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Abstract: Disposal of palm oil mill effluent (POME), which is highly polluting from the palm oil indus-
try, needs to be handled properly to minimize the harmful impact on the surrounding environment.
Photocatalytic technology is one of the advanced technologies that can be developed due to its low
operating costs, as well as being sustainable, renewable, and environmentally friendly. This paper re-
ports on the photocatalytic degradation of palm oil mill effluent (POME) using a BiVO4 photocatalyst
under UV-visible light irradiation. BiVO4 photocatalysts were synthesized via sol-gel method and
their physical and chemical properties were characterized using several characterization tools includ-
ing X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy
(TEM), surface area analysis using the BET method, Raman spectroscopy, electron paramagnetic
resonance (EPR), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of calcination
temperature on the properties and photocatalytic performance for POME degradation using BiVO4

photocatalyst was also studied. XRD characterization data show a phase transformation of BiVO4

from tetragonal to monoclinic phase at a temperature of 450 ◦C (BV-450). The defect site comprising
of vanadium vacancy (Vv) was generated through calcination under air and maxima at the BV-450
sample and proposed as the origin of the highest reaction rate constant (k) of photocatalytic POME
removal among various calcination temperature treatments with a k value of 1.04 × 10−3 min−1.
These findings provide design guidelines to develop efficient BiVO4-based photocatalyst through
defect engineering for potential scalable photocatalytic organic pollutant degradation.

Keywords: palm oil mill effluent (POME); photocatalytic degradation; BiVO4; defects; vanadium vacancy

1. Introduction

The rapid growth of the palm oil industry worldwide has invited serious water
pollution in aquatic systems. Large crude palm oil (CPO) production has resulted in an
increase in palm oil mill effluent (POME) generated from the CPO process. Each ton of
CPO production produces about 2.5–3.0 m3 of POME [1]. Huge amounts of POME with a
high concentration of organic content have implications in environmental pollution if not
handled properly. POME is declared as one of the most difficult wastes to handle due to its
large production and ineffective processing technology.
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Fresh POME is generally acidic (pH 3.3–4.6), high in temperature (60–80 ◦C), thick,
brownish in color with solids (1330–50,700 mg/L), with oils and fats (190–14,720 mg/L), a
biochemical oxygen demand (BOD) of 8200–35,000 mg/L, and chemical oxygen demand
(COD) of 15,103–65,100 mg/L [2]. Regulations regarding quality standards for the discharge
of POME into the environment or water bodies to prevent the negative effects of POME
waste have been established. The latest regulations state that the COD and BOD standards
were set at lower than 250 mg/L and 100 mg/L, respectively.

The most widely used POME waste treatment is conventional treatment using an open
pond system through anaerobic and aerobic decomposition processes. The disadvantage
of this system is that apart from requiring a large area of land and a long retention time, it
can also emit harmful gases such as methane gas and cause sludge build-up [3]. Therefore,
conventional treatment is very inefficient for treating POME. In recent years, various
treatment methods have been developed to eliminate and reduce POME pollution [3].
These methods include composting [4], fermentation [5], coagulation flocculation [6],
adsorption [7], flotation, membrane technology [8], steam reforming [9], and advanced
oxidation processes [10]. Among these technologies, photocatalytic technology is a viable
wastewater technology to reduce environmental pollution especially POME waste due to it
being eco-friendly, not involving sludge formation and other harmful substances, as well
as being cost effective, operated at ambient conditions, and a sustainable process, which
addresses the issues of energy consumption and environmental remediation [11].

TiO2 is by far the most widely used photocatalyst due to it exhibiting strong oxidizing
ability, stability, and high efficiency against organic compounds [12,13]. However, the main
drawback of TiO2 is its wide band gap (~3.2 eV), which limits its light response to the
UV region. As a result, this photocatalyst can only take advantage of less than 6% of the
solar energy impinging on the Earth’s surface, and its potential as a sustainable technology
cannot be entirely fulfilled [14]. Therefore, during the last few years an increasingly great
number of new photocatalysts have been developed and tested as possible alternatives
to TiO2 based photocatalysts. In this context, the feasibility of using some well-known
photocatalysts like bismuth vanadate (BiVO4) has been reconsidered in light of recent
advances in nanotechnology.

