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ABSTRACT: Many problems studied via molecular dynamics require accurate estimates
of various thermodynamic properties, such as the free energies of different states of a
system, which in turn requires well-converged sampling of the ensemble of possible
structures. Enhanced sampling techniques are often applied to provide faster convergence
than is possible with traditional molecular dynamics simulations. Hamiltonian replica
exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows
the incorporation of a variety of enhanced sampling techniques through modifications to
the various Hamiltonians. In this work, we study the enhanced sampling of the RNA
tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular
dynamics (aMD), where a boosting potential is applied to torsions, and compare this to
the enhanced sampling provided by H-REMD in which torsion potential barrier heights are
scaled down to lower force constants. We show that H-REMD and multidimensional
REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC),
and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare
conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply
increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors
beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal
sampling efficiency.

■ INTRODUCTION

Obtaining a well-converged ensemble of structures is a key
challenge within molecular dynamics simulation approaches,
where “well-converged” implies adequate sampling of the
conformational space of the system of interest such that all
important conformational states are observed with populations
relatively close to their Boltzmann-weighted ones. From a well-
converged ensemble, one can calculate various thermodynamic
quantities with a reasonable degree of accuracy, which in turn
allows in-depth validation of force field parameters. Advances in
computational power have enabled molecular dynamics (MD)
simulations to reach increasingly longer time scales, with
simulations on the microsecond time scale becoming routine
and the millisecond time scale accessible through the use of
massively parallel clusters such as Blue Waters, specialized
hardware such as Anton,1 and/or GPUs.2,3

Even on these time scales, it is difficult to obtain well-
converged ensembles of structures using MD.4,5 Because of this,
simulation techniques which enhance conformational sampling,
such as replica exchange MD (REMD),6 self-guided Langevin
dynamics,7 adaptively biased MD,8 and accelerated MD,9 to
name a few examples, have become quite popular. Of these,
arguably the most commonly used is REMD, most likely since
the method is relatively simple to implement and by its nature
almost embarrassingly parallel. In REMD, N noninteracting
replicas of the system are made. Each replica is simulated for a

certain amount of time, after which exchanges are attempted
between certain replicas. The probability of exchanging is
defined as

= β βΔ − ΔP min(1, e )H H
exch

1 1 0 0

where β1 and β0 are the inverse of temperature times the
Boltzmann’s constant for each of the exchanging replicas, and

Δ = −H H X H X( ) ( )N N N1 0

Here HN is the Hamiltonian of one of the exchanging replicas
and X1 and X0 are the coordinates of the exchanging replicas.
The exchange is accepted or rejected using the Metropolis
criterion. In the original and most common form of REMD, the
only difference between replicas is temperature, which
simplifies the exchange probability to

= βΔ ΔP min(1, e )H
exch

This form (referred to as T-REMD) has the advantage of being
quite simple to implement from a computational standpoint,
since only temperature and potential energy ever need to be
communicated between neighboring replicas.
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While T-REMD has proven to be extremely useful in
enhancing sampling, its use does not guarantee convergence.
One issue with T-REMD is that, if the major barriers to
conformational sampling in a given system are not temperature-
dependent (e.g., the folding rate of peptides10−12), the overall
sampling enhancement may be limited. In fact, our recent study
has shown that, even for a relatively small RNA tetranucleotide,
complete convergence could not be obtained even after 2 μs of
simulation per replica.4 In that study, better convergence was
obtained by using reservoir REMD13−15 (R-REMD), in which
the highest temperature replica is replaced by a pregenerated
reservoir of structures. However, R-REMD results can be
sensitive to how the reservoir is generated; if the reservoir itself
does not cover adequate conformational space (i.e., is not
representative of the true converged ensemble), the resulting
distribution may be missing key conformations.4 The more
general form of REMD involves exchanges between different
Hamiltonians (referred to as H-REMD). Several H-REMD
schemes have been developed in which various parts of the
Hamiltonian are modified in order to enhance sampling in
dimensions other than temperature.15−22

Another enhanced sampling method is accelerated MD9

(aMD). In aMD, increased conformational sampling is
obtained by applying a so-called “boost” potential to part or
all of the system when the potential energy drops below a user-
specified energy cutoff, Ethreshold.
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Here r represents the coordinates of the system, V*(r) is the
“boosted” potential, V(r) is the unmodified potential, and
Eboost(r) is the “boost” potential, for which several forms have
been proposed.9,23−25 The original form of the “boost”
potential9 is
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The “boost” allows the system to more easily escape minima
and cross the potential barriers which slow conformational
sampling. The resulting conformational ensemble is biased; in
theory, a given property of the biased ensemble A* can be
reweighted using the “boost” energies to obtain the unbiased
ensemble average:
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However, in practice, reweighting biased ensembles such as
those obtained from aMD simulations can be challenging26,27

due to what is referred to by Markwick and McCammon as
statistical noise error and statistical mechanical sampling error.28

