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Abstract: Tenofovir disoproxil fumarate is widely used in the therapy of human immunodeficiency
virus and hepatitis B virus; however, a high concentration of the prodrug effects kidney function
damage. To control the effectiveness of kidney functions in treated patients, the level of creatinine
in the body must be controlled. This work describes a simple, fast, and “plastic-waste” reducing
method for the simultaneous determination of tenofovir and creatinine in human urine and plasma.
In both assays, only 50 µL of body fluid was required. The tests were carried out by reversed phase
high-performance liquid chromatography with UV detection. In urine samples, the limits of detection
for tenofovir and creatinine were 4 µg mL−1 and 0.03 µmol mL−1, respectively. In plasma samples,
the limits of detection were 0.15 µg mL−1 for tenofovir and 0.0003 µmol mL−1 for creatinine. The
method was applied for the determination of tenofovir and creatinine in human urine and plasma
samples. The biggest advantage of the elaborated method is the possibility to determine tenofovir
and creatinine in one analytical run in both urine and plasma sample collected from HIV and HBV
patients. The possibility to reduce the level of laboratory waste in a sample preparation protocol is in
the mainstream of a new trend of analytical chemistry which is based on green chemistry.
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1. Introduction

The report presented by the Joint United Nations Program on HIV/AIDS (UNAIDS) in 2018 shows
that 36.9 million people globally are living with human immunodeficiency virus (HIV) [1]. The World
Health Organization (WHO) found that, worldwide, 257.0 million persons were living infected with
hepatitis B virus (HBV) in 2016, and 1.3 million deaths were caused by the virus in 2015 alone. Both
viruses are major public health problems that require an urgent response [2].

HBV infection is caused by the virus belonging to the hepadnavirus family, one of the smallest
viruses known to infect humans. The enveloped DNA virus infects liver cells, causing hepatocellular
necrosis and inflammation [2,3]. HIV infects immune system cells and is able to destroy or impair their
functions [1].

To stop the worldwide transmission of HBV and HIV, the WHO recommends the use of
antiretroviral (ARV) treatment for infected people and the application of ARV drugs to prevent
the mother-to-child transmission of HIV [2–5]. Currently, to treat patients with chronic hepatitis B
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(CHB), HBV or HIV, or people living with HBV-HIV coinfection, seven antiviral agents have been
recommended. One of those is tenofovir disoproxil fumarate, which is an orally available bioactive
prodrug of tenofovir (TFV) [6]. TFV is a nucleotide analog of reverse transcriptase, which is very
effective in therapy against retroviruses and hepadnaviruses [7]. It was approved by the US Food
and Drug Administration for the treatment of infections: HIV in 2001 and CHB in 2008. Currently,
TFV is recommended as one of the first drugs in monotherapy of CHB [8]. Statistical data presented
by the WHO have shown a crucial delay in the progression of cirrhosis, reduction in the incidence
of CHB and improvement of long-term survival in people living with HBV treated with TFV [3].
Generally, TFV is well tolerated. However, some evidence of a decrease in bone mineral density,
changes in kidney functions and in the rate of tubular dysfunction after treatment with TFV has been
reported [9,10]. TFV treatment has been confirmed to be associated with a higher risk of nephrotoxicity
in clinical cohorts [11,12]. Several studies have shown a raised prevalence of proximal renal tubular
dysfunction in TFV-treated patients, attributed to increased intracellular TFV concentrations and direct
mitochondrial toxicity in the proximal tubule cells [13,14].

The first case of nephrotoxicity induced by TFV in a patient with HIV was reported in 2002 [15].
Since that time, severe or symptomatic nephrotoxicity has also been reported in CHB patients treated
with TFV [16–20]. That was proven that even short-term therapy with this drug results in severe renal
dysfunction [20]. Due to the nephrotoxicity of TFV, every initiation of the drug treatment must be
preceded by renal function control. Additionally, more frequent monitoring of TFV level and kidney
functions in TFV-treated patients at higher risk of renal dysfunction is recommended by the WHO [3].

