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Cell cycle progression in eukaryotic cells is regulated by a family of cyclin-dependent kinases (CDKs). Cyclin E is a regulatory subunit of
CDK2 and drives cells from G1 to S phase. Increased expression of cyclin E is a frequent event in human malignancies and has been
associated with poor prognosis in various cancers. In this study, we evaluated the effects of cyclin E-overexpression on the sensitivity
of rat fibroblasts to anticancer drugs. Cyclin E-overexpressing cells were less sensitive to doxorubicin-induced inhibition of cell growth
but not to other antineoplastic drugs, such as paclitaxel, vincristine, etoposide and methotrexate. Cyclin E-overexpressing fibroblasts
also displayed a reduction in ROS levels and a significantly lower increase following doxorubicin treatment compared with vector
control cells. The expression of manganese superoxide dismutase (MnSOD) and its activity were increased (about 1.3-fold) in cyclin
E-overexpressing derivatives compared with control cells. These results suggest that cyclin E overexpression might reduce tumour
cells sensitivity to doxorubicin by affecting the expression of MnSOD and that determination of cyclin E expression levels might help
to select patients to be treated with an anthracycline-based antineoplastic therapy.
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In mammalian cells, progression through the different phases
of the cell cycle is regulated by the activity of a series of
cyclin-dependent kinases (CDKs) that are activated by cyclins,
their regulatory subunits. Cyclin E is a G1 cyclin expressed
near the G1 to S transition and drives entry into the S phase by
binding to and activating CDK2. Accumulation of cyclin E in
late G1 is achieved by periodic transcription coupled with
regulated ubiquitin-mediated proteolysis of the protein
(Clurman et al, 1996). The proper timing and amplitude of
cyclin E expression are important since their alterations cause
deregulation of cell growth (Ohtsubo et al, 1995; Sgambato et al,
1997). Moreover, transgenic mice overexpressing cyclin E
develop breast cancers (Bortner and Rosenberg, 1997) and
increased levels of cyclin E have been reported in a variety of
human malignancies, (Donnellan and Chetty, 1999; Sandhu and
Slingerland, 2000).

The treatment of cancer patients with chemotherapy is often
limited by the occurrence of cancer cells resistance. Recent
data suggest a possible link between cell cycle alterations and
the emergence of resistance to specific anticancer agents,
although the molecular mechanisms underlying such correlation
still need to be elucidated (Hochhauser et al, 1996; Eymin et al,
1999).

Doxorubicin is one of the most effective agents in the treatment
of breast cancer, belonging to the anthracycline family of
antitumour antibiotics. This drug inhibits topoisomerase II and
promotes the formation of DNA double-strand breaks; moreover,

it induces, as a byproduct of its enzymatic activation, the
formation of reactive oxygen species (ROS), which are believed
to contribute significantly to the cytotoxic activity of the
compound (Doroshow, 1983). Oxygen-derived reactive species,
such as superoxide anion radical (O2

K�) and hydrogen peroxide
(H2O2), are important mediators of several types of cell damage,
their deleterious action being physiologically counteracted by
antioxidant cell defences, including vitamins, glutathione and
antioxidant enzymes (Galeotti et al, 1990). Primary antioxidant
enzymes include superoxide dismutase (SOD), catalase (CAT) and
glutathione peroxidase (GPX). Sodium dismutase converts
O2

K� into H2O2, which is then converted into water by CAT and
GPX. There are two major forms of SOD in eukaryotic cells, a
copper and zinc, containing enzyme (CuZnSOD), localised in the
nucleus and cytoplasm, and a manganese-containing enzyme
(MnSOD) present in the mitochondria (Galeotti et al, 1990). We
and others previously reported that increased expression of
MnSOD is associated with increased resistance to different kinds
of oxidative stress. This is in particular true for cells exposed to
redox-active pesticides (Paraquat) and, interestingly, to doxor-
ubicin (Pani et al, 2000). These observations strongly suggest that
oxidants have a major role in the cytotoxic effect of this
compound, and, by extension, that antioxidant defences may
contribute to cancer cell resistance to doxorubicin and other pro-
oxidant drugs in vivo.