The former arises from distortions to the system’s energy
hypersurface caused by the biasing potential, and the latter
arises from incomplete sampling of the biased energy
hypersurface. The sources of these errors are in direct
opposition to one another: a low biasing potential will decrease
the statistical noise error but increase the sampling time, while a
high biasing potential will decrease the sampling time but
increase the statistical noise.28 Variations of aMD have been
introduced that apply the biasing potential only to certain
degrees of freedom29 or to rotatable torsions,30 thus keeping

the overall boost low. However, if a sizable boost is desired, the
statistical issues encountered during reweighting will remain.
The issue of reweighting is intrinsically related to the issue of

how to space replicas in a REMD simulation. Although there
are various methods for choosing replica spacing (in T-REMD,
this is choosing an “optimal” distribution of temperatures),31,32

the ultimate requirement is that any two neighboring replicas
be spaced close enough so that there is a non-negligible
probability of exchange.33 During REMD simulations, the
exchange probability is implicitly driving the reweighting of
each replica. Thus, statistical noise error can be avoided even if
the difference between the energy hypersurfaces of the “lowest”
and “highest” replicas is large as long as the differences between
neighboring replicas are small. This makes the combination of
aMD and H-REMD (AMD-HREMD) very attractive, since the
replicas can have varying levels of “boost”. The “highest” replica
can have a large “boost” to provide enhanced sampling, while
the “lowest” replica can have no “boost” to provide the
unbiased ensemble. This concept was first introduced by Fajer
et al. in the context of thermodynamic integration calcu-
lations,34 and has been used as a means of improving
conformational sampling in (and hence the convergence of)
free energy calculations.35,36 Furthermore, since by definition
all replicas are noninteracting, the replica exchange framework
is generalizable to any number of dimensions.37 This makes it
possible to further enhance sampling by, e.g., combining an
aMD Hamiltonian dimension with a temperature dimension.
In this study, we evaluate the ability of AMD-HREMD (with

the aMD boost applied to torsions only) and multidimensional
REMD using aMD and temperature dimensions (AMD-
MREMD) to enhance the conformational sampling of the
tetranucleotide r(GACC). This molecule is a good test system
because it provides surprising conformational complexity, yet is
small enough to obtain a good amount of simulation data in a
reasonable amount of time, and has been previously studied
both via NMR and computational methods.4,5,38 We compare
the sampling enhancement provided by adding more replicas to
the Hamiltonian dimension to that provided by the addition of
a temperature dimension. We also compare the aMD results to
previously run H-REMD and MREMD simulations that used
scaling of dihedral force constants (DFC) to enhance sampling
in the Hamiltonian dimension. We show that, no matter which
Hamiltonian scheme is used (aMD or DFC), agreement of
populations as determined from cluster analysis between
independent simulations is much better for the conformational
ensemble generated from M-REMD with 192 replicas than
from H-REMD with 8 replicas, and that convergence is much
faster for the M-REMD simulations. Certain conformations
present in the M-REMD ensembles are seen rarely or not at all
in the H-REMD ensembles. We also show that faster
convergence can be obtained by increasing the number of
replicas in H-REMD from 8 to 24 without increasing the
maximum applied boost, and attempt to explain this
phenomenon in terms of a given structure’s ability to move
efficiently through replica space.

■ METHODS
Model System. The system studied was the RNA

tetranucleotide r(GACC) solvated by 2497 TIP3P39 explicit
water molecules and neutralized with three sodium cations
using parameters from Joung and Cheatham.40 Although the
salt concentration is minimal, effectively net-neutralizing ions
with no excess salts, our previous work shows very little
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difference in the sampled conformations with ∼100 mM excess
NaCl or KCl salt.5 The system was built with the ff12SB41−44

force field parameter set using LEaP from AmberTools 1245

and equilibrated using the protocol previously described by
Henriksen et al.4

All simulations were run using the MPI version of PMEMD
from a developmental version of Amber 12,46 which had to be
modified so that the aMD boost energy was included in the
total system potential energy, which is necessary for proper
calculation of the exchange probability in H-REMD. All
simulations were run under constant temperature and volume
(NTV) conditions, using a Langevin thermostat with a collision
frequency of 5 ps−1, with the random number generator seed
based on the date and time of each run. Long range
electrostatic interactions were handled using the particle
mesh Ewald47 scheme with a cutoff of 8.0 Ǻ and default
parameters. Bonds to hydrogen were constrained using the
SHAKE48 algorithm, and a MD time step of 2 fs was used.
Hamiltonian and Multidimensional REMD Simula-

tions. For the AMD-HREMD simulation, eight replicas were
used at 300 K, with the first replica having no aMD dihedral
boost active and the remaining replicas using the aMD dihedral
boost parameters shown in Table 1. Values of Ethreshold and α

