). Due to the versatile 
immune response elicited by Salmonella, ST- and STm-based LABVs have been 
utilized to develop vaccines against numerous viral, bacterial (extracellular and 
intracellular), and parasitic pathogens. Importantly, it is well known that neutralizing 
antibodies and CTL responses confer adequate protection against viral pathogens; 
thus ST- and STm-based LABVs are capable of eliciting adequate antiviral immune 
responses. Antigens from viral pathogens including H1N1, H5N1, HIV, and SARS 
virus, when delivered by ST or STm, elicit antigen-specific antibody response 
(Karpenko et al. 2004; Luo et al. 2007; Pei et al. 2015; Hajam and Lee 2017). On the 
other hand, CTL response is generated against dengue virus (NS3) and HIV antigens 
(Karpenko et al. 2004; Luria-Perez et al. 2007). LABVs based on ST and STm elicit 
serum IgG, mucosal IgA, CD4+ T-cell, and CD8+ T-cell responses against a variety 
of bacterial pathogens including B. anthracis (Galen et al. 2010), B. pertussis (Dalla 
Pozza et  al. 1998), E. coli (Ferreira Oliveira et  al. 2012), Helicobacter pylori 
(Angelakopoulos and Hohmann 2000), L. monocytogenes (Igwe et  al. 2002), 
Pseudomonas aeruginosa (Bumann et  al. 2010), Streptococcus pneumoniae (Shi 
et al. 2010), and Yersinia pestis (Branger et al. 2010). While antigen-specific Th1 
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responses are generated against some parasitic pathogens including Leishmania 
mexicana (González et al. 1998), Schistosoma japonicum (Chen et al. 2011), and 
Taenia solium (Ding et al. 2013), mucosal IgG and IgA are generated against Giardia 
lamblia (Abdul-Wahid and Faubert 2007) and Cryptosporidium parvum (Benitez 
et al. 2009) by ST- and STm-based LABVs carrying related antigens.

Besides Salmonella, Listeria is the most extensively studied bacteria as 
LABV. Similar to Salmonella, Listeria infection begins with orogastric infection. 
Lm moves across gastrointestinal epithelial barrier by first attaching to and invading 
epithelial cells. Adhesion and internalization require Lm protein Ami and internalin 
A (inlA), respectively. Once in the lamina propria Lm rapidly spreads systemically. 
Lm primarily targets liver with the help of fibronectin binding protein (FbpA). FbpA 
recognizes fibronectin on the surface of hepatocytes, and at this point another mol-
ecule, called internalin (inlB), facilitates Lm internalization. On the other hand, 
phagocytes specifically macrophages and monocytes recognize lipoteichoic acid 
via scavenger receptors. After the phagocytosis Lm escapes phagocytic vesicles by 
synergistic activities of listeriolysin O (LLO) and two phospholipase C (PlcA and 
PlcB). Another virulence factor is ActA, which has actin polymerization activity 
and helps Lm migrate from cell to cell (Liang et al. 2014). Lm expresses various 
TLR agonists including peptidoglycan, flagellin, and bacterial DNA, which induces 
pro-inflammatory cytokines including TNFα, IFNγ, IL1β, and IL12. Lm-induced 
cell death results in secretion of IL6, which helps in recruitment of neutrophils. 
IL12 helps in induction of IFNγ by NK cells and CD8+ T cells. Lm can also induce 
type-I IFNs (IFNαand IFNβ), which is desirable as antiviral immunity. Evidences 
suggest that Lm induces both CD4+ and CD8+ T-cell-mediated immune response 
(Zenewicz and Shen 2007; Liang et al. 2014). Lm-carrying viral antigens such as 
HIV/SIV-gag (Frankel et al. 1995; Friedman et al. 2000; Im et al. 2013), HPV-E7 
(Jia et  al. 2012), and LCMV-NP118-126 (Tvinnereim et  al. 2002) induces CTL 
immune response. Lm-based LABV also induces neutralizing antibody against 
HIV-gp160 (Lakhashe et  al. 2011). However, there are limited reports on Lm as 
LABV against bacterial and parasitic pathogens. In one study, Lm-carrying Coxiella 
burnetii antigen T4SS (epitopes) induced CD8+ T-cell immune response (Xiong 
et  al. 2017). In another study Lm-carrying Francisella tularensis antigen IglC 
induced IFNγ producing CD4+ and CD8+ T-cell-mediated immune response.

