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Abstract: We propose a type of polarization-independent circulator based on a composite rod of
ferrite and plasma materials in a two-dimensional photonic crystal (PhC) slab. Only one composite
rod was set at the center of the structure to provide circulation for both TE- and TM-polarized
waves. Additionally, to improve the performance of the circulator, three additional rods were
inserted to improve the coupling condition between the center magneto-optical microcavity and
the corresponding waveguides. Finite element method was used to calculate the characteristics of
the structure and the Nelder–Mead optimization method was employed to obtain the optimum
parameters. The results show that a low insertion loss (~0.22 dB) and high isolation (~14 dB) can be
achieved in our structure for waves of both TE and TM polarizations. The idea presented here may
be useful for designing compact polarization devices in large-scale integrated photonic circuits.

Keywords: polarization-independent; circulator; ferrite; plasma; photonic crystal

1. Introduction

With the development of photonic crystal (PhC) theory, the properties of PhC have
been systematically discussed and studied [1,2]. Plenty of devices based on PhC structure
have been designed and realized [3–12]. As a basic component in modern photonics,
PhC circulators have attracted much attention for their micro size and high performance.
Circulators are a kind of nonreciprocal device that play an important role in optics and
photonics. They can be used for protecting useful signals from harmful reflections, reducing
the unwanted wave interferences; they can also be used for extracting feedback signals for
detectors or monitors [13–22].

Up until now, many high-quality circulators have been built based on PhCs, where
magneto-optical (MO) materials including ferrite and plasma materials are often introduced
into the structure to provide a circulation effect for electromagnetic waves or lights. For
example, around 2005, three- and four-port two-dimensional (2D) PhC circulators based
on MO materials were first proposed by Fan and Wang [13–15]. Coupled mode theory was
applied in their designs, and high isolation and transmission circulators were successfully
built by coupling an MO cavity and waveguides at optical frequencies. Their designs can
be used in TM polarization. Then, improved Y-typed and T-typed structures in three-,
four-, and even six-port PhC circulators were further studied by introducing cascaded
MO resonance cavities to enlarge the bandwidth of the circulators [16–19]. These works
operated in TE polarization. Furthermore, several kinds of novel low-symmetry circulators
were investigated by Jin and Dmitriev [20,21]. A very low splitting factor was used in
their design, making their circulators feasible for the microwave or terahertz region. Their
designs worked in TE polarization.

Nanomaterials 2021, 11, 381. https://doi.org/10.3390/nano11020381 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-1466-7813
https://doi.org/10.3390/nano11020381
https://doi.org/10.3390/nano11020381
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11020381
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/2/381?type=check_update&version=1


Nanomaterials 2021, 11, 381 2 of 9

Considering the above, it is clear that most of the PhC circulators that have been
proposed can only operate in a specified polarization (i.e., TE or TM polarization only),
which may set some limitations for their potential applications. Thus, it is necessary to
research polarization-independent circulators (PICs).

In our previous study [22], a kind of PIC based on MO materials was investigated.
In that work, more than one MO rod was introduced into the central cavity, and the
corresponding waveguides and the structure of the central cavity were also modulated so
that the overall structure was relatively complicated. In this paper, a novel PIC is proposed,
in which only one composite MO rod of ferrite and plasma materials is needed at the central
cavity. Moreover, only three additional rods are inserted into the waveguides to improve
the performances of both TE and TM polarizations in our optimized model. Compared
with [22], the PIC in this paper is simpler and more compact in structure, and it is easier to
integrate with other devices. To our best knowledge, this is the first realization of the PIC
in PhC structure with only one composite MO rod of ferrite and plasma materials. Finite
element method [23–25] was used to calculate the characteristics of the structure and the
Nelder–Mead optimization method (NOM) [26,27] was employed to obtain the optimized
parameters.

2. Physical Model

The schematic of the PIC is shown in Figure 1. The structure is based on a 2D
triangular-lattice PhC, where air holes (in red) were drilled in a silicon slab to form a
Y-shaped PhC waveguide. In the central region, a composite MO rod containing ferrite (in
green) and plasma (in blue) materials was inserted to construct the center MO microcavity
and provide the rotation effect for both TE and TM polarizations. The lattice constant is
assumed to be a, and the radius of the air hole, the radius of the ferrite rod (in the center
of the composite MO rod), and the radius of the composite MO rod are denoted by Ra,
R1, and R2, respectively. For convenience, a parameter K = R1/R2 is also defined to be the
ratio of the radius of the ferrite rod to that of the composite MO rod.
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Figure 1. Schematic of the polarization-independent circulator (PIC) structure, where the air holes,
ferrite rod, and plasma rod are indicated by red, green, and blue respectively.