for replica 2 were chosen by trial and error so that there would
be overlap between the dihedral energy distributions of replicas
1 and 2. An additional consideration for Ethreshold was that it
be greater than the maximum dihedral energy (109.4 kcal/mol,
determined from two independent MD simulations of 1.5 ns
each at 300 K) so that the boost is always active. This was done
to ensure the Hamiltonian of each replica would be different
enough to prevent the acceptance rate from becoming 100%.
The values of Ethreshold and α for the remaining replicas were
chosen so that replicas would be roughly evenly spaced in
potential energy overlap. We found that a constant interval of
4.0 kcal for Ethreshold (which is approximately one standard
deviation of the dihedral energy over the course of the two
aforementioned 1.5 ns simulations) and a roughly exponential
interval for α provided good potential energy overlap between
neighboring replicas (see the Supporting Information). The
exchange acceptance ranged from 14 to 29% with an average of
20%. Trajectory frames for the H-REMD simulations were
saved every 1 ps.
In order to ascertain the effect of the number of replicas on

conformational sampling and convergence, AMD-HREMD
simulations with 24 replicas were also run (referred to hereafter
as AMD-H24). The aMD dihedral boost parameters were
chosen so that the minimum and maximum parameters would
match the minima and maxima of the AMD-HREMD
simulations, with Ethreshold using a linear interval and α

using an exponential interval; actual values used can be found in
the Supporting Information.
For the AMD-MREMD simulations, a temperature dimen-

sion of size 24 corresponding to the same temperature range
used by Henriksen et al.4 (see the Supporting Information for
temperatures) was added to the aMD Hamiltonian dimension
used in the AMD-HREMD simulations, for a total of 192
replicas. Exchanges were attempted separately in each
dimension, alternating between the temperature and Hamil-
tonian dimensions. Trajectory frames for the M-REMD
simulations were saved every 10 ps.

Analysis. Clustering of trajectories was performed with
CPPTRAJ49 using the DBSCAN50 clustering algorithm with
the minimum number of points set to 25 and epsilon set to 0.9.
The distance metric was coordinate RMSD using atoms N2,
O6, C1′, and P of residue G, atoms H2, N6, C1′, and P of
residue A, and atoms O2, H5, C1′, and P of the C residues. In
order to ensure that clusters found would be consistent across
all simulations, clustering was performed on the combined
trajectories from each run at 300.0 K and using nonmodified
Hamiltonians, i.e., using the “lowest” trajectory from each
REMD simulation (6 103 495 frames total). To conserve
memory, the initial clustering used a “sieve” value of 305
(i.e., every 305th frame was used), resulting in 20 012 initial
frames. Sieved frames were then added into a cluster only if
they were within epsilon of a frame originally in that cluster.
The combined clustering results were then parsed to obtain
results for each individual simulation. The total time to
complete the clustering was 751 s using an Intel Core i7-2600
CPU (with the pairwise distance and sieve calculations being
OpenMP parallelized to use all cores).
Principal component analysis (PCA) was performed with

CPPTRAJ. The coordinate covariance matrix was calculated for
all heavy atoms (82 atoms total, 246 coordinates). In order to
ensure the eigenvectors obtained would be consistent across all
simulations, the coordinate covariance matrix was calculated on
the same combination of trajectories that was used in the
cluster analysis. All frames were RMS-fit to the overall average
structure prior to calculating the coordinate covariance matrix.
The coordinates from the trajectories of each simulation were
then separately projected along each eigenvector to obtain a
time series of principal component projection values for each
principal component. A CPPTRAJ script for performing this
calculation can be found in the Supporting Information.
For each simulation type, the Kullback−Leibler divergence

(KLD) between the principal component histograms from the
two independent simulations over time was calculated using a
development version of CPPTRAJ that will be released with
AmberTools 14. The KLD has been used to assess convergence
between independent simulations in our previous study,5 and
will be described briefly here. The time-dependent KLD is
calculated as

∑=
⎛
⎝⎜

⎞
⎠⎟t P t i

P t i
Q t i

KLD( ) ( , ) ln
( , )
( , )i

Here P(t, i) and Q(t, i) represent different probability
distributions normalized to 1.0, with i representing a histogram
bin index and t representing the time at which the histogram is
being constructed (i.e., it includes all data from time 0 to t).
The KLD between two distributions P and Q is undefined if
P(i) is populated but Q(i) is not (where i indicates the bin
number) and vice versa; KLD values were not calculated for

Table 1. aMD Dihedral Boost Parameters Used for Eight-
Replica AMD-HREMD Simulations

replica Ethreshold (kcal/mol) α (kcal/mol)

1 n/a n/a
2 112.0 50.0
3 116.0 20.0
4 120.0 10.0
5 124.0 5.0
6 128.0 2.5
7 132.0 1.25
8 136.0 1.0
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such points. To reduce the number of bins with no population,
histograms were constructed using a Gaussian kernel density
estimator. For each histogram, a total of 400 bins were used,
and the bandwidth was determined from the normal
distribution approximation.