BiVO4 is a less expensive photocatalyst with a narrower band gap (2.4 eV) than TiO2,
which is capable of harvesting visible light for photocatalytic processes [15,16]. BiVO4 has
been reported to successfully degrade and reduce organic pollutants in wastewater, using
methylene blue [17], rhodamine blue [18], and methyl orange [19] as model compounds.
The photocatalytic efficiency is closely related to the structure, crystal dimensions, size,
morphology, optical band-gap energy, and surface shape. It is also generally considered
that the synthesis method and the operating conditions used were the main critical pa-
rameters to achieve optimum efficiency removal [17]. Several studies have been carried
out on the synthesis of BiVO4 with various methods including coprecipitation [20], hy-
drothermal [21], and sol-gel methods [22]. Among these methods, the sol-gel method is
becoming increasingly used because it requires only simple equipment and a low process
temperature, compared to the traditional powder method [17]. However, up to now there
has been no research that has developed a BiVO4 photocatalyst specifically for POME
waste treatment.

Herein, we report the fabrication of BiVO4 through a simple sol-gel method. The
as-prepared BiVO4 catalyst was employed for the first time for photocatalytic POME
degradation. Furthermore, we have analyzed the as-prepared catalysts in detail by various
spectroscopic and microscopic characterizations. The obtained photocatalytic rates for
POME degradation will be discussed on the basis of characterization data which is highly
dependent on the calcination temperature in the range of 300–600 ◦C. This is attributed
to the variation in crystallinity, morphology, optical and electronic properties, and local
structure distortion (existence of defect sites, namely vanadium vacancy) of the BiVO4
upon calcination treatment.
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2. Results and Discussion
2.1. Crystal Phase Composition

XRD is used to characterize the phase structure of the obtained samples. Figure 1
shows the XRD pattern of the synthesized BiVO4 photocatalyst at different calcination
temperatures. Samples are labeled BV-x, where BV and x are attributed to BiVO4 and
calcination temperature, respectively. The XRD pattern of BV-300 indicates that the sample
is in a mixture of tetragonal and monoclinic phases. The diffraction peaks at 2θ = 18.3; 24.4;
32.7; 34.7; 39.5; 43.8, and 48.4 were attributed to the tetragonal structure of BiVO4 (JCPDS,
no. 14-0133). Meanwhile, the diffraction peaks at 2θ = 18.7 and 28.9 were assigned to the
monoclinic BiVO4 structure (JCPDS, no. 83-1699). When the calcination temperature was
increased to 375 ◦C (BV-375), a phase change began to occur towards the monoclinic, which
can be seen by decreasing the intensity of the tetragonal phase and followed by an increase
in intensity in the monoclinic phase. When the calcination temperature increases to 450 ◦C
(BV-450), the tetragonal phase peak disappeared while it predominantly consists of the
monoclinic phase. In addition, it generated a sharper XRD pattern, which shows better
crystallinity and an increase in crystallite size. Subsequent calcination to temperatures of
525 ◦C (BV-525) and 600 ◦C (BV-600) showed that the photocatalysts were all in a monoclinic
phase (there were no peaks of tetragonal phase or other impurities were detected).
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According to the Zhang et al. [17], when the calcination temperature was increased up
to 400 ◦C, there were several small peaks at 2θ = 25.7◦; 27.7◦, and 32.3◦, which correspond
to Bi2O3 being considered an impurity. Increasing the calcination temperature to 450 ◦C
causes the peak corresponding to Bi2O3 to disappear. The calcination temperature has a
significant impact on the phase composition, degree of crystallinity, and photocatalytic
properties of the prepared photocatalyst [23]. These results indicate that the calcination
temperature is an important factor in the preparation of pure monoclinic BiVO4. The
intensity of the XRD diffraction peak of BiVO4 photocatalyst after calcination at 525 ◦C
was the strongest followed by 450 ◦C. The narrow and sharp diffraction peaks indicate that
the BiVO4 photocatalyst has high crystallinity. This increase in photocatalyst crystallinity
will be advantageous for photocatalytic activity.