In the present study, we investigated the relations between the
expression of cyclin E and cell response to anticancer drugs and
found that increased cyclin E expression is associated with
resistance to doxorubicin. We also found that this effect is
associated with a reduced endogenous level of ROS and an
increased expression of MnSOD. The implications of these findings
are discussed.
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MATERIALS AND METHODS

Cell culture

The Rat-1 diploid immortalised rat fibroblasts were grown and
maintained in Eagle’s minimum essential medium (EMEM)
(Gibco, Merelbeke, Belgium) supplemented with 10% heat-
inactivated FBS. Doubling times were calculated from the initial
exponential phase of the growth curves. Briefly, cells were plated at
a density of 1� 104 cells per 35 mm diameter well, in triplicate, and
the number of cells per well was determined every day using a cell
counter.

Chemicals

Purified doxorubicin, etoposide (VP-16), methotrexate, vincris-
tine, paclitaxel and Paraquat-dichloride were purchased from
Sigma (St Louis, MO, USA). Stock solution (10 mg/ml) was
prepared and storaged according with the instructions of the
supplier.

Construction of retrovirus vectors and viral transduction

The construction of the cyclin E retroviral expression plasmid
PMV12-cycE and the method used for retrovirus packaging and
transduction have been previously described (Sgambato et al,
1996, 1997). Briefly, the full-length cyclin E cDNA was subcloned
into the retroviral vector PMV12 in the sense orientation (Cacace
et al, 1993). To prepare infectious retrovirus particles, the PMV12-
cycE plasmid or the control vector PMV12pl was transfected into
the C2 ecotropic retrovirus packaging cell lines. The transfected
cells were selected by growth in hygromycin and the cell-free
media, containing defective recombinant viruses, were harvested,
filtered and used for the infection. Following selection for cells
resistant to hygromycin, several pools of thousands of resistant
colonies were obtained and used for further analysis.

Cytotoxicity assay

Cells were plated in triplicate in 24-well plates at a density of
2� 104 cells per well and allowed to adhere 24 –36 h before drug
treatment. They were then rinsed and grown in medium
supplemented with increasing concentrations (from 0 to 10 mM)
of each drug. After 48 h, the medium was removed and cultures
were incubated with medium containing 1 mg ml�1 MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; Sigma) for
2 h at 371C. The medium was then discarded and 500ml acid-
isopropanol (0.04 N HCL in isopropanol) was added to each well to
stop the cleavage of the tetrazolium ring by dehydrogenase
enzymes that convert MTT to an insoluble purple formazan in
living cells. Plates were then kept in agitation at room temperature
for about 15–20 min and the level of the coloured formazan
derivative was determined on a multiscan reader at a wavelength of
540 nm (reference wavelength 630 nm). Clonogenic assay was
performed by seeding 500 and 1000 cells per 10 cm dish in
complete medium. After overnight incubation, when cells were
attached, but had not yet divided, medium was removed and, after
washing with PBS, doxorubicin was added for 24 or 48 h.
Afterwards, medium was changed and cultures were refed with
fresh medium every 3 –4 days for about 2 weeks. The cells were
then fixed and stained with Giemsa and the number of grossly
visible colonies was counted.

Western blot analysis and MnSOD activity

Exponentially growing cultures of each cell lines were collected by
cell scraping and cell pellets were added to 3–5 volumes of
sonication buffer containing proteases and phosphatase inhibitors
and sonicated at 41C, as previously described (Sgambato et al,

1997; Pani et al, 2000). Homogenates were incubated in ice for
30 min and then centrifuged at 14 000 rpm for 15 min at 41C. The
supernatants were assayed for protein content and 50 mg of protein
from each sample was separated by SDS– PAGE and transferred to
immobilon-P membranes. Immunodetection was performed using
the enhanced chemiluminescence kit for Western blotting detec-
tion (Amersham). Assays for cyclin E-associated histone H1 kinase
activity were performed as previously described (Sgambato et al,
1997). The polyclonal antibody to cyclin E was obtained from
Upstate Biotechnology (Lake Placid, NY, USA). Anti-MnSOD and
anti-CuZnSOD antibodies were from Calbiochem (Merck Eurolab
GmbH, Germany). Bands were analysed on the image analysis
system Gel Doc 200 System (Biorad Laboratories S.r.l., Milan, Italy)
and quantitated using the Quantity One Quantitaton Software
(Biorad). Manganese superoxide dismutase activity was evaluated
by ‘in gel’ SOD assay on 100mg of total protein lysates, as
previously described (Beauchamp and Fridovich, 1971; Pani et al,
2000).