■ RESULTS

Two independent 8-replica AMD-HREMD simulations (1153
and 1128 ns per replica), two independent 24-replica AMD-
HREMD simulations (465 and 545 ns per replica), and two
independent 192-replica AMD-MREMD simulations (838 and
1005 ns per replica) were performed. These were compared
with previously run 8-replica HREMD with dihedral force
constant scaling (DFC) and 192-replica MREMD with DFC
scaling and temperature,5 referred to as DFC-HREMD (1020
ns per replica, each) and DFC-MREMD (289 and 300 ns per
replica), respectively.
Cluster Analysis. Cluster analysis was performed on the

combined trajectories (see the Methods for further details) at
300.0 K with no aMD boost active from all simulations in order
to determine the major conformations observed. Table 2 shows
clustering results for the top 6 clusters; full results (24 clusters
total) are available in the Supporting Information. Roughly 30%
of the combined trajectory was considered “noise” by the
DBSCAN algorithm. Representative structures were assigned
names using the nomenclature of Henriksen et al.4 by choosing
the closest reference structure to the cluster representative
structure via RMSD; the representative was required to have a
RMSD to reference <1.0 Å in order to be assigned.
The three most populated clusters (accounting for ∼49% of

all structures) correspond to the “A-form-minor-NMR”,
“intercalated-anti”, and “A-form-major-NMR” structures.
These conformations were also found in MD simulations
performed by Yildirim et al. with a modified force field,38

although with different populations. The next three most
populated clusters account for 4.7, 4.0, and 1.9% of the total
structures, respectively. The remaining 18 clusters together
make up only 9.9% of the total structures, with each accounting
for less than 1.4% of the total population, and in individual
trajectories, none are populated above 3.0%. The only
exception to this is the 1_3-basepair structure, which is
populated only in both sets of M-REMD runs; the 1_3-basepair
structure has no population in any of the H-REMD runs.
Figure 1 shows percent populations of the top six clusters

from each of the different simulation types (calculated as the
average over two independent simulations, with error bars
representing the difference between the simulations). The
populations for all clusters can be found in the Supporting
Information. The populations obtained for the two independ-
ent AMD-MREMD simulations and two independent DFC-

MREMD simulations agree well with each other, as evidenced
by the small error bars. In contrast, the populations obtained
from the two AMD-HREMD and two DFC-HREMD
simulations do not agree as well overall, and in some cases
are quite different (e.g., the cluster 1 intercalated-anti
population difference between the two DFC-HREMD
simulations is 8%). The populations obtained for the two
AMD-H24 simulations agree reasonably well, although not
quite as well as the M-REMD simulations, but clearly better
than the other eight-replica H-REMD simulations.
Table 3 shows the average absolute difference and standard

deviation of cluster populations (in percentage) between the
two independent simulations for each simulation type, both
across all 24 clusters and just for the top 3 clusters (A-form-
minor-NMR, intercalated-anti, and A-form-major-NMR). It
should be noted that certain clusters (from cluster 10 on) were
not found in some of the AMD-HREMD, DFC-HREMD, and
AMD-H24 simulations; if either independent simulation for a
given type did not find a certain cluster, the delta (which would
be 0.0) was not included in the calculation of averages/standard
deviations, as this would serve to artificially lower them.
The AMD-MREMD and DFC-MREMD simulations have

similar average differences (0.38 ± 0.52 and 0.37 ± 0.53%,
respectively) when all clusters are considered. However, if just
the three most populated clusters are considered, the average
differences in the AMD-MREMD simulations are slightly larger
than the differences in the DFC-MREMD simulations (1.22 ±
0.19% versus 0.43 ± 0.34%), indicating that the AMD-

Table 2. Clustering Results for the Top Six Clusters from Combined Trajectories at 300 K with Non-Modified Hamiltonians
(Davies−Bouldin Index = 0.88)a

#cluster frames % AvgDistb Stdevb AvgCDistc name

0 1 230 717 20.2 1.83 0.66 4.64 A-form-minor_NMR
1 976 585 16.0 1.54 0.62 3.76 intercalcated-anti
2 776 618 12.7 1.51 0.67 4.62 A-form-major-NMR
3 289 784 4.7 0.90 0.30 4.33 inverted-syn
4 244 102 4.0 1.09 0.35 3.72 intercalated-syn
5 117 082 1.9 1.62 0.56 4.55 1_3-stack

aSee the Methods for details. bAvgDist and Stdev are the average distance and standard deviation (in Å) between all frames in the cluster,
respectively. cAvgCdist is the average distance (in Å) of the cluster to every other cluster.