The guideline on TFV monitoring in HBV patients published by the European Liver Research
Association recommends an estimation of glomerular filtration rate (eGFR) before starting the TFV
therapy. The eGFR control is based on comparison of levels of creatinine (Crn) in plasma and urine.
Monitoring of eGFR in all patients treated with TFV every 1–3 months during the first year of treatment
and then every 3–6 months is recommended by the WHO [3,21].

The renal clearance of Crn is one of the most used and commonly accepted tests of renal
function [22]. Since TFV is mainly excreted by tubular secretion and it is active on the tubular cells, its
urinary concentration could be a useful marker of TFV-associated tubular toxicity and a reasonable
candidate for clinical use [21]. Additional tests for Crn concentration in urine and plasma are helpful
to control the bodily absorption, distribution, metabolism and TFV excretion.

Since HIV and HBV infections are possible through blood samples, the use of urine in place of
plasma for body TFV monitoring seems to be safer, more significant and deeply required [2,3,22].
Utilization of urine samples significantly reduces the risk of random infections associated with the
transport, storage or disposal of infected samples compared to plasma. Moreover, for studying the
effect of antiviral therapy on kidney functions, it is necessary to determine the Crn content in urine.

The lack of information about analytical protocols dedicated for simultaneous quantitation of TFV
and Crn indicates the need to develop an essential assay for the measurement of side-effects/interactions
and optimization of treatment protocols of HIV and HBV/CHB patients. In this paper, we present a
new analytical tool based on reversed-phase high-performance liquid chromatography (RP-HPLC)
with UV detection for the direct and simultaneous determination of Crn and TFV in urine samples
collected from CHB patient treated with TFV and plasma samples spiked with this drug.

2. Results

2.1. Chromatpgraphy

RP-HPLC is one of the most common analytical techniques dedicated to biological sample analysis.
The choice of chromatographic conditions directly affects the quality of analyte separation. The
amounts of organic and inorganic solvents in a mobile phase are crucial from the chromatographic,
economic and environmental points of view. To reduce the amount of toxic waste in this analysis, we
decided to use low-concentration phosphate buffer (PB) and a small amount of acetonitrile (MeCN).
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The mobile-phase pH can be a powerful tool to control retention and selectivity. Hence, we studied
concentrations of PB in the range from 0.01 to 0.05 mol L−1 and its pH in the range from 7.0 to 7.6
(Figure 1). The results were obtained using a urine sample spiked with Crn and TFV. The analysis was
performed at 25 ◦C with a mobile phase flow rate equal to 1 mL min−1.

Figure 1. The influence of phosphate buffer (PB) concentration (A) and pH (B) in the mobile phase on
the retention factors of creatinine (Crn) and tenofovir (TFV). Chromatographic conditions in Section 4.5.

In the case of chromatographic methods based on UV detection, utilization of the most proper
wavelengths is crucial for detection of the analyte and the method sensitivity. For this reason, we
considered application of two different wavelengths. Detection was carried out by using 234 nm
from 0 to 3 min for Crn monitoring and 260 nm from 3 to 8 min for TFV detection. Representative
chromatograms of urine and plasma samples have been presented on Figure 2.

Figure 2. Representative chromatograms of: (A) urine, patient’s urine and patient’s urine spiked with
TFV; (B) plasma and plasma spiked with Crn and TFV. Chromatographic conditions in Section 4.5.

2.2. Method Validation

2.2.1. Method Calibration

For method calibration, 50 µL of urine samples were placed in glass vials and spiked with 10 µL of
growing amounts of working standard solution containing the analytes at seven levels of concentration.
The calibration ranges were 10.0–300.0 µg mL−1 urine and 0.1–30 µmol mL−1 urine for TFV and Crn,
respectively. Plasma samples (50 µL) were spiked with the increasing amounts of working solutions
of TFV and Crn to provide the final concentration of TFV from 0.5 to 5 µg mL−1 plasma and for Crn
from 0.001 to 0.04 µmol mL−1 plasma. Then, the samples were processed according to the procedures
described in Section 4.4. The calibration solutions were prepared in triplicate. The calibration curves
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were obtained by plotting the peak areas against the analyte concentrations. Regression equations and
correlation coefficients have been presented in Table 1.