BCG, an attenuated M. bovis, has also exhibited potential as LABV. Following 
immunization, BCG interacts with phagocytes such as macrophage, dendritic cells, 
and neutrophils. Various PRRs of macrophages involved in interaction with BCG 
include CR3, TLR2 (1/6) and TLR-4. However, dendritic cells utilize a different set 
of phagocytic receptors including CR3, CR4, DC-SIGN (CD209), and DEC 205. 
Infected dendritic cells upregulate expression of MHC-II and costimulatory mark-
ers CD80, CD86, CD40, and CD54 which are involved in activation of adaptive 
immune response (Moliva et al. 2017). BCG is known to induce humoral as well as 
T-cell-mediated immune response (Abomoelak et al. 1999). The T-cell responses 
induced by BCG include polyfunctional CD4+ T cells that secret TNF, IL-2, and 
IFNγ (Moliva et al. 2017). BCG expressing IL12 and two M. tuberculosis (Mtb) 
antigens (secreting antigen Ag85B and culture filtrate antigen CFP10) induce 
antigen-specific Th1-type immune response including IFNγ-producing cells and 
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IgG2a (Chen et al. 2017). Antigen-specific humoral immune response is induced by 
BCG expressing a hepatitis-B surface antigen (Rezende et al. 2005). BCG-induced 
CD8+ T cells also secrete IFNγ (Moliva et al. 2017). In a mouse model, BCG carry-
ing Mtb antigen (Ag85B) exhibit antigen-specific Th17 immune response (Hatano 
et al. 2016). Pertussis toxin subunit S1 expressed by BCG induces IFNγ producing 
CD4+ T cells which completely protects against lethal Bordetella pertussis chal-
lenge (Nascimento et al. 2008). Furthermore, in a mouse model of an intracellular 
pathogen Lm, BCG expressing Lm antigen p60 induced CD4+ and CD8+ T-cell-
dependent protection (Grode et  al. 2002). Studies have demonstrated that BCG 
induces long-lived mycobacteria-specific memory B cells. Moreover, following 
BCG immunization, hosts secrete robust Mtb-specific serum antibodies including 
IgG isotypes IgG1, IgG2, and IgG3. However, it is not known if specific mucosal 
IgA is induced by BCG (Moliva et al. 2017).

S. flexneri infection occurs through orogastric route. Once in the colon, S. flex-
neri crosses epithelial layer through highly endocytic M cells. S. flexneri then adhere 
to and infect colonic epithelium through the basolateral surface. Colonic epithelial 
cells engulf S. flexneri by macropinocytosis, and through the activity of IpaB and 
IpaC, they are released from macropinocytic vacuoles to the cytosol (Mellouk and 
Enninga 2016). S. flexneri invasion causes activation of innate immune system and 
release of a variety of cytokines including IL-1, TNF-α, IL6, TGF-β, and IL-8 
(Fernandez and Sansonetti 2003; Jennison and Verma 2004). Though Shigella has 
the capacity of cell-to-cell translocation, its infection is limited to lamina propria of 
the intestine, and it doesn’t migrate to other organs (Maurelli and Sansonetti 1988). 
In the lamina propria S. flexneri is phagocytosed by macrophages and dendritic 
cells. Infected macrophages undergo apoptosis, which leads to the release of pro-
inflammatory cytokine IL1, IL18, and IFNγ (Fernandez and Sansonetti 2003). S 
flexneri induces both systemic and mucosal antibody response including IgM, IgG, 
and secretory IgA (Jennison and Verma 2004). S. flexneri 2a with guaBA mutation 
(CVD 1204) has limited invasiveness, and proliferative capacity. Attenuated S. flex-
neri expressing ETEC antigens CFA-I, LTB, CS2, CS3, and CS4 induce antigen-
specific serum IgG and mucosal IgA (Koprowski et  al. 2000; Barry et  al. 2003; 
Strain et al. 2003; Ranallo et al. 2005; Zheng et al. 2005).

Food grade bacteria including B. subtilis and Lactobacillus lactis are considered 
important candidates for LABV, due to their superior safety profile. Upon oral 
administration, B. subtilis spores can safely transit through the stomach, germinate, 
and proliferate in the upper intestine and finally undergo re-sporulation in the colon 
(Cutting et al. 2009). Nevertheless, the mechanism of immune response in response 
to B. subtilis delivered antigens is not fully understood. Antigens delivered by B. 
subtilis have been shown to induce humoral as well as Th1-mediated immune 
response (Cutting et al. 2009). B. subtilis has been used as LABV for various bacte-
rial and parasitic pathogens including pathogenic E. coli, H. pylori, Mtb, Clonorchis 
sinensis, and S. japonicum. B. subtilis induces systemic IgG (Amuguni and Tzipori 
2012; Zhou et  al. 2015), mucosal IgA (Amuguni and Tzipori 2012; Zhou et  al. 
2015), and Th1/Th17 (Sibley et al. 2014; Stasilojc et al. 2015) immune response 
against cognate antigens. The lactic acid bacteria are among the microbes, which 
occur physiologically in animal digestive tracts and like other natural microflora 
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through their metabolites and interaction with macrophages can stimulate cytokine 
production. Peptidoglycan of the lactic acid bacteria induces secretion of IL1, IL6, 
and TNF, by monocytes (Bermúdez-Humarán et  al. 2011; Szatraj et  al. 2017). 
Unlike attenuated strains of otherwise pathogenic microbes used as LABV, B. sub-
tilis and L. lactis do not invade through the gut mucosa and serve mainly as protein 
(antigen) factories, which supply vaccine antigens to gut-associated lymphoid tis-
sue (GALT). Protective antigens of pathogenic viruses H1N1 (HA) and H5N1 (HA) 
expressed by L. lactis induce mucosal antibodies. L. lactis expressing bacterial anti-
gens Campylobacter jejuni (cjAD) (Kobierecka et al. 2016), Clostridium difficile 
(TcdA) (Yang et  al. 2013), Clostridium perfringens (epsilon toxoid) (Alimolaei 
et al. 2016), H. pylori (omp22, HpaA, cag12, and UreaseB) (Kim et al. 2006; Gu 
et al. 2009; Zhang et al. 2016b), and V. cholerae (WZM) (Zamri et al. 2012) also 
induce mucosal antibodies.