On the other hand, the XRD results of the synthesized BiVO4 photocatalyst are dif-
ferent from Wang et al. [23], where the calcination was carried out at a temperature range
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of 350–500 ◦C for 5 h to produce a crystal structure of BiVO4 photocatalyst with a pure
monoclinic phase structure. In addition, the intensity of the diffraction peak increased with
increasing calcination time, indicating that the degree of crystallinity increased with the
extension of the calcination time. However, if the calcination time is too long, the mon-
oclinic phase transformed back to a tetragonal phase. In addition, Pookmanee et al. [24]
reported that XRD pattern showed that all BiVO4 photocatalyst crystals with monoclinic
phase structure at the calcination temperature treatment range of 400–600 ◦C for 2 h. No
other phase peaks or impurities were detected. As the calcination temperature increases,
the width of the diffraction line decreases and the intensity of the diffraction line increases
indicating that a high crystallinity of BiVO4 photocatalyst was obtained.

The crystal size of the sample was calculated according to the Scherrer formula.
The crystal sizes of the BV-300, BV-375, BV-450, BV-525, and BV-600 were 23.79; 21.58;
23.89; 25.68; 26.06 nm, respectively (Table 1). These results indicate that crystal size
increases with increasing calcination temperature in general, which implies that high
temperatures favor grain growth stages according to nucleation theory and thermodynamic
growth [23]. However, the BV-375 photocatalyst was inversely proportional due to the
phase transformation from the tetragonal phase to the monoclinic phase. The appearance
of a broad peak in the BV-375 photocatalyst indicates a decrease in crystal size.

Table 1. Crystallite size and crystallinity percentage of the BiVO4 photocatalyst with different
calcination temperatures.

Photocatalyst Crystallite Size (nm) Crystallinity (%)

BV-300 23.79 93.9
BV-375 21.58 52.1
BV-450 23.89 94.6
BV-525 25.68 99.4
BV-600 26.06 89.1

It is known that the monoclinic BiVO4 crystal structure consists of O 2p and Bi 6s
orbitals in the valence band and V 3d orbitals in the conduction band while the tetragonal
structure of BiVO4 consists of only O 2p species in the valence band [25]. The presence of the
Bi6s orbital in the valence band of BiVO4 is a regulatory factor that helps to improve charge
separation and electron-hole pair migration, resulting in better photocatalytic performance
(as shown in Figure 2).
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Figure 2. Schematic diagram of BiVO4 in two different crystal structures, namely tetragonal and
monoclinic phases. Adapted from ref. [25].

Raman spectroscopy can provide more structural information and is used to support
the transformation phase from tetragonal to monoclinic phase by increasing the calcination
temperature. The Raman spectrum of the BiVO4 photocatalyst with different calcination
temperatures is shown in Figure 3. In the BiVO4 spectrum, the peaks at 827 cm−1 and
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854 cm−1 correspond to the symmetrical V-O stretching mode of monoclinic and tetragonal
phases, respectively. The weak shoulder peak near 710 cm−1 was designated as the
monoclinic V-O asymmetric stretching mode, while the shoulder peak near 755 cm−1 was
designated as the tetragonal phase. The double peaks observed at about 328 cm−1 and
366 cm−1 were associated with an asymmetric bending mode (VO4) and a symmetric
bending mode (VO4) respectively. The peaks at 126 cm−1 and 210 cm−1 correspond to
crystal lattice vibrations for the monoclinic phase while the peak at 247 cm−1 is attributed
to the tetragonal phase (external mode). The Raman spectra clearly confirmed the phase
transformation from tetragonal to monoclinic phase obtained from XRD measurement
(Figure 1) at a calcination temperature of 375 ◦C (BV-375) indicated by the absence of the
peaks at 247, 755, and 854 cm−1.
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2.2. Morphology