Table 1. Calibration data.

Analyte (n = 3) Linear
Ranges

Regression
Equation R2

RSD (%) Recovery (%)

Min Max Min Max

TFV
(µg mL−1 urine) 10.0–300.0 y = 2.02x + 0.47 0.999 1.1 6.1 96.0 108.0

TFV
(µg mL−1 plasma) 0.5–5.0 y = 4.12x − 0.06 0.999 2.1 8.4 99.0 100.3

Crn
(µmol mL−1 urine) 0.1–30.0 y = 415.88x + 514.96 1.000 0.4 3.1 99.3 111.1

Crn
(µmol mL−1 plasma) 0.001–0.04 y = 1086.71x + 24.19 0.999 0.3 4.9 93.6 107.4

2.2.2. LOD and LOQ

The limit of detection (LOD) and limit of quantification (LOQ) were defined as the concentrations
with a signal-to-noise (S/N) ratio of 3 and 10, respectively [23]. Peaks of the analytes were identified by
comparison of spectrum and retention time with parameters obtained for authentic standards. In the
method dedicated to urine, LODs were 4 µg mL−1 and 0.03 µmol mL−1, while LOQs were 8 µg mL−1

and 0.1 µmol mL−1 for TFV and Crn, respectively. In the method dedicated to the determination of
TFV and Crn in plasma, LODs and LOQs were 0.15 and 0.2 µg mL−1 for TFV and 0.0003 and 0.001
µmol mL−1 for Crn, respectively.

2.2.3. Precision and Accuracy

Precision and accuracy were calculated using the results of the analysis of urine and plasma
samples spiked with known amounts of these analytes, analyzed in triplicate. The procedure followed
the guidelines for biological sample analysis [23,24]. Precision was expressed in terms of relative
standard deviation (RSD), whereas accuracy was considered as the percentage of analyte recovery
calculated by expressing the mean measured amount as a percentage of the added amount. The
estimated validation parameters for analytes were satisfying. The detailed data are presented in
Table 2.

Table 2. Accuracy and precision.

Analyte Concentrations
Precision (%) Accuracy (%)

Intra-Day Inter-Day Intra-Day Inter-Day

TFV
(µg mL−1 urine)

10
40

300

2.3
4.1
1.9

5.8
8.1
4.3

95.9
97.5

100.3

105.7
113.4
96.1

TFV
(µg mL−1 plasma)

0.5
2
5

4.7
4.1
3.7

5.6
3.6
4.5

91.1
91.5
93.3

93.8
93.5
97.2

Crn
(µmol mL−1 urine)

0.1
2.5
30

4.2
1.7
3.7

6.8
5.4
6.1

111.4
100.6
99.3

120.1
104.4
108.9

Crn
(µmol mL−1 plasma)

0.001
0.01
0.04

1.9
0.6
0.5

4.0
5.1
1.4

91.3
100.9
100.7

102.8
99.6
99.3

2.3. Stability Study

To confirm the usefulness of the elaborated method, the analyte stability studies were also
performed. Urine and plasma samples were spiked with known amounts of analytes and prepared
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according to protocols described in Section 4.4. Samples were kept at 4 ◦C—the temperature used
during sample storing—and at 37 ◦C—the temperature close to the human body temperature. Samples
were analyzed in 30 min intervals over 3 h for plasma and 4 h for urine. Urine and plasma samples
dedicated for stability studies were prepared in triplicate. The obtained data are presented in Figure 3.