2.4  �Delivery of DNA Vaccines by Live-Attenuated Bacterial 
Vectors

In preclinical models, DNA vaccines have proven to confer protective immunity 
against a variety of infectious agents including HIV, herpes simplex virus (HSV), 
Plasmodium spp., and Mtb (Schoen et al. 2004). An attractive feature of DNA vaccine 
is that it can induce humoral as well as cell-mediated immune response. While anti-
bodies alone can protect against many pathogens and toxins, cell-mediated immunity 
is required for protection against intracellular pathogens and cancer. The DNA vac-
cines in the form of eukaryotic expression plasmids are delivered either by intramus-
cular injection of naked DNA, intradermal bombardment using DNA coated on gold 
particles with help of a gene gun, or electroporation following needle injection. 
However, most of these methods induce only moderate levels of protection in animal 
models and fail to show efficacy in clinical trials (Schoen et al. 2004). In recent years 
many bacterial vectors have been utilized to deliver plasmids into the host cells 
(Schoen et al. 2004). As many attenuated strains are being developed for delivery of 
vaccine antigens, similar strains can also be utilized to deliver plasmids as DNA vac-
cines. Attenuated strains of gut pathogens including ST, STm, or L. monocytogenes 
are of particular importance, as they colonize and infect mucosal epithelial cells.

As discussed above, Listeria infection begins at gastrointestinal tract, and after 
invasion through intestinal mucosa, Listeria migrate through blood vessels and 
lymph to other organs. Listeria can infect a wide array of cell types including intes-
tinal epithelial cells, hepatocytes, dendritic cells, and macrophages. Listeria escape 
phagocytic vesicles and multiply in cytosol where they release the plasmids. 
Listeriolysin O helps Listeria lyse and escapes the phagosomal vacuoles (Liang 
et al. 2014). Miki et al. engineered a self-destructing Lm-based vaccine delivering a 
eukaryotic expression plasmid encoding Mtb antigens Ag85a/Ag85b and MPB/
MPT51. The vaccine induced protective immune response against Mtb in a mouse 
model (Miki et al. 2004).
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Salmonella also infects via gastrointestinal tract, and after crossing epithelial 
barrier through M cells, Salmonella is taken up by macrophages (Pham and 
McSorley 2015). Salmonella has the capability of surviving and replicating in 
phagocytic vacuoles (Pham and McSorley 2015). However, through unknown 
mechanisms, they can release plasmid DNA into the cytosol (Schoen et al. 2004). 
Salmonella strains expressing listeriolysin O have been shown to escape the phago-
some vesicles to the cytosol, thus making gene transfer by Salmonella more effi-
cient (Schoen et al. 2004). HIV-1 T-cell epitopes in the form of eukaryotic expression 
plasmid delivered by attenuated STm induced CTL as well as antibody immune 
response (Karpenko et al. 2004). Another study targeting an S. pneumoniae protec-
tive antigen PsaA and PspA delivered by STm induced mucosal IgA against both 
antigens. Thus immunized mice were protected against nasopharyngeal coloniza-
tion by S. pneumoniae (Zhang et al. 2011). Pathogenic parasites Trichinella spiralis 
and Trypanosoma cruzi have also been targeted for STm-mediated DNA vaccina-
tion. Yang et al. constructed a DNA vaccine against T. spiralis using antigen Ts87 
and STm as the delivery vehicle. Mice immunized orally with this vaccine induced 
antigen-specific mucosal IgA which correlated with protection against T. spiralis 
larval challenge. Salmonella-delivered T. spiralis DNA vaccine induced a Th1-/
Th2-type immunity and IL5, IL6, and IL10 cytokines (Yang et al. 2010). In another 
study, Matos et al. using STm delivered T. cruzi antigens (Tc-52) into mice via the 
oral route. Immunized mice elicited specific antibodies with higher IgG2a/IgG1 
ratio, suggesting a Th1 bias. The vaccinated group also induced strong cell-mediated 
immunity and mucosal IgA (Matos et al. 2014).