The morphology of the BiVO4 photocatalyst was investigated by SEM and TEM, as
shown in Figures 4 and 5. The tendency of agglomeration in the BiVO4 photocatalyst
occurred more extensively at a low calcination temperature (BV-300) and high calcination
temperature (BV-600) compared to the calcination temperature of 450 ◦C (BV-450). The
average particle sizes for BV-300, BV-375, BV-450, BV-525, and BV-600 photocatalysts were
0.759, 0.429, 0.154, 0.425, and 0.709 µm, respectively. Based on Figure 4, with an increase in
the calcination temperature up to 450 ◦C, the particle size decreased, while beyond that, the
particle size gradually increased. The average particle size of the BV-600 photocatalyst from
this study exhibited a similar size to the work reported by Pookmanee et al. [24]. Moreover,
it was also revealed that uneven distribution of grains and shapes was observed in BV-300
and BV-375. When the calcination temperature rises up to 450 ◦C (BV-450), although the
agglomeration phenomenon slightly occurs, the grain size is small and has a uniform
distribution. The grains become larger at higher temperatures, providing sufficient energy
leading to agglomeration. At a calcination temperature of 600 ◦C (BV-600), the resulting
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smaller grains gradually begin to melt and reform into larger particles. This phenomenon is
in line with the “big eat small” phenomenon in the material sector. Morphological changes
in this study are in accordance with the work reported by Wang et al. [18].
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The TEM image (Figure 5) provides a clearer visualization of the morphology of the
BiVO4 photocatalyst at different calcination temperatures. The BV-450 photocatalyst mainly
consisted of small granules, while BV-300, BV-375, BV-525, and BV-600 exhibited irregular
shapes. The estimated size of the BV-450 photocatalyst showed predominantly particles
with sizes around 150 nm. The good morphology of BV-450 shows the feasibility of these
nanostructures for photocatalytic applications.

The atomic compositions of the BiVO4 photocatalyst were further studied by energy-
dispersive X-ray spectroscopy (EDX) and the corresponding results are shown in Table 2.
For all photocatalysts obtained at different calcination temperatures, it consisted of Bi, V,
and O with various composition percentages while no additional elements were detected,
indicating that the chemical composition of the synthesized BiVO4 exhibited good product
crystallinity. In addition, EDX analysis was carried out to ensure the consistency of the
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Bi/V ratio between the starting material and the final product within the error range of
the experiment. The atomic ratio of the Bi/V trend fluctuated at different calcination
temperatures, indicating that the size of the BiVO4 nanoparticles is not uniform and
agglomeration occurs occasionally, which was also confirmed by TEM analysis (Figure 5).
These results are also in line with those reported in previous studies [26]. In addition, the
alteration of the Bi/V ratio indicated lattice distortion and thus generating defect sites on
the bulk and/or surface of BiVO4 photocatalyst [27].

Table 2. Atomic composition quantification using EDX analysis of the BiVO4 photocatalyst with
different calcination temperatures.

Photocatalyst
Atomic, %

Bi/V Ratio
Bi V O

BV-300 22.71 34.70 42.59 0.65
BV-375 21.75 29.62 48.63 0.73
BV-450 15.57 27.71 54.72 0.56
BV-525 21.90 30.39 47.71 0.72
BV-600 22.68 33.73 43.60 0.67

2.3. Adsorption–Desorption Isotherm Profile

Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods are ef-
fective methods for measuring the specific surface area and pore size of photocatalysts,
respectively. Figure 6 shows the N2 adsorption and desorption isotherms of the BiVO4
photocatalyst and the corresponding pore size distribution curves (Figure 6, inset). The
isotherms exhibit hysteresis loops with sharp adsorption and desorption branches at
relatively high pressures. The physisorption isotherm can be categorized as type IV, repre-
senting mesoporous powders, which has been reported in previous studies as one of the
clear advantages in degrading organic pollutants in water [28]. The pore size distribution
can be calculated from the branch desorption isotherm using the BJH model. The results
shown in Table 3 show that the BiVO4 photocatalysts exhibited the most likely pore sizes
of around 19–22 nm. The calculated BET surface area for BiVO4 photocatalysts is in the
range of 1.133–4.040 m2/g. In the ideal case when the particle size decreases, the surface
area per unit volume (or mass) increases whereas the formation of porosity, especially in
smaller pores, generates a much larger surface area than that produced by the reduction in
particle size. The BV-450 photocatalyst exhibits a larger BET surface area than BV-300 and
BV-600 due to its smaller particle size and pore size which will be beneficial to enhance
photocatalytic performance. These findings were in agreement with Zhang et al. [17] which
reported that as-prepared BiVO4 catalyst exhibited specific surface area between 3.0 and
5.0 m2/g but with smaller pore size, in the range of 30–50 nm.

Table 3. Specific surface area, pore volume, and pore size of BiVO4 photocatalyst with different
calcination temperatures.