Determination of DNA content by FACS analysis

Cells were plated in duplicate in 6-cm dishes at a density of 5� 105

cells per dish and incubated 48 h. They were then trypsinised,
collected and washed twice with PBS. Cell pellets were resuspended
in 1 ml PBS and fixed in 5 ml of 70% ethanol. For the analysis, cells
were collected by centrifugation and the pellets were resuspended
in 0.2 mg ml�1 of propidium iodide in HBSS containing 0.6%
Nonidet P-40 and RNase (50mg ml�1). After incubation in the dark
at room temperature for 30–60 min, the cell suspension was
filtered and analysed for DNA content on a Coulter EPICS 753 flow
cytometer. The per cent of cells in different phases of the cell cycle
was determined using the Multycicle software version 2.53.

Measurement of ROS production

Intracellular ROS production was measured in cyclin E-over-
expressing and in control cells using the oxygen radical-sensitive
probe dichlorodihydrofluorescein diacetate (DCF) (Molecular
Probes, Inc., Eugene, OR, USA) as described (Sgambato et al,
2001). Fluorescent units were measured in each well at 15-min
interval for 45 min following incubation with DCF (10mM), using a
Cytofluort 2300/2350 Fluorescence Measurement System (Milli-
pore Corp., USA) with an excitation wavelength of 485 nm and an
emission wavelength of 530 nm.

Intracellular ROS concentration was also assessed by flow
cytometry on cells loaded with DCF. The dye (10mg ml�1) was
added to cell culture 30 min before analysis. Cells were then
trypsinised and green fluorescence was analysed using a Coulter
Epics flow cytometer equipped with a 480 nm emission laser.

Statistical analysis

Mean values were compared using the Wilcoxon’s test. Calcula-
tions were performed using the STATA 6.0 statistical software
package (Stata Corporation, College Station, TX, USA) and the
results were considered statistically significant when the P-value
was p0.05.

RESULTS

Increased expression of cyclin E stimulates the growth of
rat fibroblasts

To obtain cyclin E-overexpressing derivatives of Rat-1 fibroblasts,
cells were transduced with a human cyclin E cDNA expressed from
a retroviral promoter, as previously described. After selection, a
pool of thousands of resistant colonies was obtained both from the
cultures infected with the cyclin E cDNA construct (Rat-E) and the
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cultures infected with the empty vector (Rat-V, vector control
cells), respectively. Pools of transfected cells were used for these
studies, rather than single clones, to eliminate the possibility that
our results were due to clonal heterogeneity commonly observed in
cultured cells.

Expression of the exogenous cyclin E gene was verified by
Western blot analysis with a specific antibody to cyclin E. The
major endogenous cyclin E band was about 55 kDa in the rat
fibroblasts. A strong band of about 50 kDa corresponding to the
exogenous cyclin E was also detected in the overexpressing pool
but not in the vector control cells (Figure 1). The size difference
between the human and rodent forms was a convenient property
for distinguishing the endogenous and exogenous cyclin E. To
determine the effects of cyclin E overexpression on CDK activity,
lysates from both pools were assayed for cyclin E-associated kinase
activity, which resulted in significantly higher levels in Rat-E cells
compared with vector control cells (Figure 1). No differences were
observed in the doubling time of cyclin E-overexpressing cells
compared with Rat-V control and parental cells (about 18 h, data
not shown). However, as expected, the cyclin E-overexpressing
derivatives of Rat-1 fibroblasts displayed a reduction in the
percentage of cells in the G1 phase (about 36 vs 62%) and an
increase in the percentage of cells in the S phase (about 47 vs 22%),
when compared to the vector control cells (Table 1). As shown, no
significant differences in cell cycle distribution were observed
between Rat-V and Rat-1 parental cells. Based on the length of the

exponential doubling time, we used the flow cytometry data to
calculate the approximate length in hours of each of the phases of
the cell cycle in the two cell lines. As shown in Table 1, the cyclin
E-overexpressing cells displayed a shortening of the G1 phase
associated with lengthening of the S phase of the cell cycle.