Most bacteria used as DNA delivery vehicles were designed to disintegrate after 
infecting host cells. If the bacterial DNA vaccine vectors are destroyed in the pha-
golysosomes, before reaching the cell cytoplasm, it will lead to inefficient delivery 
of the plasmid. To circumvent this problem various approaches have been devised. 
One such approach takes advantage of phage lysin to disintegrate ∆aroA-Lm after 
reaching host cell cytosol. The inclusion of phage lysin significantly improved bac-
tofection (bacteria-mediated delivery of plasmid DNA into mammalian cells) effi-
ciency in phagocytic as well as non-phagocytic cells (Pilgrim et al. 2003). Recently, 
Kong et al. developed a universal DNA vaccine delivery platform, which includes 
several modalities for enhanced delivery and immune response to cognate antigens. 
The attenuated STm includes the capability to escape the phagosomal compartment 
to the cytosol of the host cells, before phagolysosomal degradation (Kong et  al. 
2012). SifA proteins direct Salmonella-induced filament formation when Salmonella 
is contained in the endosomal vacuoles, and the deletion of sifA gene results in the 
release of Salmonella into the cytosol. Hence, mutation of sifA gene in Salmonella 
plasmid carriers allowed successful transfer of plasmid DNA into the cytosol of the 
host cells (Kong et al. 2012). Kong et al. also incorporated elements that guide the 
plasmid into the nucleus. Transcription factors such as NF-κB and AP2 bind to 
plasmids carrying NF-κB and AP2 binding sequences and transport them to the 
nucleus where the desired antigens are transcribed (Kong et al. 2012). Salmonella 
induces apoptosis/pyroptosis in infected cells that diminishes the overall transfec-
tion efficiency. Deletion of tlpA and sseL genes significantly reduces apoptosis in 
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host cells (Kong et al. 2012). Moreover, Salmonella degradation is delayed due to 
the regulated expression of the Salmonella lysis program. This allows a limited 
number of replication and invasiveness, thereby ensuring optimal delivery of plas-
mids. An influenza antigen (HA) delivered by this platform induced enhanced 
HA-specific IgG, which correlated with protection against influenza virus challenge 
(Kong et al. 2012).

2.5  �Immunotherapy Against Cancer Using Live-Attenuated 
Bacterial Vectors

A nineteenth-century physician, William B. Coley, for the first time observed regres-
sion of malignant tumor in one of his patients after a bacterial infection. Coley went 
on to develop the first bacterial therapy against cancer using killed gram-positive 
bacteria streptococci and a gram-negative bacteria Serratia marcescens. This mix-
ture called “Coley’s toxins” when injected into patients suffering from various 
forms of cancer resulted in partial to complete regression. In cases of soft tissue 
sarcoma, long-term disease-free survival was achieved in approximately 50% of the 
patients. Nevertheless, despite the remarkable success of “Coley’s toxins,” with the 
advent of chemotherapy and radiotherapy, this line of investigation was prematurely 
abandoned (Bickels et al. 2002). However, in recent years this approach is regaining 
attention. In fact, BCG is currently being used as immunotherapy for bladder cancer 
and exhibits superiority over epirubicin and IFNα2b, mitomycin, and epirubicin 
alone (Fuge et al. 2015). Since the first report of BCG’s use in cancer treatment in 
1936, preclinical and clinical investigations of BCG have also been reported for 
other forms of cancer. Mice preimmunized with BCG exhibited slower tumor 
growth compared to control (Zheng et al. 2015). Morton et al. reported complete 
regression of tumor lesions in melanoma patients, upon intralesional injection of 
BCG in 684 out of 754 lesions. Similarly, survival benefits against cancer were also 
reported in other clinical trials. See Zheng et al. for a detailed review on application 
of BCG in cancer therapy (Zheng et al. 2015).

Bacteria, specifically anaerobes, exhibit natural tropism toward solid tumors. 
This phenomenon, although poorly understood, is theorized that certain character-
istics of tumor microenvironment facilitate this phenomenon. The deeper pockets of 
tumors, which are devoid of new blood vessels, are poorly oxygenated and show 
limited accessibility to chemotherapeutic drugs (Lee 2012; Lin et al. 2015). Forbes 
et al. demonstrated that STm accumulate at a rate of 2000-fold more compared to 
other organs including the liver, spleen, lung, heart, and skin (Forbes et al. 2003). 
Using an in vitro model, Kasinkas and Forbes demonstrated that STm exhibits che-
motaxis. Depending on the availability of specific receptors (tsr, tar, and trg), STm 
were differentially attracted to corresponding chemoattractants expressed in the 
tumor microenvironment (serine, aspartate, and ribose/glucose), while the wild-
type strains accumulate around necrotic zones inside tumors (Kasinskas and Forbes 
2007). Moreover, various immunosuppressive mechanisms manifested by the tumor 
microenvironment also support the proliferation of microbes (Lin et al. 2015).
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Distinct tumor-homing property of microbes, including Lm and Salmonella, has 
been harnessed to deliver various tumor therapeutic modalities, including therapeu-
tic vaccine antigens, DNA vaccines, and anticancer drugs. Various tumor-associated 
antigens (TAAs) have been targeted for therapeutic vaccines using LABV as deliv-
ery vehicles. PSA (prostate-specific antigen) is secreted by prostate epithelial cells 
and is overexpressed in malignant prostate cells. Attenuated Lm expressing PSA 
(Lm-LLO-PSA) antigen was tested as therapeutic vaccine in mouse tumor models 
expressing human PSA.  Immunization with Lm-LLO-PSA completely regressed 
tumors in five out of eight mice and induced PSA-specific cellular immune response. 
Immunization of Lm-LLO-PSA significantly increased infiltration of PSA-specific 
CD8+ T cells in tumors and decrease in CD4/CD25/FoxP3+ Treg cells (Wallecha 
et al. 2009). HER2/neu is overexpressed in about 25–30% of breast cancers and is a 
potential target for immunotherapy. Shahabi et al. engineered an Lm-based vaccine 
incorporating HER2/neu as antigen (ADXS31-1642). ADXS31-164 elicited HER2-
specific CD8+ T cells. The vaccine caused a significant delay in the formation of 
mammary tumors, and 50% of mice were tumor-free till 45 weeks of the experi-
ment, whereas all sham-treated mice developed tumors and succumbed to the dis-
ease. This vaccine also resulted in significant increase in tumor-infiltrating CD8+ T 
cells and a decrease in the intratumoral FoxP3+Tregcells (Shahabi et  al. 2011). P. 
aeruginosa can also deliver heterologous antigens using its type III secretion sys-
tem. In an experimental model of B-cell melanoma expressing ovalbumin (OVA), 
Chauchet et  al. demonstrated antitumor efficacy of P. aeruginosa-based vaccine 
expressing OVA. P. aeruginosa induced a long-lasting and polyfunctional CD8+ 
T-cell immune response against the cognate antigen, wherein antigen-specific CD8+ 
T cells expressed IFNγ, TNFα, and IL2 simultaneously. These CD8+ T cells also 
showed enhanced tumor infiltration property and a greater ratio between effector 
versus regulatory T cells (Chauchet et al. 2016). Recently Mei et al. utilized a com-
posite approach of DNA vaccine and bacterial surface expression to achieve CD8+ 
and CD4+ T-cell-mediated immunity targeted to a tumor-associated antigen. The 
Salmonella-based vaccine included AIDA-I autotransporter-Melan A (a murine 
melanoma antigen) fusion protein and a DNA vaccine element encoding two murine 
melanoma epitopes (Mei et al. 2017).