Photocatalyst SBET
(m2 g−1)

Pore Volume
(cm3 g−1)

Pore Size
(nm)

BV-300 1.800 0.017 20.0
BV-375 4.040 0.027 22.0
BV-450 3.450 0.016 19.8
BV-525 1.500 0.009 19.5
BV-600 1.133 0.007 20.3
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2.4. Optical Properties

The optical absorption properties of the prepared BiVO4 photocatalyst with different
calcination temperatures were investigated with UV-Vis diffuse reflectance spectroscopy
(DRS) and the spectrum is presented in Figure 7. It showed that there was a slight shift
towards the visible region by increasing the calcination temperature (Figure 7a). The
corresponding graph to calculate the band-gap energy based on the Kubelka–Munk for-
mula is presented in Figure 7b. The band-gap energy for the BiVO4 photocatalyst can
be estimated between 2.44 and 2.50 eV (Table 4) indicating that the BiVO4 photocatalyst
can work efficiently under visible light irradiation. These data also clearly show that the
electronic structure of the BiVO4 photocatalyst changes due to the calcination temperature
used in the sol-gel synthesis. Variations in the electronic structure lead to different de-
grees of delocalization of photogenerated electron-hole pairs, thereby resulting in different
photogenerated electron-hole mobilites [29].

The increase in band-gap energy from photocatalyst BV-300 to BV-450 is due to a
reduction of particle size, hence a shift in wavelength towards a shorter region (blue shift)
was obtained. Meanwhile, the decrease in band-gap energy in the beyond calcination
temperature of 450 ◦C is due to a larger particle size (agglomeration) and hence a shift
in wavelength towards a longer region (red shift) was observed. These findings are in
accordance with the previous work reported by Sun et al. [30]. The increase in calcination
temperature will provide a new energy level that makes it easier for electrons to be excited
from the valence band to the conduction band. However, there should be an optimum
band-gap energy of BiVO4 that needs to be achieved since the smaller the band-gap energy,
the easier the electron-hole pair recombination process will occur, so that the photocatalytic
activity will be inhibited. Since BV-450 exhibited the widest band-gap energy among
other catalysts, it might decrease the recombination rate of photogenerated electron-hole
pairs. As a consequence, this would lead to an improvement in photoactivity. It should be
noted that in addition to photo absorption, other factors are also significant and should be
considered in achieving optimum photocatalytic efficiency of the photocatalyst, such as
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the electron-hole pair separation efficiency and the number of defect sites [16], especially
for photocatalytic degradation of organic compounds.
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Table 4. Band-gap energy of the BiVO4 photocatalyst with different calcination temperatures.

Photocatalyst Eg (eV)

BV-300 2.47
BV-375 2.48
BV-450 2.50
BV-525 2.46
BV-600 2.44

2.5. Defect Sites

Another critical property of BiVO4 that needs to be evaluated is the existence of defect
sites in the form of V4+ associated with oxygen vacancies. Defect sites in BiVO4 can be
produced from the evolution of oxygen and the volatilization of bismuth and vanadium
oxides [31]. In addition, Lamers et al. reported that by purging as-synthesized BiVO4
photocatalyst with air and inert gas, such as argon and nitrogen, it could generate different
types of defect sites, such as vanadium and oxygen vacancies [32]. Consequently, vanadium
vacancies (Vv) generated a new sub-band-gap level in the proximity of the Fermi level of
BiVO4 which can affect photocatalytic efficiency [33]. It is known that the oxygen vacancy-
related V4+ is paramagnetic. Thus, the relative density of oxygen vacancies of the BiVO4
samples at various calcination temperatures can be quantified by comparing their relative
amount of V4+ using electron paramagnetic resonance (EPR) spectroscopy which is highly
sensitive for paramagnetic states even at extremely low concentrations. Figure 8a compares
the EPR spectra of all samples, whereby a signal centered at g = 1.978 corresponds to the g
value reported for paramagnetic V4+ is observed for each sample [34]. Figure 8b shows
the corresponding concentration of paramagnetic V4+ centers through double integral
of EPR signal for each catalyst. The observed signals were strongly influenced by the
calcination temperature. Based on Figure 8a, with an increase in calcination temperature up
to 450 ◦C the EPR signals for paramagnetic V4+ center increased which might be due to the
phase transformation from the tetragonal to monoclinic phase. However, a further increase
of calcination temperature to 600 ◦C diminishes the paramagnetic V4+ center density, as
indicated by the weaker EPR signal (Figure 8a) and its defect concentration (Figure 8b) of
BV-600 relative to that of BV-450. This might be due to the reorientation of the crystal lattice
that starts to occur at temperatures above 450 ◦C, i.e., BV-525 and BV-600 [32]. The existence
of defect sites in the BiVO4 photocatalyst has been reported to be crucial in enhancing
photocatalytic performance for various applications such as water splitting [16,32], solar to
fuel [35], and methylene blue degradation [36].
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2.6. Photocatalytic Performance