Cyclin E overexpression is associated with
an increased resistance to doxorubicin but
not to other antineoplastic agents

To evaluate whether the increase in cyclin E expression affected
sensitivity of cells to anticancer drugs, exponentially growing
cultures of both vector control and cyclin E-overexpressing
derivatives were exposed to increasing concentration of drugs
(methotrexate, etoposide, paclitaxel, vincristine and doxorubicin)
for 48 h and the concentration inhibiting cell growth by 50% (IC50)
was determined. Cytotoxicity assays were carried out by use of the
MTT test. A dose-dependent decrease in cell number was observed
with all the five drugs. As shown in Figure 2A, cyclin E-
overexpressing fibroblasts were more resistant to doxorubicin
compared with vector control cells (the IC50 value was 1.9-fold
higher) (Po0.0001). The effect was specific since no significant
difference in growth inhibition was evident between Rat-V and
Rat-E for methotrexate, etoposide, paclitaxel and vincristine even
when drug treatment was prolonged up to 72 h (Table 2 and data
not shown). The increased resistance of cyclin E-overexpressing
derivatives was also evident after 72 h incubation with doxorubicin
(IC50 ¼ 122.179.7 and 193.3720.1, respectively) (Po0.0001) (data
not shown). Confirmatory results were obtained when Rat-E and
Rat-V cells were incubated in media at different concentration of
doxorubicin and cell growth was analysed up to 72 h by cell
counting (data not shown). Chemosensitivity to doxorubicin was
also assessed by clonogenic assay, which is a better predictor of in
vivo sensitivity compared with MTT test. Different concentrations
of drug were tested for 24 and 48 h treatment and inhibition in
colony formation was always higher for control compared with
cyclin E-overexpressing cells (data not shown). At a concentration
of 25 nM doxorubicin, colony formation was reduced about 20
(19.374) and 11 (10.872)% after 24 h and 30 (29.575) and 13
(12.774)% after 48 h treatment for Rat-V and Rat-E cells,
respectively, compared with untreated cells (Figure 2B). We
analysed the effects of drug treatment on cell cycle distribution
and found that treatment of cells with doxorubicin (IC50) for 24 h
mainly caused an accumulation of cells in the G1 phase of the cell
cycle in both the Rat-V (G0/G1¼ 73.4; S¼ 14.7; G2/M¼ 11.9) and
Rat-E cells (G0/G1¼ 60.4; S¼ 26.8; G2/M¼ 12.8), compared with
untreated cells. We also looked for apoptosis by FACS and TUNEL
analysis in doxorubicin-treated cells, but were unable to detect
apoptotic cells in both Rat-V and Rat-E cells up to 48 h treatment
with the IC50. We cannot exclude that apoptosis might be apparent
at later time points or with higher drug concentration (data not
shown).

Table 1 Cell cycle distribution in cyclin E-overexpressing fibroblasts compared with vector control cellsa

G0/G1 S G2/M

Cell lines %cellsb Time(h)a %cellsb Time(h)a %cellsb Time(h)a

Rat-1 65.4 11.8 18.2 3.3 16.4 2.9
Rat-V 62.3 11.2 21.8 3.9 15.9 2.9
Rat-E 36.4 6.6 47.3 8.5 16.3 2.9

Exponentially growing cultures of the indicated cell lines were analysed by flow cytometry. aThe values indicate the length of
each phase of the cell cycle based on the doubling time of the indicated cell line. bThe values represent the percentage of
the total cell population in each phase of the cell cycle. The data reported are the results of a typical experiment. Similar
results were obtained in replicate experiments.
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Figure 1 Levels of expression of cyclin E and cyclin E-associated kinase
activity in Rat-V and Rat-E cells. Top panel, cell extracts from exponentially
growing cultures of both cell lines were analysed for the expression of
cyclin E using a specific anticyclin E antibody. The major endogenous cyclin
E band was about 55 kDa in the rat fibroblasts. A strong band of about
50 kDa corresponding to the exogenous cyclin E was detected in the
overexpressing pool. The size difference between the human and rodent
forms was a convenient property for distinguishing the endogenous and
exogenous cyclin E. Bottom panel, cell extracts from both cell lines were
assayed for the cyclin E-associated histone H1 kinase activity.
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Increased expression of cyclin E is associated with a
reduction in ROS

Doxorubicin belongs to anthracycline antibiotics that have been
shown to induce cytotoxicity by generating ROS and whose activity
is influenced by the redox state of cells (Doroshow, 1983; Sinha
et al, 1987; Friesen et al, 1999).