Figure 3. Stability of Crn and TFV in urine (A) and plasma (B) samples kept at 4 ◦C and 37 ◦C; n = 3
for each time point.

2.4. Urinary Excretion of TFV

The method was applied to control the urinary excretion of TFV in one CHB patient treated with
TFV in form of Viread 123 mg film-coated tablets. Urine samples were collected after one, two, four,
six and eight hours after taking the pharmaceutical dose, prepared in triplicate and analyzed. The
concentration of TFV in each sample was simultaneously normalized to Crn. The obtained results are
presented in Figure 4.

Figure 4. Urinary excretion of TFV after drug intake in dose 123 mg. TFV concentration normalized
against Crn; n = 3 for each time point.
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2.5. Carry-Over Assay

To confirm the possibility of the application of reusable/washed HPLC glass vials, the carry-over
assay was performed. Carry-over was assessed by injecting two blank proxy matrix placed in glass
vials used previously for storage the high concentrated solutions of standards (300 µg mL−1 for TFV
and 30 µmol mL−1 for Crn). No peaks at the retention times of the analytes were found. Since Crn is
an endogenous compound present in human urine, in this experiment we used a proxy matrix as the
blank samples.

3. Discussion

Due to high individual variability of pharmacokinetic in different patients treated with the same
dose of TFV monitoring of TFV level in HIV and HBV patient’s body fluids is recommended by the
WHO [3,25]. The dissimilarity is related to the quality and speed of metabolism and interactions
between drugs. TFV concentration in plasma affects its action in the human body. Too low a level of
the drug may lead to immunization of the virus, while too high concentration significantly increases its
renal toxicity [9,10]. Monitoring of TFV in HIV patients is required in controlling the therapeutic dose
and in relation to the control of normal renal functions [26,27]. In patients with impaired renal function,
it is necessary to adjust the dose of the drug, due to its potential toxicity. The control is performed by
Crn clearance study [28,29].

Testing of TFV level in human peripheral blood might be painful for patients and carries the risk of
additional HIV/HBV infections. Methods created for TFV determination in non-infected matrices, such
as urine [28,30] or hair [31,32], do not provide the possibility for simultaneous monitoring concentration
of Crn. Previously published reports mainly described methods for the determination of TFV in
plasma [25,26,29,33–40], which determines a higher risk of infection. These assays were based on a
solid phase extraction [35,41–43] or derivatization [37].

Additional steps in analytical protocols usually increase the number of used tubes, tips,
polypropylene vials or columns for solid phase extraction. We proposed the preparation of urine
samples directly in HPLC glass vials. To confirm if this can produce a carry-over effect, we performed
an additional test. Using the same glass vial for the analysis of standard solutions and next for
proxy matrix analysis, we did not observe peaks at the retention times of the analytes in the blank
samples. Additionally, precision and accuracy presented in Table 2 show the low possibility of a
carry-over effect for the method. We confirmed that even at the highest concentration, there were
no adsorption issues related to glass and it was possible to evaluate the LOQ level. This indicates
that the goals of the reduction in plastic waste and the possibility to reuse the glass vials have been
obtained. In the literature, only two methods are known to be useful for the determination of TFV
in urine samples [28,30]; however, none of these allow for the determining of Crn. For decreasing
the hazardous properties of the matrix collected from HIV or HBV/CHB patients, analysis of urine
samples is more desirable. The acquisition and preparation of urine are safer and do not pose a threat
of HIV infection.

Previously described assays dedicated for TFV determination are based on RP-HPLC, usually
coupled with mass spectrometry [25,29,32,37,39,40]. Methods requiring commonly available detectors
such as spectrophotometric [35,36] or spectrofluorimetric [33,34] detectors are used rarely.