The photocatalytic activity of the synthesized BiVO4 photocatalyst with different
calcination temperatures was evaluated by degradation of POME waste under 300 W
Xenon lamp irradiation (UV-visible light). Calibration of the standard COD solution was
conducted prior to evaluate the performance of photocatalysts (Figure S1). The relationship
between the degradation results and the reaction time for the BiVO4 photocatalyst with
different calcination temperatures is shown in Figure 9a. It can be determined that the self-
degradation of POME waste is very small in the absence of photocatalyst, which indicates
that the photolysis effect is negligible (Figure S2). The adsorption of waste POME on the
BiVO4 photocatalyst in the dark (in the absence of a light source) was also evaluated. After
240 min, the COD concentration in POME waste changed very little, indicating that the
degradation of POME waste by BiVO4 photocatalyst was mainly due to photodegradation
rather than adsorption. Figure 9a also shows that the degradation efficiency appears to be
following a hyperbolic trend. This may indicate that photocatalyst deactivation has been
occurred, most likely through the adsorption of intermediate organic species at the active
site, consequently the number of active sites decreases with irradiation time.
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A linear plot of ln(C0/C) versus irradiation time t (min) for POME waste degradation
is shown in Figure 9b where the value of k is determined from the linear slope. The apparent
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reaction rate constant k was used to evaluate the degradation rate as shown in Figure 9b
(inset). BV-450 exhibited the highest reaction rate constant and it is about three times higher
than BV-300. The value of R2 obtained from 0.84 to 0.99, indicates very good linearity
which also confirms that POME effluent degradation follows first-order reaction kinetics. It
should be noted that the increased photocatalytic activity of the BV-450 photocatalyst could
be attributed to the smaller grain size, mesoporous structure, and higher specific surface
area. Smaller grain size and mesoporous structure can reduce the migration length of
photogenerated charge carriers and further reduce the rate of photogenerated electron-hole
pair recombination. The higher specific surface area gives more active sites, which is
favorable for the catalytic reaction.

The photocatalytic degradation rates and reaction rate constant of BiVO4 photocat-
alysts were found to decrease in the order BV-450 > BV-525 > BV-375 > BV-600 > BV-300.
The increase in photocatalytic activity can be ascribed to the efficient separation of the pho-
togenerated charge carriers in the monoclinic phase as a result of the increase in calcination
temperature up to 450 ◦C. Another reason for this result may be due to the fact that photo-
catalyst BV-450 exhibits the highest V4+ center paramagnetic defect sites (Figure S3) which
mimicked the photocatalytic performance profile, clearly illustrating the involvement of
these defect sites during the photocatalytic process. The vanadium vacancy is mainly
located on the surface and traps electrons and facilitates charge separation efficiently and
thus boosting photocatalytic performance [37]. On the other hand, the poor photocatalytic
behavior of photocatalysts other than BV-450 might be due to particle agglomeration which
reduces the surface-to-volume ratio and limits the amount of incoming light radiation [38].

Furthermore, the photocatalytic performance and reaction rate kinetics of BV-450
are still the lowest among other semiconductor-based photocatalysts (Table S1 in Supple-
mentary Materials) but it can be further improved by considering and modifying several
physiochemical properties of BiVO4 photocatalyst including the density of defect sites,
band-gap energy, phase composition, morphology, and crystal facet engineering. Based on
the concept of photocatalytic degradation of organic pollutants, the following mechanisms
can be proposed for photocatalytic degradation of POME using the BiVO4 photocatalyst
(Equations (1)–(9)):

BiVO4 + hv→ BiVO4 (e−CB + h+
VB) (1)

e−CB + O2,ads → •O2
− (2)