2.6  �Novel Technologies for Tailored and Enhanced Immune 
Response

2.6.1  �Control of Gene Expression: Use of Plasmid Copy 
Number and In Vivo Promoters

High levels of antigen synthesis by multicopy plasmids exert metabolic burden to 
LABV, which results in hyperattenuation, low colonization, loss of viability, and 
most importantly poor immunogenicity. Various strategies have been adapted to cir-
cumvent this problem including the use of low-copy plasmid, use of in  vivo 
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inducible promoters (IVIP), and use of arabinose-inducible promoters (Loessner 
et al. 2007). Among the first promoters introduced in LABV is PnirB, which is acti-
vated under anaerobic conditions. PpagC and PssaG are macrophage-inducible pro-
moters from Salmonella. Dunstan directly compared the immunogenicity of 
antigens upon expression of antigens regulated by PnirB and PpagC and found signifi-
cantly higher antibody response with PpagC compared to PnirB (Dunstan et al. 1999). 
Arnold et al. achieved differential antigen expression in vivo using in vivo inducible 
promoters PpagC, comprising variable ribosomal binding site (RBS). By this 
approach, strains with a high level of expression of heterologous protein exhibited 
low level of colonization, while a moderate amount of expression resulted in a sig-
nificantly improved infection rate in mesenteric lymph nodes. A very low level of 
in vivo inducible antigen expression resulted in unhampered infectivity compared to 
the parent strain. Immunogenicity was dependent on the rate of infection, as well as 
the level of antigen expression. Notably, the best immune response was achieved 
with moderate level of antigen expression and infectivity, while high antigen-
expressing strain resulted in little to no immune response. On the other hand, a 
moderate level of immune response was generated with high infectivity and low 
antigen expression (Arnold et al. 2004). Wang et al. developed a regulated delayed 
antigen synthesis system, consisting of LacI repressor to repress transcription from 
Ptrc during in vitro cultivation. The arabinose-regulated promoter PBAD drives LacI 
expression in vitro in medium supplemented with arabinose. Upon immunization 
and lack of external arabinose supplementation, Ptrc is derepressed, leading to the 
synthesis of antigens. The regulated delayed antigen synthesis system induced 
equivalent levels of antibody and protection to that of PpagC-controlled antigen syn-
thesis and better than that of PssaG-controlled antigen synthesis (Wang et al. 2011).

2.6.2  �Acid Resistance

Upon oral immunization, LABV must withstand acidic environment of the stomach 
for successful colonization. Enteric pathogens including E. coli, L. monocytogenes, 
Shigella spp., and L. lactis can tolerate extreme acidic pH (below pH 2.5) because 
they possess the most potent acid resistance (AR) system known as GDAR (glutamate-
dependent acid resistance) pathway. Attenuated strains of ST and STm have limited 
acid tolerance and exhibit moderate immunogenicity (Dharmasena et al. 2016a). By 
engineering AR components from Shigella spp., Dharmasena et al. significantly (105-
fold) enhanced acid tolerance of attenuated ST-Ty21a (Dharmasena et al. 2016a).