Figure 1. Average percent population present from each simulation
type (shown in different symbols and colors) for the top six clusters
calculated as (X1 + X2)/2, where X1 and X2 are the populations from
simulations 1 and 2, respectively; error bars are calculated as |X1 − X2|/
2.
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MREMD results are not quite as well-converged. This may be
why the populations from the AMD-MREMD simulations do
not quite agree with the populations from the DFC-MREMD
simulations, in particular the A-form-minor-NMR and A-form-
major-NMR structures.
The AMD-HREMD and DFC-HREMD simulations have

much larger differences in population between their independ-
ent runs, both across all clusters and for the top three clusters,
indicating these simulations are not converged. The AMD-H24
simulations have slightly smaller differences in population than
the eight-replica HREMD runs but still larger than any of the
MREMD simulations. It is interesting to note however that for
the AMD-H24 simulations the average populations for the top
three clusters are relatively close to those of the M-REMD
simulations. This indicates that the AMD-H24 simulations are
better converged than either of the eight-replica H-REMD
simulations.
A rough measure of the sampling efficiency in a simulation is

how long it takes to “find” individual clusters; more efficient

sampling should lead to more rapid discovery of clusters. Table
4 shows the average, standard deviation, and maximum time (in
frames) needed to find all clusters for each type of simulation
(calculated from the combination of two independent
simulations of each type). Individual values for each simulation
can be found in the Supporting Information. Both M-REMD-
type simulations are on average an order of magnitude faster in
finding clusters than the eight-replica H-REMD-type simu-
lations. The AMD-H24 simulations are on average slower than
the M-REMD-type simulations in finding clusters but still 2−3
times faster than the eight-replica H-REMD-type simulations.

Principal Component Analysis. Principal component
analysis (PCA) provides a measure of the dynamic nature of
a structure. PCA is a good complement to cluster analysis;
clustering provides information on what conformations are
adopted over the course of a simulation, while PCA provides
information on what motions the structure undergoes to adopt
those conformations. Figure 2 shows histograms for the
projection of coordinates along the first eigenvector (i.e., the

Table 3. Average Absolute Difference and Standard Deviation of Cluster Populations (in Percentage) Both across All Clusters
and Just for the Top 3 Clusters

AMD-MREMD AMD-HREMDa DFC-MREMD DFC-HREMDa AMD-H24a

avg delta 0.38 0.93 0.37 1.13 0.70
SD delta 0.52 1.23 0.53 1.98 0.87
top 3 avg 1.22 2.32 0.43 4.64 2.01
top 3 SD 0.19 2.19 0.34 3.97 1.56

aThe average/standard deviation does not include clusters for which no population was found in one or both of the independent simulations.

Table 4. Average, Standard Deviation, and Maximum Starting Time Taken to Find Clusters (in ns) across All Clusters for Each
Type of Simulation

AMD-MREMD AMD-HREMDa DFC-MREMD DFC-HREMDa AMD-H24a

average 21.2 126.9 9.0 112.8 45.6
stdev 25.6 172.0 8.5 116.5 83.0
max 115.6 917.3 42.8 536.6 435.4

aNot all clusters were found for this simulation type.

Figure 2. Histograms of the projection of principal component 1 (accounting for ∼35% of the total motion; see the Supporting Information for
eigenvalues) for each simulation type. Histograms were calculated using a Gaussian kernel density estimator (see the Methods for details). Each
histogram as shown is actually the average of the histograms from the two simulations of each type, with the width of the error bars representing the
differences between the simulations.
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eigenvector with the highest eigenvalue) for each simulation
type, calculated as the average from histograms of two
independent simulations, with error bars representing the
difference between the independent simulations. As with the
clustering results, the largest differences between the
independent runs is found in the AMD-HREMD, DFC-
HREMD, and AMD-H24 simulation sets, while the AMD-
MREMD and DFC-MREMD simulations show much smaller
differences. These trends also apply for the next four principal
components (see the Supporting Information).
The overlap of principal component (PC) projection

histograms can be a useful measure of convergence between
two independent runs. As two independent runs with different
initial conditions proceed, they will start to sample the same
conformational space and undergo similar motions, leading to
an increase in their overlap in PC space. Until there is a certain
degree of overlap between PC projection histograms for every
“essential” PC (i.e., a PC eigenvector with a non-negligible
eigenvalue), the two simulations are not well-converged.
Kullback−Leibler divergence51 (KLD) is a measure of how
well two probability distributions overlap. Measuring the KLD
as a function of time between histograms from two
independent simulations can serve as a quantitative measure
of convergence.
Figure 3 shows the KLD between PC projection histograms

of PCs 1, 2, and 3 (which comprise ∼58% of the total motion)

from two independent runs for every simulation type.
Consistent with previous results, the AMD-MREMD and
DFC-MREMD runs converge relatively quickly. The slope of
the KLD for the AMD-MREMD runs stops changing
significantly by ∼200 ns. The DFC-MREMD runs converge
even faster, with the slope of each line not changing
significantly after 100 ns. The H-REMD runs all converge
slower, and have more variation in the rate at which they
converge than the M-REMD runs. The AMD-HREMD runs in
particular have the slowest convergence.
Note that, in the case of the DFC-HREMD runs, the initial