•O2
− + H2O→ O2H• + OH− (3)

2O2H• → H2O2 + O2 (4)

H2O2 + hv→ 2OH• (5)

OH− + h+ → OH• (6)

h+ + H2Oads → OH• + H+ (7)

OH• + Complex organics (POME)→ POME degradation (8)

h+ + e− → heat (recombination) (9)

A possible photocatalytic mechanism for enhancing the photocatalytic performance of
the BV-450 photocatalyst can be proposed by taking into account the charge transfer process
(Figure 10). Light excitation from the photocatalyst of BiVO4 nanoparticles generates
energetic electrons (e−CB) and positively charged holes (h+

VB). The existence of vanadium
vacancy defects creates a new sub-band-gap energy level in between the valence band
and conduction band. These levels act as electron traps that exhibit charge separation
more effectively. Photogenerated holes can react directly with H2O and OH− to produce
hydroxyl radicals (OH•), which play an important role in the degradation of POME
waste. Meanwhile, photogenerated electrons will be captured by O2 which is adsorbed
on the surface of BiVO4 which acts as an active site to produce superoxide radicals •O2

−.
Ultimately, the active species (holes, superoxide radicals, and hydroxyl radicals) oxidize



Molecules 2021, 26, 6225 12 of 15

the POME molecules adsorbed on the active site of the BV-450 photocatalyst. The hydroxyl
radical OH• is a very strong and non-selective oxidant (E◦ = +2.80 V) which causes partial
or complete degradation of some organic chemicals [25]. In addition, the higher density of
the V4+ center’s defect sites of the BV-450 photocatalyst provide an easier path for charge
carrier transport along the granule, leading to an increase in the photogenerated charge
carrier separation efficiency. Ultimately, these findings fulfill the gap of BiVO4-based
photocatalyst applications for photocatalytic degradation of various organic pollutants, in
particular, POME waste (Table S2).
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3. Materials and Methods
3.1. Synthesis of Materials

All chemicals used in this work were of analytical grade and used as received without
further purification. In a typical preparation process, 0.01 mol of Bi(NO3)3·5H2O and
0.02 mol of citric acid (CA) were dissolved in 40 mL of 2.0 mol/L HNO3 and stirred for
about 30 min until a clear solution was obtained (denoted as a solution A). A total of
0.01 mol of NH4VO3 and 0.02 mol of CA were dissolved in 40 mL of 1 mol/L NH3 and
stirred until a transparent orange solution was obtained (denoted as solution B). After
the addition of solution A to solution B, a uniform transparent dark green solution was
obtained (denoted as solution C). The obtained sol was stirred for about 30 min until a
light blue solution was obtained and then heated up to 75 ◦C for water evaporation. The
formed gel was calcined in air at different temperatures ranging from 300 to 600 ◦C for 3 h
with a heating rate of 2 ◦C min−1. Samples are labeled BV-x, where BV and x are attributed
to BiVO4 and calcination temperature, respectively.

3.2. Characterization

The crystal structures of the catalysts were determined in air by X-ray diffraction
(XRD, Bruker D8 Advance, Billerica, MA, USA) using Cu-Ka radiation (λ = 0.15406 nm).
The crystallite size was estimated from the Scherrer equation using full width at half the
maximum height of the peak at 2θ = 28.9◦. Raman spectra were recorded using a Raman
spectrometer (Bruker-Senterra, Billerica, MA, USA) with a 514 nm argon-ion laser. The
morphology and size of the particles were obtained using a scanning electron microscope
(SEM, SU3500, Hitachi High-Technologies Corporation, Tokyo, Japan) and a transmis-
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sion electron microscope (TEM, HT7700, Hitachi High-Technologies Corporation, Tokyo,
Japan) coupled with energy-dispersive X-ray (EDX, SU3500, Hitachi High-Technologies
Corporation, Tokyo, Japan). Nitrogen physisorption measurements were carried out at
77 K with a Micromeritics TriStar II 3020 analyzer (Micromeritics Instrument Corporation,
Norcross, GA, USA). Prior to the adsorption measurement, the samples were degassed
at 150 ◦C for 3 h. The specific surface areas were calculated according to the Brunauer–
Emmett–Teller (BET) method and porosity parameters were determined according to the
Barrett–Joyner–Halenda (BJH) method. Diffuse reflectance spectra were recorded using
UV-Vis spectrophotometer (Thermo Scientific Evolution 200, Waltham, MA, USA) and
converted to absorbance using the Kubelka–Munk method with BasSO4 as a reference.
The existence of defects was evaluated using electron paramagnetic resonance (EPR) spec-
troscopy (Bruker ELEXSYS E-500, Billerica, MA, USA). EPR measurements were conducted
at 9.419 GHz (X-band). The microwave power, the modulation amplitude, and the temper-
ature were set at 2 mW, 5 G, and 120 K, respectively.