To obtain the most acceptable results of chromatographic separation, various analytical columns,
including Aeris WIDEPORE XB-C18 (150 × 4.6 mm, 5 µm), Poroshell (75 × 4.6 mm, 2.7 µm), Kinetex
HILIC (100 × 4.6 mm, 2.6 µm) and Zorbax SB C-18 (150 × 4.6 mm, 5 µm) were tested. The choice was
based on information that Aeris WIDEPORE column enables the analysis of plasma samples without
previous deproteinization [44]. HILIC is one of the most commonly applied methods to solve retention
problems of highly polar analytes [45]. Due to the high polarity of the tested compounds, we evaluated
the use of a HILIC column. A typical mobile phase for HILIC chromatography includes water-miscible
polar organic solvents such as MeCN with a small amount of water [45]. Alcohols can also be adopted,
although a higher concentration is needed to achieve the same degree of retention of the analyte relative
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to an aprotic solvent–water combination [46]. HILIC separations are performed either in isocratic mode
with a high percentage of organic solvent or with gradients starting with a high percentage of organic
solvent and ending with a high proportion of aqueous solvent [47]. To obtain the best resolution of the
analytes for each column, several mobile phase variations were investigated, and initially the effect of
organic modifiers such as methanol and MeCN was evaluated. Our aim was to obtain sharp peaks
within an acceptable analysis time and to minimize the amount of organic modifier in the mobile
phase. The best separation with the symmetrical peak shapes was performed using the Zorbax SB
C-18 (150 × 4.6 mm, 5 µm) column. To provide optimal separation between eluted compounds, MeCN
was selected as an organic modifier and the gradient mode of separation was performed.

To the best of our knowledge, the HPLC-UV method described herein is the first that makes it
possible to determine both Crn and TFV in urine or plasma samples in one analytical run. The total
time for urine sample preparation and analysis is less than 10 min, and is shorter than in previous
assays [25,30,35,36]. The proposed assay provides quick determination of TFV and simultaneous
normalization against Crn concentration. This significantly shortens the entire time of the analytical
procedure. The proposed analytical conditions allow good separation of analytes from the matrix
components. For Crn, the retention time was 2.3 min, and for TFV, it was 4.5 min. Detection was
carried out by using two different wavelengths in one analytical run. The gradient of wavelengths
improved specificity and sensitivity of the method.

The proposed analytical procedure has been fully validated. The process was based on
recommendations of the EMA Guideline on Bioanalytical Method Validation (2015) [23] and the
FDA Guidance for Industry Bioanalytical Method Validation (2018) [24]. The obtained data meet the
validation requirements (Tables 1 and 2). To confirm the precision and accuracy of the elaborated assay,
we have compared parameters of the new assay to methods published before, using data indicated for
urine and plasma samples (Tables 3 and 4). As shown in Tables 3 and 4, the obtained validation data are
satisfying. The presented method requires only 50 µL of the sample, while in the previously published
methods, much higher volumes of urine or plasma (Tables 3 and 4) were demanded [30,35,36,38].

Table 3. Comparison of validation parameters methods for determination of TFV in urine sample.

Parameters LC-DAD * [30] LC-MS * [28] Proposed Method

Sample volume (mL) 0.5 1.0 0.05
Linear range (µg mL−1) 1–100 - 10–300

R2 0.999 0.999 0.999
LOD (µg mL−1) 0.14 0.19 4.0
LOQ (µg mL−1) 0.42 0.39 8.0

Intra-day (RSD%) 0.54 6.69 2.8
Inter-day (RSD%) 0.89 9.38 6.1

* The method cannot be applied for the determination of creatinine in urine samples.

Table 4. Comparison of validation parameters methods for determination of TFV in plasma sample.