The refractive indices of silicon slab and air holes were set to be 3.4 and 1. According
to previous studies [28,29], complete or absolute photonic bandgap (PBG) can be found
in a perfect 2D triangular-lattice PhC by using Ra = 0.47a. The band structure is shown
in Figure 2a, where the range of absolute PBG can be found as 0.435–0.501 (ωa/2πc). We
noted that Ra = 0.48a corresponded to a wider PBG than Ra = 0.47a. However, after
simulation and comparison, we found in this case that the absolute bandgap was near the
top edge of the TM-wave PBG, which means that the TM-wave PBG effect in the absolute
PBG was weaker than that of the TE-wave PBG. In order to balance the performances of both
polarizations, we chose Ra = 0.47a. When the lattice constant a was 10 mm, the range of
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absolute PBG was from 1.305 to 1.503 ×1010 Hz, which is located in the microwave band. In
this range of frequency, the losses of materials used in this paper can be ignored [13–15,30,31].
For better understanding of the waveguide mechanism, the dispersion curves of the guided
modes in the input and output waveguides are plotted in Figure 2b. From Figure 2b, we can
easily obtain the range of the absolute PBG as the region shown in green, fitting quite well
with that in Figure 2a. Moreover, the TE- and TM-guided modes can be found in Figure 2b,
as shown by the blue and red curves in the absolute bandgap (the green band), respectively.
It is seen that the guided modes for both TE and TM waves are all in the absolute PBG
region. It should be pointed out that, under the coordinate system as shown in Figure 1, the
electric field is parallel to the Z-axis for TE polarization, while the magnetic field is parallel
to the Z-axis and the electric field is parallel to the X–Y plane for TM polarization.
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In this paper, the ferrite and plasma were chosen to be experimentally feasible materi-
als as follows: Yttrium iron garnet was chosen for the ferrite material. Under an external
magnetic field applied in the +Z-direction, the relative permeability of ferrite material can
be expressed by a tensor as [16–19]

[µ f ] =

 µm jµk 0
−jµk µm 0

0 0 1

, (1)

where µm = 1 + ωm(ω0 + iαω)/[(ω0 + iαω)2 − ω2] and µk = ωmω/[(ω0 + iαω)2 − ω2]
with ω0 = µ0γH0, ωm = µ0γMs. Here, γ = 1.759 × 1011 C/kg is the gyromagnetic
ratio, α = 3 × 10−5 is the loss coefficient, and Ms = 2.39 × 105 A/m is the saturation
magnetization. The relative permittivity of ferrite material is given by ε f = 12.9, and the
applied magnetic field was set to be H0 = 3.5 × 105 A/m. As for the plasma material,
the relative permeability is µp = 1, and under the external magnetic field applied in the
+Z-direction, the relative permittivity can be expressed as [30,31]

[εp] =

 εm jεk 0
−jεk εm 0

0 0 εp

, (2)

where εm = 1− ωp
2(ω − jv)/ω((ω − jv)2 − ωc

2), εk = −ωcωp
2/ω((ω − jv)2 − ωc

2), and

εp = 1 − ωp
2/ω(ω − jv). Here ωp =

(
e2ne/ε0m

)1/2 is the plasma frequency, where e,
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m, and ne are the electron charge, electron mass, and plasma density, respectively; ωc =
(eB/m) is the cyclotron frequency of electron, and v is the plasma frequency. When the
external magnetic field is H0 = 3.5× 105 A/m, we have ne = 1013 cm−3 and v = 1 × 10−5ωp.

In our previous work [22], we proved that the ferrite material can provide a rotation
effect for TE polarization, while the plasma material can provide a rotation effect for TM
polarization. The mechanism can be understood as follows: For TE polarization, the electric
field has only an Ez component and the magnetic field has both Hx and Hy components.
When the TE wave transmits through the magnetized ferrite material, the two components
of magnetic field Hx and Hy will be different in phase due to the imaginary part µ12 = jµk
and µ21 = −jµk of [µ f ] in the ferrite material (this result can be obtained by solving
the wave equation of H, and its detailed deduction can be found in [22]), leading to the
direction of magnetic field H changing along the elliptical path. Therefore, the propagation
direction of the wave will change or rotate by noting that the direction of the electric
field is fixed along the Z-direction. However, for a TE wave transmitting through the
plasma material, there will be no phase difference between Hx and Hy because the relative
permeability of plasma µp is a constant, and so the propagation direction of the wave will
remain unchanged. As a result, when the TE wave meets the composite rod containing
ferrite and plasma material in our structure, the ferrite part plays the “rotation effect” role
and the plasma part plays the “normal effect” role. A similar analysis can be performed for
TM polarization, where the roles of ferrite and plasma material are exchanged. When the
TM wave meets the composite rod, the ferrite part plays the “normal effect” role and the
plasma part plays the “rotation effect” role.