To evaluate whether cyclin E overexpression was associated with
changes in the redox state of rat fibroblasts, we analysed the oxidative
state of both cyclin E-overexpressing and control cells using the
fluorescent probe DCF, which is a sensitive fluorimetric probe of the
production of oxidative stress in living cells (Zhu et al, 1994). We
found that the basal level of endogenous ROS was significantly lower
(about 16%) (P¼ 0.001) in cyclin E-overexpressing cells compared
with vector control and parental cells (Figure 3A). The reduced level
of ROS was also confirmed using a fluorescence microscope (data
not shown) and by flow cytometric (FACS) analysis of cells after
incubation with DCF for 45 min (Figure 3B).

Reduced induction of free radical production by
doxorubicin in cyclin E-overexpressing cells

Since generation of ROS has been suggested as a main mechanism
of anthracycline cytotoxicity (Doroshow, 1983; Sinha et al, 1987),

we asked whether doxorubicin-induced increase in ROS level was
also reduced in cyclin E-overexpressing cells compared with vector
control cells. Although both cell lines displayed a marked increase
in ROS levels following doxorubicin treatment, it was about 1.9-
fold for Rat-V and 1.7-fold for Rat-E cells with an increase of 107
and 67 fluorescence units, respectively. It is of interest, however,
that the absolute values remained constantly lower in Rat-E
compared to Rat-V cells after drug treatment (P¼ 0.03 after 4 h by
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Figure 2 Increased resistance of cyclin E-overexpressing cells to
doxorubicin-induced inhibition of cell growth. (A) Cells were exposed to
the indicated concentration of doxorubicin and cell numbers were estimated
by the MTT test after 48 h and plotted as a function of controls without
drugs. (B) Chemosensitivity to doxorubicin was assessed by clonogenic
assay. Cells were exposed to doxorubicin for 24 and 48 h and results were
expressed as percentage of inhibition in colony formation in drug-treated
compared with untreated cells. See Materials and Methods for details.

Table 2 Growth inhibition by antineoplastic drugs in cyclin E-over-
expressing fibroblasts compared with vector control cellsa

IC50

Rat-V Rat-E

Methotrexate 346.3731.2 296.6743.2
Doxorubicin 240.2719.5 463.1736.2*
Paclitaxel 60.6712.5 71.9725.6
Vincristine 326.4712.7 327.8714.8
VP-16 31.776.3 25.875.6

aThe values represent the means7s.d. of four different experiments performed in
triplicate. The IC50 is the concentrations of drug inhibiting cell growth by 50% in the
MTT assay at 48 h after drug treatment. Comparable results were obtained at 72 h
treatment (data not shown). Concentrations are expressed as mM for VP-16 and as
nM for all the other drugs. *Significant at Po0.0001.
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Figure 3 Reduced concentration of intracellular ROS in cyclin E-
overexpressing cells. (A) dichlorodihydrofluorescein diacetate fluorescence
was measured after 45 min incubation with DCF (10 mM). The values
represent the means7s.d. of four different experiments performed in
triplicate and are shown as per cent of Rat-1 control cells. Similar values
were obtained taking into account the readings after 15 and 30 min
incubation with DCF (data not shown). *Significant at P¼ 0.001 for Rat-E vs
Rat-V. (B) Intracellular ROS concentration was assessed by flow cytometry
on cells loaded with DCF. The dye (10 mg ml�1) was added to cell culture
30 min before analysis. Cells were then detached from the substrate and
green fluorescence was analysed using a Coulter Epics flow cytometer
equipped with a 480 nm emission laser. Numbers beside the histograms
indicate mean cell fluorescence and are the averages of three independent
experiments.