3.3. Photocatalytic Activity

Fresh POME was collected from PTPN VII Palm Oil Mill in Bogor, Indonesia. For the
study of photocatalytic degradation of POME, fresh POME was filtered to remove solid
suspension then diluted with deionized water. Filtration and dilution steps were necessary
since the fresh POME in its existing form was impenetrable to light sources.

The BiVO4 samples were evaluated via photocatalytic degradation of POME under
Xenon light irradiation. The photocatalytic reaction setup is shown in Figure S4. Typically,
0.5 g of a photocatalyst was added into 500 mL of pretreated POME (COD level ranging
from 200 to 300 ppm) and stirred in the dark for 30 min to achieve an adsorption–desorption
equilibrium. At the same time, a high purity grade of O2 gas was bubbled into the POME
wastewater at a flow rate of 70 mL min−1 to provide an O2 source [40]. The suspension was
then irradiated using a 300 W Xenon lamp and fitted into a cooling water compartment
that was externally circulated with water, in order to remove light source-dissipated heat.
Each photocatalytic reaction was conducted for 240 min. At irradiation intervals of every
60 min, 10 mL of the suspension was taken and filtered through a 0.22 µm syringe filter
nylon to remove suspended photocatalyst agglomerates. The POME concentration profile
was obtained from the COD analysis using Hach DRB-200 COD reactor with the aid of
Shimadzu 1800 Spectrophotometer. The reaction rate constant (k) was then determined
assuming pseudo-first-order kinetics using Equation (10) as follows:

ln
(

C0

C

)
= kt (10)

where C0 is the initial COD concentration of POME waste after being stirred in the dark
for 30 min (mg/L), and C is the COD concentration of POME waste at irradiation time t
(mg/L), k is the apparent reaction rate constant (min−1).

4. Conclusions

In this study, the BiVO4 photocatalyst was successfully synthesized using the sol-gel
method and it was optimized by different calcination temperatures. The effect of calcination
temperature in the range of 300–600 ◦C on the alteration of structure, phase transformation,
density of defect sites, and morphology of the BiVO4 photocatalyst was studied. The
photocatalytic performance of BiVO4 was evaluated by the degradation of POME under UV-
visible light irradiation. The highest photocatalytic activity of about 24% removal efficiency
with the apparent rate constant of 1.04 × 10−3 min−1 was obtained for BV-450 mainly due
to the high density of vanadium vacancy defect sites. The vanadium vacancy could trap
photogenerated electrons and promote charge separation efficiently; hence this significantly
boosted the photocatalytic performance. The additional absorption band energy due to
the existence of vanadium vacancy defect sites and widening of the optical absorption
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spectrum of BV-450 in the visible range with a monoclinic scheelite structure paves the way
for efficient visible light-driven photocatalytic activity for POME degradation.

Supplementary Materials: The following are available online, Figure S1: Calibration curve of
standard COD solution, Figure S2: Photocatalytic degradation of POME and pseudo-first-order
linear plots of ln(C0/C) versus irradiation time for the degradation kinetics of POME using BV-450
with varying operating conditions consisting the presence of BV-450 catalyst, oxygen purging, and
irradiation with Xenon lamp. Inset: the apparent first-order rate constant (k) of BV-450 catalyst with
different operating conditions, Figure S3: Relationship between the apparent first-order rate constant
(k) and normalized double integrated intensity of EPR spectra, Figure S4: Schematic representation
diagram of the photocatalytic reactor and actual photocatalytic reactor setup, Table S1: Photocatalytic
performance for POME degradation using various metal oxide-based semiconductor photocatalysts,
Table S2: Photocatalytic performance of neat BiVO4 photocatalyst for various pollutant degradation.
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