The principle can also be understood by the effective medium theory [32]. According
to the effective medium theory, the effective relative permittivity [εe f f ] and effective relative
permeability [µe f f ] of the composite rod in our structure can be written as

[εe f f ] =

 f1(ε f , εm, R1, R2) f2(ε f , εm, R1, R2) + j · f3(εk, R1, R2) 0
f2(ε f , εm, R1, R2)− j · f3(εk, R1, R2) f1(ε f , εm, R1, R2) 0

0 0 f4(ε f , εp, R1, R2)

, (3)

[µe f f ] =

 g1(µ f , µm, R1, R2) g2(µ f , µm, R1, R2) + j · g3(µk, R1, R2) 0
g2(µ f , µm, R1, R2)− j · g3(µk, R1, R2) g1(µ f , µm, R1, R2) 0

0 0 g4(µp, R1, R2)

, (4)

where fi and gi (i = 1–4) are functions related to the quantities indicated in the parenthe-
ses. According to the expressions of effective relative permittivity and effective relative
permeability, we can see that the composite rod containing ferrite and plasma materials
can provide the rotation effect for both TE and TM polarizations.

3. Numerical Results and Discussion

Firstly, considering the important role of the central MO composite rod in the structure,
we investigated the influence of the composite-rod radius R2 on the performance of the
PIC, as shown in Figure 3. Due to the structure symmetry, the properties of the circulator
can be studied by choosing an arbitrary port as the input port. Here, we selected P1 as
the input port, P2 as the output port, and P3 as the isolated port. The ratio K is fixed as
K = R1/R2 = 0.5; i.e., the radius R1 of the ferrite material is half of the radius R2 of the
composite rod. The operating frequency was chosen as f = 0.4483 (ωa/2πc). From Figure 3
we can see that the radius R2 of the composite rod is crucial for the performances of the PIC.
The best result appears at R2 = 0.363a for the overall performance of both polarizations,
with the highest output-port transmission (T2) and the lowest isolated-port transmission
(T3). The TE wave is more sensitive with the change of R2. In the following calculation, we
the radius of the composite rod is fixed as R2 = 0.363a.
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Figure 3. Transmissions of the output port P2 and isolated port P3 versus the radius R2 of the composite rod for (a) TE and
(b) TM polarization.

The influence of the ratio K = R1/R2 on the performance of the PIC was then further
studied, as shown in Figure 4, where the operating frequency is f = 0.4483 (ωa/2πc) and
the radius of the composite rod is R2 = 0.363a. It can be seen from Figure 4 that the ratio K
is also important for the performance of the PIC. The values of T2 and T3 vary obviously
with the change of ratio K. The best ratio is found to be K = 0.5 for both polarizations. The
TE wave is also more sensitive with the change of K. In the following calculation, we fix
the ratio as K = 0.5. The parameters of R2 and K were carefully selected by considering the
balance of the performances of TE and TM polarizations in which the NOM optimization
method is used for obtaining these parameters. For K = 0.5, this means that the outside
ring has a larger area than that of the inner rod. This can be understood as follows: In the
field distributions shown in Figure 5, the field intensity of TE polarization in the center of
the MO cavity is much higher than that away from the center, and the field distribution of
TM polarization is basically uniform in the MO cavity region. Therefore, a larger area is
required for the outer ring (TM-wave effective region) than that for the inner rod (TE-wave
effective region) to obtain about the same circulation effect for TE and TM modes.
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To further study the frequency response of the PIC, a frequency scan was performed
for T2 and T3 inside the absolute PBG, as shown in Figure 5, where the radius of the
composite rod is R2 = 0.363a and the ratio K is 0.5. It can be found from Figure 5 that,
for TE polarization, the best frequency response is f = 0.4486 (ωa/2πc), with T2 = 93.9%
and T3 = 4.73% (for simplicity, all output or isolated powers are represented relative to
the input power). The frequency ranges from 0.4439 to 0.4496 (ωa/2πc) for T2 > 80%; for
TM polarization, the best point is f = 0.4413 (ωa/2πc), with T2 = 91% and T3 = 7.89%. The
frequency ranges from 0.4373 to 0.4494 (ωa/2πc) for T2 > 80%. The common frequency
range for both TE and TM polarizations with T2 > 80% is from 0.4439 to 0.4496 (ωa/2πc).
The output-port transmission of the TE wave is slightly better than that of the TM wave,
but the operation bandwidth of the TE wave is a little narrower than that of the TM wave.
How the transmission of the TE wave is better than the TM wave can be understood as
follows: The outer ring of the composite MO rod has a larger size, and thus the outer ring
will reflect/scatter more power than the inner rod. Note that the inner and outer parts of
the composite MO rod are made of ferrite and plasma materials, which act mainly with
TE and TM modes, respectively, so that the reflection for the TM wave is stronger than
that for the TE wave in the whole MO region. As a result, the transmission of the TE
wave will be better than that of the TM wave. On the other hand, one can hope to use the
plasma material to construct the central part of the composite MO rod to achieve better
transmission of the TM wave.