KLD values for PCs 1 and 2 drop rapidly to ∼0.021 at around
48 ns before rising back up to ∼0.269. This illustrates a
potential pitfall of using KLD as a metric of convergence when
sampling is limited, such as at the beginning of an MD
simulation: if two otherwise independent runs begin in the
same conformational space of a certain PC, they may both
initially explore the same limited subspace along that PC and
the overlap of their PC projection histograms may actually be
quite good. Once sampling increases and one or both of the
runs can explore outside of their initial regions, the KLD better
reflects the convergence between the two simulations. There-
fore, the KLD of PC projection histograms is a good measure of
convergence between two simulations only if at least one
simulation has explored along most or all of a given PC. In
other words, there is a minimum sampling time required before
this metric can be considered viable.
Table 5 shows the average, minimum, and maximum times at

which the KLD for the PC projection histograms of the first 20
PCs (accounting for ∼96% of the total motion) reaches and
remains below 0.02 for each simulation type; values for each
individual PC can be found in the Supporting Information. The
0.02 cutoff was chosen on the basis of the observation that in
each simulation the slope of the KLD plot no longer changes
significantly once it is below this value. For the AMD-MREMD
and DFC-MREMD simulations, all 20 PCs reach 0.02 by 178.5
and 49.1 ns per replica, respectively. The PCs that take the
longest to reach 0.02 are PC 1 for AMD-MREMD and PC 2 for
DFC-MREMD, consistent with the fact that these PCs
correspond to the lowest frequency motions. For the H-
REMD runs, however, not all PCs reach 0.02. In fact, only one
of the top three PCs (accounting for ∼57% of the total motion)
reaches 0.02 in the AMD-H24 (PC 1) and DFC-HREMD (PC
2) runs, and none of the top three PCs do in the AMD-
HREMD runs. This is consistent with the clustering results that
showed certain conformations populated in the M-REMD runs
are not populated in the H-REMD runs, and indicates that
convergence of the lowest frequency motions is essential for
obtaining correct structural populations.

Figure 3. Kullback−Leibler divergence of principal component
projection histograms from independent simulations vs time for the
first three principal components.

Table 5. Simulation Time (in ns) Needed for the KLD of PC Projection Histograms of the First 20 PCs to Reach 0.02 and
Number of PCs for Which KLD Never Reached 0.02

AMD-MREMD AMD-HREMD DFC-MREMD DFC-HREMD AMD-H24

averagea 84.3 816.1 25.2 586.5 222.2
SDa 37.2 256.0 15.1 162.2 105.5
mina 31.6 176.4 6.2 311.3 83.5
maxa 178.5 1126.5 49.1 759.6 460.4
KLD > 0.02 0 5 0 6 3
top 3
KLD > 0.02

0 3 0 2 2

aValues for which KLD never reached 0.02 are not included.
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aMD Reweighting of Individual Replicas. As mentioned
in the Introduction, direct reweighting of aMD simulations can
be problematic due to statistical noise error and statistical
mechanical sampling error,28 particularly when the boost is
high. To illustrate this point, we calculated the population-
based free energy for rotation around the alpha backbone
dihedral angle of A2 using the unbiased replica, the reweighted
data from the lowest-boosted replica, and the reweighted data
from the highest-boosted replica of an AMD-HREMD run
(Figure 4). Reweighting of the lowest-boosted replica is able to

successfully recapture the free energy profile of the unbiased
replica. However, reweighting of the highest-boosted replica
results in an extremely different free energy profile compared to
the unbiased replica. This serves to highlight the benefits of
aMD combined with REMD; one can have the sampling
benefits of using a high boost without worrying about
reweighting artifacts.
Impact of Number of Replicas on Convergence.