Parameters LC-DAD * [35] LC-UV * [36] Proposed Method

Sample volume (mL) 0.1 1.00 0.05
Linear range (µg mL−1) 0.02–10.0 0.01–4.0 0.5–5

R2 0.999 - 0.999
LOD (µg mL−1) 0.02 0.003 0.15
LOQ (µg mL−1) 0.06 0.01 0.5

Intra-day (RSD%) 3.8 5.9 3.7
Inter-day (RSD%) 4.6 8.6 5.6

* The method cannot be applied for the determination of creatinine in plasma samples.
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The sensitivity of our assay is lower when compared to previously elaborated methods (Tables 3
and 4); however, we must remember that Crn as a breakdown product of creatine phosphate from
muscle and protein metabolism is a typical metabolite present in the human body [21,22]. TFV is a
drug administered to HIV and HBV patients. In patients treated with this drug, both compounds are
present in quite high concentrations [21,22]. As it was indicated in a previously published method
dedicated to the determination of TFV in urine samples, the concentration of the drug was in the
range from 0.453 to 43.576 µg mL−1 [28]. These data show that our method would be useful for the
analysis of those samples and confirm that higher sensitivity would be more required in the case of
trace analytes. For this reason, we decided to pay more attention to making it possible to determine
both TFV and Crn in one analytical run. That can help us to observe the negative influence of the drug
on kidney functions.

For the stability studies, urine and plasma samples were prepared according to the protocols
described in Section 4.4. The experiments have proven that TFV and Crn are stable over 180 min in
plasma and 240 min in urine at 4 and 37 ◦C without a noticeable change in the concentration in both
cases (Figure 3). RSD for Crn in plasma samples store at 40 and 37 ◦C was 2.0% and 2.6%, and for TFV,
it was 4.7% and 4.5%, respectively. In the case of urine samples kept at 4 and 37 ◦C, RSD for Crn was
0.4% and 1.0%, and for TFV it was 0.2% and 0.4%, respectively.

The newly elaborated analytical method was used to analyze urine samples collected from CHB
patient treated with 123 mg drug dose. The study was mainly focused on the verification of TFV
pharmacokinetic. The obtained results clearly indicate that the largest amount of TFV was excreted
within 2 to 4 h after taking the drug, and gradually decreased to the eighth hour (Figure 4). Eight hours
after the drug was administered, the amount of TFV became constant. It must be highlighted that
having a limited number of patients, we cannot provide statistical data to discuss and clearly show a
good trend of urinary TFV excretion. However, the validation data clearly indicate that the elaborated
method would be useful to carry out this kind of study.

4. Materials and Methods

4.1. Chemicals

TFV and Crn standards were received from Sigma Aldrich Company (St. Louis, MO, USA). HPLC
gradient grade MeCN, sodium hydrogen phosphate heptahydrate, sodium dihydrogen phosphate
dihydrate and sodium hydroxide were from J.T. Baker (Deventer, The Netherlands). Perchloric acid
was from Merck (Darmstadt, Germany). Deionized water was produced in our laboratory.

4.2. Instrumentation

The analyses were performed on 1220 Infinity LC system from Agilent equipped with a binary
pump integrated with a two-channel degasser, autosampler, column oven and diode array detector.
The samples were injected using the autosampler. Chromatographic separation was achieved on the
Zorbax SB C-18 (150 × 4.6 mm, 5 µm) column from Agilent Technologies (Waldbronn, Germany).
For instrument control, data acquisition and analysis, OpenLAB software was applied. Water was
purified using Milli-QRG system (Millipore, Vienna, Austria). For pH measurement, an HI 221 (Hanna
Instruments, Woonsocket, RI, USA) pH meter was used. Precipitated proteins were removed from the
sample using Hettich Mikro 200R (Hettich Zentrifugen, Tuttlingen, Germany) centrifuge.

4.3. Stock Solutions

Stock solution of 0.3 mg mL−1 TFV was prepared in 0.1 mol L−1 NaOH [35] and kept at 4 ◦C for
several days without significant changes in the analyte content. A stock solution of Crn 30 µmol mL−1

was prepared in deionized water and kept at 4 ◦C for several days as well. The working solutions were
prepared by dilution with deionized water as needed.