2.6.3  �Detoxification of Lipopolysaccharide

LPS plays important role in survival and infectivity of bacteria. However, it is also 
involved in toxicity to the host. Various attempts at the use of LPS O- antigen 
mutants of STm resulted in poor attachment and intestinal invasion and survival 
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following oral immunization. By regulated expression of LPS O- antigen compo-
nents such that they are expressed in vitro and at the time of immunization, but soon 
after colonization their synthesis is stopped, it is expected to achieve maximal infec-
tivity and minimal toxicity (Wang et al. 2013). Kong et al. engineered a Salmonella 
strain where LPS O- antigen synthesis genes rfc and rfaH are kept under the control 
of the promoter araC-PBAD, which is tightly regulated by arabinose. This strain is 
highly attenuated nevertheless exhibits superior immunogenicity (Kong et al. 2009, 
2010). Another approach of detoxification of Salmonella LPS included removal of 
1-phosphate group from lipid A of LPS. Kong et al. introduced an inner membrane 
phosphatase LpxE from F. tularensis, which can selectively remove the 1-phosphate 
group from Salmonella lipid A. The resultant LPS had reduced toxicity while pre-
served adjuvant activity(Kong et al. 2011). See Wang et al. for a detailed review on 
LPS modifications in Salmonella-based LABV (Wang et al. 2013).

2.6.4  �Optimization of Virulence: Control of Safety 
and Immunogenicity

Many methods employed for attenuation, although make the LABV strains less 
pathogenic and safe to administer at high doses, it often renders them poorly immu-
nogenic due to their inability to circumvent physicochemical defense of the host. 
Moreover, inability of penetration through mucosal barrier also makes them poorly 
immunogenic. To circumvent this problem, Curtiss et  al. generated a regulated 
delayed attenuation system (RDAS), which retains full virulence till the passage 
through gastrointestinal tract and infection of epithelial cells. In the modified RDAS 
strains, Salmonella virulence genes fur, PhoP/Q, rpoS, and crp are expressed under 
the control of araC-PBAD promoter. Arabinose concentration in human tissues is 
very less. Thus, in vitro these strains express all the virulence genes in medium 
supplemented with arabinose, whereas in  vivo under the arabinose deprivation, 
many virulence genes are suppressed, resulting in attenuation of Salmonella. This 
approach results in high immunogenicity combined with tolerance at high doses 
(Curtiss 3rd et al. 2009).

2.6.5  �Cytosolic Delivery of Antigen

In order to evoke CD8+ T-cell (CTL) response, antigens need to be delivered into the 
cytoplasm of host cell. Various approaches are in use to accomplish the cytosolic 
delivery of antigens including the use of a type III secretion system that can directly 
deliver vaccine antigens into the host cell cytoplasm and use of a-hemolysin (HlyA) 
secretion system of E. coli which is fully active in Salmonella (Gentschev et  al. 
1996). On the other hand, escape from endocytic vacuoles is also a feasible approach. 
Unlike Lm, ST and STm do not reach cytoplasm of infected cells and elicit CD4+ 
T-cell response more effectively compared to CD8+ T-cell response to cognate 
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antigens. Chen et al. used secretion signal of a type III secretion system Salmonella 
outer protein E (SopE) and HlyA (secretion signal) to deliver S. japonicum antigen 
Sj23-LHD-GST. The Salmonella vaccine constructs carrying Sj23 LHD-GST fused 
to HlyA (secretion signal) or SopE effectively expressed and delivered antigens into 
cytoplasm of murine macrophages in vitro. This vaccine construct induced Sj23-
LHD-GST-specific Th1 type response and protected against S. japonicum infection 
(Chen et al. 2011). Gentschev et al. reported that two Listerial antigens delivered by 
STm using HlyA (secretion signal) generated protection against Listeria infection 
(Gentschev et al. 1996). Simultaneous delivery of two Listerial antigens (LLO and 
p60) by STm using Yersinia outer protein E (YopE) as a carrier molecule for 
Salmonella type III secretion system developed LLO- and p60-specific T cells and 
protection against murine listeriosis (Igwe et al. 2002). SopE-mediated delivery of 
Listerial antigen p60 generated CD8+ T-cell-mediated protection against Listeria 
infection (Berchtold et al. 2009).

2.7  �Conclusion

What makes bacteria an excellent vaccine delivery vehicle is their natural ability to 
induce potent and long-lasting immune response. LABVs possess the capacity to 
induce humoral as well as cell-mediated immune response. While the humoral 
immune response includes serum IgG and mucosal IgG and IgA, the cell-mediated 
immunity is characterized by Th1-, Th2-, and Th17-type CD4+ T cells and CD8+ 
CTLs. IgA and IL17 have been specifically implicated in mucosal protection against 
various mucosal pathogens. The cell-mediated immunity is required for intracellu-
lar pathogens. It should be noted that subunit vaccines have a poor capacity to evoke 
mucosal as well as cell-mediated immunity. LABVs have also shown the capacity 
to overcome immunosuppressive nature of various forms of tumors. These charac-
teristic of LABVs, together with their tumor-tropic capacity, makes them a highly 
suitable vector for cancer immunotherapeutic vaccines. In the past two decades, 
tremendous progress has been made regarding LABV-mediated delivery of vaccine 
antigens for prevention of a variety of viral, bacterial, and parasitic diseases. Recent 
advances have further improved the safety and immunogenicity profile of several 
LABV platforms. The new-generation LABVs can withstand harsh physicochemi-
cal conditions of gastrointestinal tract, exhibit regulated attenuation, regulated anti-
gen expression, and targeted antigen delivery. LABVs have exhibited effectiveness 
in various preclinical and preliminary clinical trials (Table 2.1). However, a limited 
number of clinical trials have been conducted to date using LABVs, due to potential 
safety concerns. Further optimization would result in a versatile, safe, and highly 
immunogenic vaccine delivery platforms.
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Table 2.1  Examples of vaccines delivered by live-attenuated bacterial vectors 