Overall, the results clearly show that, in REMD simulations,
the rate of convergence of cluster population and PC
component projections between independent simulations
depends on the number of replicas used, with more replicas
increasing the rate. It has already been shown that convergence
of an H-REMD run could be increased by adding a temperature
dimension5 (i.e., turning it into an M-REMD run). In this work,
that remains true, but here it is also shown that convergence of
an H-REMD run can also be improved somewhat by simply
adding more replicas in the same biasing/Hamiltonian space
(i.e., without increasing the maximum boost used). The AMD-
H24 simulations with 24 replicas found more clusters in a
shorter amount of time than the AMD-HREMD simulations
with 8 replicas, and had a faster rate of convergence in PC
space. Importantly, since the maximum boost used in both the

AMD-HREMD and AMD-H24 runs was equal, the improve-
ment results solely from the additional replicas.
To explain what causes this increased convergence, we have

compared average exchange acceptance, replica round trip
times, and average time spent at each replica between one of
the AMD-HREMD runs and one of the AMD-H24 runs. Figure
5 shows the fraction of exchange attempts to the next-highest

replica accepted for both simulations. As mentioned in the
Methods, the boost levels for the AMD-H24 simulations were
chosen so that the aMD parameters for the lowest boosted
replica (replica 2) and highest boosted replica (replica 24)
would match the lowest and highest boosted replicas of the
AMD-HREMD run (replicas 2 and 8, respectively). Therefore,
the spacing between replicas 1 and 2 in both simulations is the
same, which is reflected by the similar average acceptance for
exchanging from replica 1 to 2 (∼0.23 for both). However,
because the spacing for the remaining replicas is necessarily
closer in the AMD-H24 simulation, the average exchange
acceptance for these replicas is much higher, ranging from
∼0.65 to ∼0.80, than in the AMD-HREMD simulation, which
ranges from ∼0.14 to ∼0.30. Although the disparate exchange
acceptance between replicas 1 and 2 and the remaining replicas
in the AMD-H24 simulation may seem like cause for concern, it
will be shown through analysis of replica round trip times and
time spent at each replica that there is little discernible effect on
overall exchange efficiency.
In order for a replica exchange scheme to be efficient,

coordinates should have the opportunity to visit all replicas
multiple times. One metric for this introduced by Abraham and
Gready is the “transit number”, which is the number of replica
exchange attempts required for a 95% probability that at least
one replica has visited the maximum before visiting the
minimum.52 A metric directly related to the transit number is
the “round-trip time” (RT), which is simply the time needed to
transition from the lowest replica to the highest and back.

Figure 4. Population-based free energies for rotation around the A2
alpha dihedral calculated from population histograms for the unbiased
replica (solid line), the reweighted population of the lowest aMD-
boosted replica (dotted line), and the reweighted population of the
highest aMD-boosted replica (dashed line) from an AMD-HREMD
run. All histograms were calculated using a Gaussian KDE with a
bandwidth of 6.8.

Figure 5. Fraction exchange attempts to the next-highest replica
accepted for one of the 8-replica AMD-HREMD runs (black circles
and solid line) and one of the 24-replica AMD-H24 runs (red triangles
and dashed line). The boost of AMD-HREMD replicas 2 and 8
matches the boost of AMD-H24 replicas 2 and 24, respectively; replica
1 is not boosted in either case. Points are the fraction accepted
calculated at several intervals along each simulation, and the lines
represent the average of the points. The highest replica for each
simulation always has an exchange acceptance of 0.00, since it is trying
to exchange with the lowest replica (which is never accepted).
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Figure 6 shows the number of round trips per ns for each set of
starting coordinates, as well as the average, minimum, and

maximum RT in exchanges (one exchange per ps) for each
simulation. Since the AMD-HREMD simulation has fewer
replicas to traverse for a round trip than the AMD-H24
simulation, it might be expected that the RT for the AMD-
HREMD simulation would be shorter. While this is indeed the
case (in the AMD-HREMD simulation, it takes on average 735
ns to make a round trip vs 1042 ns for the AMD-H24
simulation), the change in round time (71%) is not directly
proportional to the change in the number of replicas (30%).
This is most likely because, although there are more replicas in
the AMD-H24 simulation, the higher exchange acceptance
means that a given set of coordinates can transition between
replicas at an effectively higher rate. It is particularly interesting
to note the extreme difference between the minimum and
maximum RT in both simulations, which can range from
hundreds of picoseconds to tens of thousands of picoseconds
(>10 ns). While the minimum RTs for the AMD-HREMD
simulation are somewhat shorter than the AMD-H24
simulation, the maximum RTs (with two exceptions) for both
simulations are around 10 000 exchanges. Again, although the
number of replicas increases from 8 to 24, on average, the
longest time it takes for a structure to make a round trip is the
same for both simulations.
Figure 7 shows the average time that coordinates spend at

each replica for both simulations. The closer the slope of this
line is to zero, the better a given set of coordinates has
transitioned through replica space. The average time a given set
of coordinates spends at each replica for the AMD-HREMD
simulation ranges from 8 to 18 ps, and the somewhat large
slope of the lines indicates certain coordinates spend more time
at certain replicas than others. In contrast, the average time
spent at each replica for the AMD-H24 simulation ranges from
only 2 to 7 ps, and the slope of the lines is correspondingly
smaller. This provides some insight as to why convergence is
faster in the AMD-H24 simulation; effectively any given set of
coordinates in the AMD-H24 simulation has a better chance of