Cyclin E and chemosensitivity in vitro

A Sgambato et al

1959

British Journal of Cancer (2003) 88(12), 1956 – 1962& 2003 Cancer Research UK

E
x
p

e
ri

m
e
n

ta
l

T
h

e
ra

p
e
u

ti
c
s



Wilcoxon test) (Table 3). This effect was not specific
for doxorubicin. In fact, exposure to H2O2 (100mM for 15 min)
also caused a smaller increase in ROS level in cyclin
E-overexpressing cells compared to vector control cells
(P¼ 0.003) (Table 3).

Cyclin E overexpression is associated with an increased
expression of MnSOD

Manganese superoxide dismutase is the principal scavenger for
superoxide in mitochondria (Fridovich, 1998). Since increased
expression of MnSOD has been associated with improved survival
of cells to doxorubicin (Hirose et al, 1993), we aimed to verify
whether changes in the expression level of this protein played a
role in the increased resistance of cyclin E-overexpressing
fibroblast to doxorubicin. The expression of MnSOD was evaluated
by Western blot analysis in Rat-E and Rat-V cells. As shown in
Figure 4A and B, cyclin E-overexpressing derivatives expressed an
increased level (about 1.3-fold) of expression of MnSOD protein
compared with Rat-V vector control cells. Accordingly, MnSOD
activity was also significantly increased (about 40%) in Rat-E cells,
compared with control cells, as assessed by gel SOD assay
(Figure 4C). No differences were observed in the expression of
CuZnSOD (Figure 4A).

DISCUSSION

In this study, we demonstrated that cyclin E overexpression, which
is a frequent event in a variety of human malignancies, is
associated with an increased resistance to doxorubicin-induced
cell death. Cyclin E is a major regulator of G1 to S transition in
eukaryotic cells (Koff et al, 1991; Ohtsubo et al, 1995) and its
increased expression has been reported in a variety of human
malignancies (Donnellan and Chetty, 1999; Sandhu and Slinger-
land, 2000). In this study, we analysed the sensitivity to
doxorubicin and to other anticancer drugs of derivatives of Rat-
1 fibroblasts that stably overexpress cyclin E and demonstrated
that changes in the expression levels of cyclin E can affect cell
sensitivity to doxorubicin.

Doxorubicin is a chemotherapeutic agent widely used in the
treatment of human cancers (DeVita et al, 2001). It belongs
to the anthracycline family of anticancer antibiotics that can
inhibit topoisomerase II action resulting in double-strand DNA
breaks (Kasahara et al, 1992). However, the generation of
ROS has been suggested as the major mechanism of anthra-
cycline cytotoxicity. The quinone, which is functionally common
to the members of this family, may undergo a one-electron

reduction to the corresponding semiquinone free radical by
flavin-centred reductases including NADH dehydrogenase
(Doroshow, 1983). In the presence of oxygen, this free radical
will trigger the generation of highly ROS that can induce
lipid peroxidation and DNA damage. The enzymes catalase, SOD
and the glutathione system play a key role in the cellular
defence against ROS damage by detoxifying some of these
reactive molecules before they react with vulnerable cellular
targets (Fridovich, 1998). ROS generation as a result of
doxorubicin treatment and prevention of its cytotoxicity by
oxygen radical scavengers was directly demonstrated in MCF-7
human breast cancer cells (Doroshow, 1986; Bustamante et al,
1990).

The present study demonstrates that increased expression of
cyclin E in rat fibroblasts is associated with an increased resistance
to doxorubicin, but not to other antineoplastic agents, such as
methotrexate, etoposide, vincristine and cysplatin. We also
demonstrated that this effect likely relates to a reduced basal level
of endogenous ROS and to their reduced increase following
doxorubicin treatment in cyclin E-overexpressing derivatives
compared with vector control cells (Figure 3 and Table 3).
Reactive oxygen species are, in fact, general mediators of cell
damage (Kehrer, 1993) and their generation is a prerequisite for

Table 3 Increase in the level of endogenous ROS following doxorubicin
treatment in cyclin E-overexpressing fibroblasts compared with vector
control cellsa

DCF fluorescence (arbitrary units)