The field distributions for an input wave from P1 for TE and TM waves are displayed
by the insets in Figure 5a,b, respectively (to save space, the field distributions for inputs
from P2 and P3 are omitted in this case; however, complete field distributions with inputs
from all ports are shown in our optimized case below). The field distributions indicate
that the wave launches from the input port P1 and most of the power transmits to the
output port P2. Only a small amount of power (~8%) flows to the isolated port P3. The
circulator fulfills the circulation function for both polarizations. However, the output
transmissions or insertion losses, especially for TM polarization, are not good enough to
meet the demands for practical applications. Therefore, further optimization is necessary
to obtain low insertion loss.

Since the performance of the PIC may be affected by the coupling condition between
the central MO cavity and the waveguides, three additional small rods (formed by plasma
material) were inserted into the waveguides. These additional small rods were introduced
here for two reasons. The first one is that they can provide an additional rotation effect for
TM polarization; the second one is that they can improve the coupling between the central
MO cavity and the waveguides. The optimized model is shown in Figure 6e, where R3 and
l3 denote the radius of the additional rods and the distance from the additional rods to the
center point. It should be pointed out that we can also use rods with other shapes instead
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of the circular cylinders to attain our goals; however, circular cylinders are the simplest
and much easier to fabricate.
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It is obvious that the radius R3 of the additional rods and the distance l3 from the
additional rods to the center point may simultaneously influence the output property of the
PIC. Therefore, we should balance the performances of TE and TM polarizations and select
proper R3 and l3 to maintain high output transmissions or insertion loss for both of them.
Here, we use the NOM optimization method to optimize the parameters, which are found
to be R3 = 0.045a and l3 = 1.78a. The performances of the optimized PIC are displayed in
Figure 6, where the other parameters are the same as those of Figure 5. From the frequency
scans as shown in Figure 6d,f, we can see that, for TE polarization, the best frequency
response occurs at f = 0.4479 (ωa/2πc), with T2 = 95% (the corresponding insertion loss can
be calculated according to 10 × log(1/T2) = 0.22 dB) and T3 = 3.98% (the corresponding
isolation is 10 × log(1/T3) = 14 dB). The frequency ranges from 0.4439 to 0.4493 (ωa/2πc)
for T2 > 80%; for TM polarization, the best output is at f = 0.4406 (ωa/2πc), with T2 = 95%
(the corresponding insertion loss is 0.22 dB) and T3 = 2.4% (the corresponding isolation
is 16.2 dB). The frequency ranges from 0.4372 to 0.4524 (ωa/2πc) for T2 > 80%. The
common frequency range for both TE and TM polarizations with T2 > 80% is from 0.4439
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to 0.4493 (ωa/2πc). The performance of the PIC, especially for the TM polarization, has
been improved.

To verify the feasibility of the PIC, the field distributions are plotted in Figure 6a–c,g–i
for TE and TM polarizations. As seen in these figures, for both polarizations, the input
wave launches from the input port, almost all the power transmits to the output port, and
only a small amount of power (~4%) flows to the isolated port. The circulator fulfills the
desired circulation function for both polarizations, i.e., the circulator is a PIC.

It should be pointed out that the position of the ferrite and plasma materials in the
central MO rod can also be exchanged to construct a PIC in a similar way. We also note
that, although the circulator studied in this paper is designed for microwave frequencies
using experimentally feasible ferrite and plasma materials due to the limit of materials at
the present stage, the method for designing such a PIC can be applied to other wavebands
such as an optical band when the materials required become available in the future.

4. Conclusions

In summary, we have proposed and demonstrated a type of PIC based on a composite
rod containing ferrite and plasma materials in a 2D PhC slab. The PIC can realize simulta-
neously the circulation function for TE and TM polarizations while only one composite rod
is necessary. In addition, three additional rods are introduced into the waveguides in our
optimized model to improve the coupling condition between the center MO cavity and the
waveguides. The best advantage of the proposed PIC is that it is simple and compact in
structure, making it easier to integrate with other devices. The idea presented here may
be useful for designing compact polarization devices in large-scale integrated photonic
circuits.
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