Vaccine 
vector Attenuation

Target 
pathogen Target antigen

Immune 
response References

Viral pathogens

BCG Hepatitis B Surface 
antigens

Antibodies Rezende et al. (2005)

BCG HIV SIV-Gag and 
CD8+ T-cell 
epitopes

CD 8+ T 
cell

Venkataswamy et al. 
(2014) and Mahant 
et al. (2017)

BCG HIV and SIV gp120, Gag T cells Hart et al. (2015)
L. lactis HPV-16-E7 LL-E7 Th1 immune 

response
Almeida et al. (2016)

L. lactis H1N1 HA IgA, 
Antibodies

Joan et al. (2016)

L. lactis H5N1 HA IgA Bobek et al. (2010)
Lm ΔactA/ H1N1 NP Th1 Johnson et al. (2011)

ΔplcBand 
ΔactA/
ΔinlB

Lm Δdal, Δdat HIV Gag, gp160 CD8+, CTL, 
nAb

Frankel et al. (1995), 
Friedman et al. 
(2000), Rayevskaya 
and Frankel (2001), 
Rayevskaya et al. 
(2002), Jiang et al. 
(2007) and Lakhashe 
et al. (2011)

Lm ΔactA, 
ΔplcB

HPV17 E7 CTL Jia et al. (2012)

Lm ΔactA LCMV NP118-126 CD8+ T 
cells

Tvinnereim et al. 
(2002)

Lm Δdal, Δdat SIV Gag CD8+, 
Cellular 
immune 
response

Sciaranghella et al. 
(2011) and Im et al. 
(2013)

STm ΔaroA Dengue virus NS3-MisL CTL Luria-Perez et al. 
(2007)

STm ΔcpxR, 
Δlon, Δasd 
and ΔwbaP

H1N1 HA and M2e IgG1 and 
IgG2a and 
Th1 cell 
response

Hajam and Lee (2017)

STm ΔaroA H5N1 HA, NA, NP IgG and 
mucosal 
IgA and 
gamma-
producing T 
cells

Ashraf et al. (2011) 
and Pei et al. (2015)

(continued)
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Table 2.1  (continued)

Vaccine 
vector Attenuation

Target 
pathogen Target antigen

Immune 
response References

STm ΔaroC HIV-1 10- E8, Gag Antibody, 
CTL

Karpenko et al. 
(2004), Chin'ombe 
and Ruhanya (2013), 
Li et al. (2016)

STm ΔaroA Measles virus B-cell and 
T-cell epitopes

IgG Spreng et al. (2000)

ST ΔpilS SARS Nucleocapsid 
protein

IgG2a and 
IgA

Luo et al. (2007)

STm ΔaroA TGEV N gene, C and 
A epitopes

IgG Chen and Schifferli 
(2003, 2007) and 
Zhang et al. (2016a)

Bacterial pathogens

BCG B. pertussis Pertussis toxin 
Subunit S1

Th1 Nascimento et al. 
(2008, 2009)

BCG Lm p60 Ag CD4 and 
CD8 T cell

Grode et al. (2002)

BCG Mtb Ag 85B IL 17A T 
cells

Hatano et al. (2016)

BCG B. pertussis, 
tetanus, Mtb

Pertussis-
tetanus toxin 
fusion

Humoral 
and cellular

Abomoelak et al. 
(1999)

BCG S. pneumoniae PspA IL-17A and 
IFNg

Goulart et al. (2017)

B. 
subtilis

ETEC CfaB Sera and 
mucosal Ab

Amuguni and Tzipori 
(2012)

B. 
subtilis

H. pylori Urease B IgG, IgA, 
Th1/Th17

Stasilojc et al. (2015) 
and Zhou et al. (2015)

B. 
subtilis

Mtb MPT64 Th1 Sibley et al. (2014)

B. 
subtilis

Tetanus TT C fragment IgG, IgA Amuguni et al. (2011)

E. coli ∆intimin, 
∆stx1 and 
∆stx2

ETEC CFA-I, 
LThK63

IgG and IgA Byrd and Boedeker 
(2013)

E. coli ∆ler EHEC Stx1B Antibody Zhu et al. (2006)
L. casei C. perfringens Epsilon IgG, IgA Alimolaei et al. 

(2016)
L. lactis C. jejuni cjAD Antibody Kobierecka et al. 