Pharmaceuticals 2020, 13, 367 9 of 12

4.4. Biological Matrices

The urine samples were collected both from healthy people and from CHB patients treated with
TFV in the form of Viread 123 mg film-coated tablets. Optimization of analytical conditions were
performed on plasma and urine samples collected from healthy volunteers. All samples were stored at
−80 ◦C.

Written informed consent forms were obtained from all volunteers and this study was approved
by the Bioethics Committee of the University of Lodz (12/KBBN-UL/I/2015).

4.4.1. Urine Sample Preparation

To reduce the amount of laboratory waste, such as polypropylene tubes or tips, urine samples
were prepared directly in reusable HPLC glass vials. For the determination of TFV and Crn to 50 µL of
urine, 450 µL of 0.015 mol L−1 (pH 7.4) PB was added. Ten microliters of the final analytical solution
was injected into the chromatographic column.

4.4.2. Plasma Sample Preparation

The samples were prepared in polypropylene tubes. Fifty microliters of plasma was diluted
with 380 µL of 0.015 mol L−1 (pH 7.4) PB and spiked with 10 µL of increasing concentrations of TFV.
To precipitate plasma proteins, 50 µL of 3 mol L−1 perchloric acid was added into the tube. Next,
an appropriate amount of deionized water was added to obtain the final volume of 500 µL. The
precipitated proteins were removed by centrifugation (15,000× g, 10 min, 10 ◦C). Ten microliters of the
supernatant was injected into the chromatographic column.

4.5. HPLC Conditions for the Determination of TFV and Crn

4.5.1. Urine Analysis

For chromatographic separation of TFV and Crn in urine, a reversed-phase Zorbax SB C-18 (150
× 4.6mm, 5 µm) column was applied. The analytes were eluted by a mobile phase containing 0.015
mol L−1 PB, pH 7.4 and MeCN using gradient as follows: 0–6 min 2–4% MeCN, 6–7 min 4–2% MeCN,
7–8 min 2% MeCN. The flow rate of the mobile phase was 1 mL min−1. For the detection of TFV
and Crn, two different wavelengths were used—260 and 234 nm, respectively. The total time of the
chromatographic analysis was 8 min. For the column reconditioning, 2 min post time was required.
The analysis was performed at 25 ◦C.

4.5.2. Plasma Analysis

The chromatographic separation of TFV and Crn in plasma was obtained in 6 min. The analytes
were eluted using isocratic elution with the mobile phase containing 98% of 0.015 mol L−1 PB pH 7.4
and 2% MeCN. The flow rate of the mobile phase was 1 mL min−1. Similarly to urine analysis, for the
detection of TFV and Crn, we used the following wavelength gradient: 0.0–2.5 min 234 nm for Crn and
2.5–6.0 min 260 nm for TFV. The column temperature was 25 ◦C. Identification of TFV and Crn peaks
was based on the comparison of spectrum and retention time of signals with corresponding set of data
obtained for authentic compounds.

5. Conclusions

For monitoring an adverse reaction of TFV, new analytical tools based on simultaneous separation
and quantitation of TFV and Crn in urine and plasma samples have been developed. These assays allow
a direct study of correlation between TFV concentration in plasma and urine and an indirect study on
the influence of TFV therapy on kidney damage. The assays were fully validated and successfully
applied to test urine samples donated by CHB patients treated with TFV administrated as Viread
123 mg.
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The most important reason for the application of our assay in laboratories is the possibility to
determine TFV and Crn in one analytical run in both urine and plasma samples. The other advantages
of the assay, such as (i) the possibility for normalization of the drug concentration against Crn, (ii) a
small plasma or urine volume required for analysis, (iii) the total time of the assay for urine analysis
less than 10 min, (iv) a reduced amount of laboratory waste, such as tubes/tips/polypropylene vials,
and (v) reduction in the amount of toxic organic solvents in the mobile phase, are the added values of
the method. The elaborated procedures can be applied for the analysis of samples collected from HIV
and HBV/CHB patients and are in the mainstream of new trend of analytical chemistry which is based
on green chemistry.
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