Rat-V Rat-E

Basal 100 8373
Doxo 15 min 11079 93713*
Doxo 4 h 203726 160718**
H2O2 250729 170716**

aDichlorodihydrofluorescein diacetate fluorescence was measured after 45 min
incubation with DCF (10 mM). Cells were exposed to doxorubicin (Doxo, IC50) or
to H2O2 (100 mM for 15 min) before the analysis. The values are given as per cent of
Rat-V control cells and represent the means7s.d. of four different experiments
performed in triplicate. Similar values were obtained taking into account the readings
after 15 and 30 min incubation with DCF (data not shown). *P¼ 0.07. **Significant at
P¼ 0.03.
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Figure 4 Increased expression and activity of MnSOD in cyclin E-
overexpressing cells. (A) Cell extracts from exponentially growing cultures
of both the cell lines were analysed for the expression of MnSOD and
CuZnSOD by Western blot analysis. (B) Densitometric analysis of MnSOD
bands. The values shown are the ratios of MnSOD to b-actin obtained in
two independent experiments. (C) Manganese superoxide dismutase
activity was assessed by gel SOD assay, as described by Beauchamp and
Fridovich (1971).

Cyclin E and chemosensitivity in vitro

A Sgambato et al

1960

British Journal of Cancer (2003) 88(12), 1956 – 1962 & 2003 Cancer Research UK

E
x
p

e
rim

e
n

ta
l

T
h

e
ra

p
e
u

tic
s



the triggering of cell death by several stimuli, including
growth factor withdrawal (Palazzotti et al, 1999) and activation
of the tumour suppressor protein p53 (Polyak et al, 1997).
Since both endogenous levels of ROS and intracellular oxidations
induced by exogenous oxidants (H2O2 and doxorubicin)
are diminished in Rat-E cells, these differences likely reflect
an increased capacity of oxidant scavenging in cells over-
expressing cyclin E. This hypothesis is supported by the
observation that the protein expression and enzyme activity of
the mitochondrial scavenger MnSOD, one of the major enzymes
involved in the cellular defence against ROS, are upregulated
(30% increase) in these cells compared with the corres-
ponding controls (Figure 4). The observation that Rat-E did
not display a reduced sensitivity to etoposide, which is a
specific topoisomerase inhibitor, further supports our hypothesis
that the increased resistance to doxorubicin is likely due
to a reduced susceptibility of cells to the ROS-generating ability
of the drug rather than to its inhibitory activity on topoisomerase
II enzyme.

The mechanisms responsible for the increase of MnSOD
expression in cyclin E-overexpressing cells remain unknown.
However, it is of interest that some pools displayed a loss of
expression of the exogenous cyclin E with prolonged serial
passages that was associated with a decrease in the expression
of MnSOD to the normal basal level (data not shown), thus
further confirming the link between the two events. Moreover,
we analysed by immunostaining the expression of the p53 protein
in the Rat-V and Rat-E cells and found that both cell
lines displayed a weak basal level of p53 nuclear staining that
increased following doxorubicin treatment (data not shown).
Thus, an involvement of the p53 protein in the MnSOD
upregulation in cyclin E-overexpressing cells is unlikely. In
preliminary experiments, we did not observe by Northern blot
analysis any difference in the expression levels of MnSOD mRNA
between cyclin E-overexpressing and vector cell lines (unpublished
results). However, further studies are required to establish
definitively the mechanism(s) responsible for the increase
of MnSOD protein in cyclin E transfected cells, which might
involve modification at the transcriptional, translational or
post-translational levels.

We propose that the increased expression of MnSOD observed
in Rat-E cells contributes to the resistance of these cells to
doxorubicin. In fact, (a) we and others have previously reported
that increased expression of MnSOD at levels comparable to
those observed in Rat-E cells is associated with improved survival
of tumour cells exposed to doxorubicin in vitro (Hirose et al,
1993; Pani et al, 2000) and an increased expression of SOD
was previously reported in doxorubicin-resistant Friend
leukaemic (about 24%) (Crescimanno et al, 1991) and breast
cancer (Zyad et al, 1994) cell lines and in leukaemic patients
(Watanabe, 1998); (b) compared with vector control cells,
cyclin E-overexpressing Rat cells were also more resistant
to Paraquat (IC50 ¼ 370.979 vs 289.3715.5 mM) (data not shown),
a superoxide-generating compound whose action is inhibited
by SODs (Bus et al, 1974; Pani et al, 2000); thus further con-
firming the biological significance of the increase in MnSOD
expression and activity observed in cyclin E-overexpressing
cells compared with control cells. The finding that the CuZnSOD
is not increased in Rat-E cells further confirms that
MnSOD is selectively upregulated in cyclin E-overexpressing cells
(Figure 4).

