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Abstract

Background: Precise description of the dynamics of biological processes would enable the mathematical analysis
and computational simulation of complex biological phenomena. Languages such as Chemical Reaction Networks
and Process Algebras cater for the detailed description of interactions among individuals and for the simulation
and analysis of ensuing behaviors of populations. However, often knowledge of such interactions is lacking or not
available. Yet complete oblivion to the environment would make the description of any biological process vacuous.
Here we present a language for describing population dynamics that abstracts away detailed interaction among
individuals, yet captures in broad terms the effect of the changing environment, based on environment-dependent
Stochastic Tree Grammars (eSTG). It is comprised of a set of stochastic tree grammar transition rules, which are
context-free and as such abstract away specific interactions among individuals. Transition rule probabilities and
rates, however, can depend on global parameters such as population size, generation count, and elapsed time.

Results: We show that eSTGs conveniently describe population dynamics at multiple levels including cellular
dynamics, tissue development and niches of organisms. Notably, we show the utilization of eSTG for cases in
which the dynamics is regulated by environmental factors, which affect the fate and rate of decisions of the
different species. eSTGs are lineage grammars, in the sense that execution of an eSTG program generates the
corresponding lineage trees, which can be used to analyze the evolutionary and developmental history of the
biological system under investigation. These lineage trees contain a representation of the entire events history
of the system, including the dynamics that led to the existing as well as to the extinct individuals.

Conclusions: We conclude that our suggested formalism can be used to easily specify, simulate and analyze
complex biological systems, and supports modular description of local biological dynamics that can be later
used as “black boxes” in a larger scope, thus enabling a gradual and hierarchical definition and simulation of
complex biological systems. The simple, yet robust formalism enables to target a broad class of stochastic dynamic
behaviors, especially those that can be modeled using global environmental feedback regulation rather than
direct interaction between individuals.
Background
In recent years there has been a great interest in modeling
and simulating various aspects of population dynamics in
biological and ecological systems [1-4]. The increasing
computational resources along with a deeper understand-
ing of biological and ecological phenomena have led to
the development of many languages for describing, analyz-
ing and simulating concurrent stochastic processes. Many
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such languages specify Markovian dynamics and differ by
level of abstraction, ease and complexity of the description
and execution efficiency [5]. Two widely used formalisms
are based on Chemical Reaction Networks (CRN) [6] and
stochastic Process Algebras (PA) [7].
CRNs were originally used to describe chemical systems.

A CRN description consists of a finite set of reactions act-
ing on a finite number of species. Each reaction specifies
the identity and stoichiometry of the reactants and prod-
ucts along with a rate constant. Many processes can be
described using CRNs, for example, Predator-Prey models
[8], Cellular cascade pathways [9], Cancer progression
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[10], Epidemics dynamics [11], and many others [1]. Each
of these processes consists of a continuous interaction be-
tween individual species (the reactants) that occurs at a
certain rate and produces a group of other individuals (the
products, which may be empty) that can be of the same
(autocatalytic) or of different type. The description of dy-
namical systems using CRN is relatively simple and can be
used both for analytical solving and simulations. However,
this approach neglects biological aspects of the described
systems by treating each object (reactant or product) as a
simple entity, which ignores its environmental context
and structure. For example, many molecular objects main-
tain their overall identity while changing in specific attri-
butes, such as chemical modification or location. When
using a CRN abstraction such molecules cannot retain
identity while changing state.
PAs, on the other hand, are a family of mathematical

formalisms that were originally developed to model con-
current computer systems. They enable the abstraction
and specification of communication and synchronization
between a collection of processes by passing messages
between them. One of the most well studied PA is
the π -calculus, which has been shown to be very useful
in describing a range of biological systems [7,12]. The lan-
guage consists of processes that are mapped to real-world
objects, and channels, which are mapped to communi-
cations and interactions between the different objects. A
unique feature of the π -calculus allows to dynamically
communicate new channels between the processes (this is
termed mobility), which enables the objects to keep their
identity while changing their internal states or interactions
with other objects. This feature is more compatible with
real biological and ecological scenarios and fits well to
the way we think and observe these processes. It also
allows one to abstract and specify the dynamics in a
more accurate fashion. It has also been shown that this
abstraction can be treated as an executable computer
program, allowing to stochastically simulate any speci-
fied model [13].
Many tools have been developed in order to allow and

simplify the use of mathematical modeling for the life-
science community, and each one has its strengths and
weaknesses [14-16]. There is no single formalism that
has all the required features and choosing the appropriate
one depends on the specific goals and resources of the
modeler. Our goal in this work is to develop and formu-
late a simpler and practical tool for modeling and simulat-
ing the behavior and interaction of populations. We do
so by extending the notion of Stochastic Tree Grammar
(STG) [17] by incorporating both rates and probabilities
to the transition rules. These can be dynamically updated
by defining them as functions of the system’s state, which
includes global values such as current population size,
generation count or elapsed time. In addition, we extend
the system by allowing each individual to hold its own
internal states which can change through inheritance.
We later discuss implementation of stochastic simula-
tion and the relation to Ordinary Differential Equations
(ODE).
A prominent feature of the language is that it enables to

stochastically produce possible lineage trees correspond-
ing to single executions. These lineage trees contain a rep-
resentation of the entire events history of the process,
including the dynamics that led to the existing as well as
to the extinct individuals. As opposed to standard ap-
proaches that output only the population size dynamics,
our implementation also outputs the corresponding lineage
trees, which can be used to analyze the evolutionary and
developmental history of the process.
Recently, Vaughan et al. [16] presented the usage of

CRNs as lineage grammars and used them to simulate
phylogenetic trees. Although they enable to sample pos-
sible genealogies based on the defined reaction rules,
they do not allow the specification and analysis of more
complex behaviors such as feedback onto the dynamic
rates and general inherited properties.
Throughout the paper, we demonstrate the usability of

the language by presenting a wide range of examples
that can be modeled and simulated using this approach.
The examples show that the language can provide simple
descriptions of systems from various domains. Example
parameter values were taken from the literature when
available or chosen arbitrarily in order to simplify the
presentation.