reaching a higher boost in a shorter amount of time than in the
AMD-HREMD simulation.
As previously mentioned, because of the disparity in

exchange acceptance rates in the AMD-H24 simulation, ∼0.2
between replica 1 (the unbiased Hamiltonian) and replica 2
(the first aMD-boosted Hamiltonian) and ∼0.7 for all other
replicas, one might expect structures to perhaps spend more
time at the unbiased replica. However, this is clearly not the
case, suggesting that either the disparity between the exchange
acceptance rates does not matter or perhaps having only one
disparity is not enough to significantly impact the ability of
coordinates to transition through replica space. It is important
to note that, although coordinates are spending less time per
replica in the AMD-H24 simulation, there is still on average
more than 2 ps between each exchange. This is important
because exchanges must not be too close temporally;52

otherwise, the potential energies of a replica pair may still be
correlated at the time of the next exchange, violating the central
premise of REMD: that all replicas are independent.

■ CONCLUSIONS
A comparison of the enhanced sampling provided by HREMD
(using either aMD or scaling of DFC for the Hamiltonians)
with 8 replicas to MREMD with 192 replicas (8 Hamiltonian,
24 temperature) showed that, in terms of convergence,
MREMD was superior to HREMD for both Hamiltonian
types. Certain conformations present in the M-REMD
ensembles are seen rarely or not at all in the H-REMD
ensembles. Although some of this may be due to poor
convergence, one conformation in particular in which a base
pair is formed between G1 and C3 (the “1_3-basepair”
conformation4) is never seen in any of the H-REMD-type
simulations, indicating that the addition of a temperature
dimension in the M-REMD simulations may help to sample
rare conformations. This also implies that boosting the dihedral
energy does not always translate into easier rotations around
torsions. This is clear from examination of free energies for
rotation around torsions from one of the AMD-MREMD
simulations (see the Supporting Information). While the
barriers for rotation around certain torsions (such as alpha,
gamma, zeta, and sugar pucker pseudorotation) are indeed
reduced by ∼2 kcal/mol or more in some cases, the barriers for

Figure 6. Number of round trips per ns (#RT/ns), as well as the
average, minimum, and maximum round-trip times in number of
exchanges (1 exchange/ps) for an AMD-HREMD and an AMD-H24
simulation. The starting coordinate index indicates the initial replica
that a given set of coordinates started at.

Figure 7. Average time spent at each replica for each set of starting
coordinates (1 line per coordinate set) for the AMD-HREMD and
AMD-H24 simulations.
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other torsions (such as epsilon and chi) are not significantly
reduced, indicating that there are other factors contributing to
these barriers. Indeed, it should be noted that, although barriers
to rotation around dihedrals play a role in structural transitions,
other factors such as van der Waals and electrostatic
interactions play important roles as well. The addition of the
temperature dimension may serve to overcome barriers that
cannot be surmounted by boosting torsions alone. It is likely
that additional Hamiltonian dimensions specifically targeted at
these other factors may increase convergence rates even more.
It was also shown that convergence of AMD-HREMD

simulations could be improved by adding more replicas to the
Hamiltonian dimension (increasing from 8 to 24 total replicas)
without increasing the maximum bias. The improved
convergence appears to arise from an increased ability of
coordinates to travel through replica space via higher replica
exchange acceptance, and therefore get to replicas with higher
levels of aMD boost where potential barriers may be crossed in
a shorter amount of time.
It is noted that the DFC-MREMD simulations were

particularly fast to converge. This may not necessarily reflect
that DFC scaling is inherently faster than aMD in terms of
sampling. Instead, it may just be a consequence of energy; the
difference in torsion energy between the lowest and highest
replicas for the aMD simulations is on the order of ∼40 kcal/
mol, while the difference for the DFC simulations is on the
order of ∼70 kcal/mol. It may be that if the aMD boost level is
increased the convergence speed will approach that of the DFC
simulations. However, this would require an increased number
of replicas in the Hamiltonian dimension in order to maintain a
decent exchange rate (>0.2), so it appears as though DFC
scaling is overall more efficient in terms of sampling when in an
H-REMD framework, at least for this system. It may also be
possible that other forms of the aMD boost than the one used
in this study would be more efficient.25

Overall, the results indicate there is a delicate balance to
strike in H-REMD simulations between the number of replicas
used and how those replicas are spaced. For example, adding
more replicas may increase the probability that a given set of
coordinates can get to a “higher” replica where sampling may
be enhanced, but adding too many replicas may increase the
time to get to the highest replica so much that any benefits are
lost. Choosing parameters to optimize this balance is of key
importance and is being explored in future work.
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(43) Banaś,̌ P.; Hollas, D.; Zgarbova,́ M.; Jurecǩa, P.; Orozco, M.;
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