One of the major mechanisms of resistance to doxorubicin is
due to the acquisition of the so-called multiple drug resistance
(MDR) phenotype which, in most of the cases, depends on the
expression of a transmembrane 170 kDa glycoprotein, called
P-glycoprotein (Kartner et al, 1983). Cells that develop resistance
through the MDR mechanism, however, simultaneously develop
cross-resistance to several structurally unrelated natural products,

including anthracyclines, vinka alkaloids, epipodophyllotoxins,
taxanes and actinomycin-D (Kartner et al, 1983). Since the Rat-E
cells only displayed an increased resistance to doxorubicin, but not
to the vinca alkaloid vincristine, nor to paclitaxel, the acquisition
of an MDR-phenotype in these cells is unlikely. However, while in
light of the above consideration an involvement of MnSOD in Rat-
E cell resistance to doxorubicin appears to be conceivable, the
present results do not allow, at the moment, to exclude that other
mechanisms, that is, involving ROS production and/or their
detoxification or DNA repair, are also affected by cyclin E
overexpression.

Although obtained in diploid immortalised rat fibroblasts,
we believe that the results of the present study are instructive
in revealing a potential new mechanism of resistance to
doxorubicin in cancer cells. Regardless of the underlying
molecular mechanisms, if it will be confirmed, the observed
relation between the expression levels of cyclin E and cell
sensitivity to doxorubicin might have important implications for
the treatment of cancer, mainly breast cancer patients. In
fact, doxorubicin is one of the most valuable anticancer drug in
present day clinical use, being an integral part of the treatment
of malignancies such as carcinoma of the breast, head and
neck, thyroid and soft tissue sarcomas and leukaemias (DeVita
et al, 2001). Moreover, on the other hand, increased expression of
cyclin E is a common event in a variety of human malignancies
(Donnellan and Chetty, 1999; Sandhu and Slingerland, 2000) and is
believed to play an important role in cancer development and
progression by causing cell growth deregulation and genomic
instability (Bortner and Rosenberg, 1997; Spruck et al, 1999). Thus,
it has been proposed that cyclin E may become a target for
treatment of human cancers (Owa et al, 2001). Increased
expression of cyclin E has been reported associated with poor
prognosis in breast cancer patients (Nielsen et al, 1996; Porter et al,
1997). Since doxorubicin is included in most of the chemoter-
apeutic regimens for treatment of breast cancers, our results might
also suggest that, at least in some cases, the reported relation
between high cyclin E levels and poor prognosis in breast cancer
patients might simply reflect the reduced responsivity of cyclin E-
overexpressing tumours to doxorubicin (Keyomarsi et al, 1994;
Nielsen et al, 1996). Further in vivo studies will be needed to
address this point.

In conclusion, the results of the present study suggest
that evaluation of cyclin E expression levels might help to select
the most appropriate treatment for cancer patients, mainly
breast cancer patients, by reserving anthracycline treatment
to patients whose tumours do not overexpress this molecule.
These results are in agreement with previous studies on the
role of cyclin E and other cell cycle regulatory proteins (i.e. the
CDK inhibitor p27Kip1) in determining the response of cells to
cytotoxic agents and warrant further studies in this interesting area
of cancer research (Croix et al, 1996; Smith and Seo, 2000; Yang
et al, 2000).

Furthermore, the involvement of cyclin E and MnSOD in cell
resistance to doxorubicin suggests that therapeuthical strategies
(i.e. antisense or chemical inhibitors) targeting cyclin E/CDK
(Sausville et al, 2000) or SOD activities (Huang et al, 2000) could
also be tested as chemosensitising tools to anthracycline treatment
in cyclin E-overexpressing tumours.
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