(2016)
L. lactis C. difficile TETC-TcdA Antibodies Yang et al. (2013)
L. lactis H. pylori Omp22 or 

HpaA, cag12, 
urease B

Antibody Gu et al. (2009), Kim 
et al. (2009), Li et al. 
(2014), and Zhang 
et al. (2016b)

(continued)
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Table 2.1  (continued)

Vaccine 
vector Attenuation

Target 
pathogen Target antigen

Immune 
response References

L. lactis L. 
monocytogenes

Listeriolysin O CD8+ T 
cells

Bahey-El-Din et al. 
(2008)

L. lactis S. pyogenes M protein 
(CRR)

Mucosal 
IgA

Mannam et al. (2004) 
and Mannam et al. 
(2004)

L. lactis V. cholera Wzm IgG and IgA Zamri et al. (2012)
Lm ∆actA, 

∆inlB
C. burnetii T4SS 

(Epitopes)
CD8+ T 
cells

Xiong et al. (2017)

ST ∆aroC, 
∆aroD, and 
∆htrA

B. anthracis PA83, PAd4 IgG, Ifng Galen et al. (2004, 
2010)

STm ∆aroA B. pertussis Pertussis toxins 
S1, S2, S3, S4, 
and S5

IgG Dalla Pozza et al. 
(1998)

STm ∆lon, 
∆cpxR

B. abortus BCSP31, 
Omp3b, and 
SOD

IgG and 
sIgA

Kim et al. (2016) and 
Lalsiamthara and Lee 
(2017)

STm ∆aroC, 
∆aroD and 
∆htrA

EHEC 
O157:H7

Intimin, CFA-I, 
CS3, STx2

Mucosal 
IgG and IgA

Girón et al. (1995), 
Rojas et al. (2010) 
and Ferreira Oliveira 
et al. (2012)

STm ΔPhoP/Q H. pylori Urease B, 
hpaA, adhesin 
AB, babA2/
ureI, CagA, 
and VacA

Antibodies Angelakopoulos and 
Hohmann (2000), Bai 
et al. (2004), Xu et al. 
(2005) and Liu et al. 
(2011)

STm ∆aroA/ 
∆sptP

L. 
monocytogenes

Listeriolysin 
and p60

CD8+ T 
cell, IFNg

Igwe et al. (2002), 
Sevil Domènech et al. 
(2008) and Berchtold 
et al. (2009)

STm ∆aroA Mtb ESAT6-Ag85B T cell, IFNg Wang et al. (2009)
STm ∆aroC, 

∆aroD, and 
∆htrA

P. aeruginosa OprF/OprI, 
LPS

Antibodies 
and TH1, 
mucosal 
IgG, and 
IgA

Arnold et al. (2004), 
Digiandomenico et al. 
(2004) and Bumann 
et al. (2010)

STm ∆cya and 
∆crp

P. gingivalis HagB IgG and IgA 
and mucosal 
IgA

Isoda et al. (2007) and 
Pathangey et al. 
(2009)

STm ∆galE S. dysenteriae LPS Serum 
antibody

Dharmasena et al. 
(2016b)

STm ∆galE S. sonnei LPS Serum 
antibody

Dharmasena et al. 
(2013)

(continued)
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Table 2.1  (continued)

Vaccine 
vector Attenuation

Target 
pathogen Target antigen

Immune 
response References

STm ∆crp and 
∆asdA

S. pneumoniae PspA, PspC Th1/Th2, 
IgG, and 
IgA

Kang et al. (2002), 
Xin et al. (2009), Shi 
et al. (2010), Wang 
et al. (2010, 2011), 
Kong et al. (2011) and 
Frey et al. (2013)

ST ∆aroC, 
∆aroD, and 
∆htrA

Tetanus TetC IgG, IgA Dunstan et al. (1999), 
Allen et al. (2000), 
Orr et al. (2001) and 
Capozzo et al. (2004)

STm ΔaroA Y. 
enterocolitica

HSP-60 T cell, IFNg Kramer et al. (2003)

STm ΔPhoP/Q Y. pestis F1, V, YadC, 
YadBC, PsaA, 
LcrV, Psn, and 
HmuR

IgG, CD4, 
and CD8+ T 
cells

Ramirez et al. (2009), 
Branger et al. (2010), 
Torres-Escobar et al. 
(2010), Sizemore 
et al. (2012), Sun 
et al. (2014) and 
Galen et al. (2015)

S. 
flexneri

ΔguaBA ETEC CFA-I and 
LTB, CS2, 
CS3, CS4, and 
CFA/A

Serum IgG 
and mucosal 
IgA

Koprowski et al. 
(2000), Barry et al. 
(2003), Ranallo et al. 
(2005) and Zheng 
et al. (2005)

V. 
cholerae

∆ctx C. difficile TcdA IgG Ryan et al. (1997)

V. 
cholerae

∆attRS1 E. coli LT Serum IgG 
and mucosal 
IgA

Ryan et al. (1999)

V. 
cholerae

∆CTA H. pylori HpaA IgG Tobias et al. (2017)

V. 
cholerae

Naturally 
attenuated

Tetanus toxin, 
B. pertussis

TetC, BP-TCF IgG Chen et al. (1998)

Parasitic pathogens

B. 
subtilis

C. sinensis Enolase Mucosal 
IgG and IgA

Yu et al. (2015)

B. 
subtilis

S. japonicum GST protein Mucosal 
IgG and IgA

Li et al. (2009)

E. coli ∆ler Malaria NANP Antibody Zhu et al. (2006)
Lm ∆actA L. major LJM11, p36, 

and LACK
Th1 Soussi et al. (2002), 

Saklani-Jusforgues 
et al. (2003) and Abi 
Abdallah et al. (2014)

(continued)
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