Results and discussion
eSTG programs
Following is an example of an eSTG program for stem-
cell differentiation [18]:

SC �!
0:1

events
day

SC; SCf g0:5j Diff ;Difff g0:5

Diff �!
1
event
day

Diff ;Difff g0:49j ϕf g0:51
In this example, SC (stem cells) divide symmetrically

0.1 times per day, while self-renewing or differentiating
with the same probability (50%), and Diff (differentiated
cells) can once a day either proliferate (with probability
49%) or die (with probability 51%).
Alternatively, one can define an average time to event t

instead of a rate, which can be translated interchangeably
into a rate using r ¼ 1

t . The above rules are then written:

SC�!10 days
SC; SCf g0:5j Diff ;Difff g0:5

Diff �!1 day
Diff ;Difff g0:49j ϕf g0:51
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An execution of an eSTG program proceeds through
the stochastic application of its transition rules on its
state. An example execution of the program, on an initial
10 SC and 5 Diff, can be summarized by a cell lineage
tree and population size graphs shown in Figure 1B
Figure 1 An example of the stem cell differentiation program executi
(A) Schematic representation of the eSTG rules (without rates and probabil
lineage tree of a specific execution (only one cell lineage tree out of the o
time (calculated from 1000 stochastic executions). (E) Clone size distributio
individual (calculated from 1000 stochastic executions).
and Figure 1C. In addition to single executions, eSTG
can also be used for obtaining overall population statis-
tics, for example, to calculate the average population size
over time (Figure 1D) and the distribution of clone sizes
(Figure 1E).
on. The program was executed up to simulation time 100 days.
ities). (B) Population size over time of a specific execution. (C) Cell
riginating SCs and Diffs is shown). (D) Average population size over
n, which is the final population size derived from each initiating
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Following is another example of an eSTG program for
the Luria–Delbrück Model [19]:

WT →
1

WT ;WTf g0:99j WT ; MUTf g0:01
MUT →

1
MUT ; MUTf g1

In this model, wild-type bacteria (WT) are randomly
mutated (in the absence of selection) to form a resistant
bacteria (MUT), thus the population size of mutated
bacteria varies dramatically and is dependent on the tim-
ing in which the mutation has happened. Figure 2B and
Figure 2C show specific executions of typical and rare
lineage trees. Averaging over many executions can yield
average population size (Figure 2D) and clone size distri-
bution (Figure 2E).
Internal states
We define internal states for each species as a vector of
variables that can change, either deterministically or
stochastically for each individual, with every execution
of a rule. Internal states can be used to model inherited
attributes, such as mutations or substance accumulation,
or record historical events such as the number of gener-
ations, number of symmetrical/asymmetrical divisions,
or time since historical events. We thus extend the basic
rules defined above to include internal states which are
functions of the predecessor’s internal states. For ex-
ample, extending the previous stem-cell differentiation
scenario:

SC MS
�! ¼ x→MS

� �
�!10 days

n
SC MS

�! ¼ f MS x→MS

� �� �
;

SC MS
�! ¼ f MS x→MS

� �� �o
0:5
j

n
Diff MS

�! ¼ f MS x→MS

� �� �
;

Diff MS
�! ¼ f MS x→MS

� �� �o
0:5

Diff MS
�! ¼ x→MS

� �
�!1 day

n
Diff MS

�! ¼ f MS x→MS

� �� �
;

Diff MS
→ ¼ f MS x→MS

� �� �o
0:49

ϕf g0:51
��

In this example, we define a vector of n variables

MS
�! ¼ MS1;…MSnð Þ, which correspond to the number
of repeats in n Microsatellite (MS) loci in the DNA
[20]. In every cell division, the number of MS repeats
for each locus changes according to the stochastic
function fMS, which can cause either a decrease or an
increase of one repeat with probability p [21]:

f MS xð Þ ¼
xþ 1 with probability

p
2

x− 1 with probability
p
2

x otherwise

8>><
>>:

This simulated data can be used for example to evaluate
the relationship between n, the number of MS, and the
accuracy of phylogenetic reconstruction based on MS
lengths of the tree (see [22,23] for details).
Another example for the use of internal states is the

following program, which counts the number of genera-
tions since each differentiation event:

SC�!10 days
SC; SCf g0:5j Diff Gen ¼ 1ð Þ;Diff Gen ¼ 1ð Þf g0:5

Diff Gen ¼ xð Þ�!1 day
n
Diff Gen ¼ xþ 1ð Þ;
Diff Gen ¼ xþ 1ð Þ

o
0:49

ϕf g0:51
��

Figure 3 shows various distribution statistics of the
internal state Gen over the population at different time
points.
Other examples of internal states can be the counting

of historical events (such as how many symmetric vs.
asymmetric divisions a cell went through) or measuring
the time since a certain event.

Probabilities and rates as functions
Population dynamics can change based on various condi-
tions such as population size, internal or external changes,
and elapsed time. A common phenomenon in population
dynamics is the reaching of a homeostasis, meaning
that at a certain point, the population size reaches a
steady state.
A simple example is the growth of a species until

reaching a target size. Consider the following parametric
rule:

A→
r

A;Af gpj ϕf g1−p
Without feedback regulation on the population size,

a setting of p ¼ 1
2 results in an extinction with prob-

ability 1 [24]. A simple regulation scheme is the logistic
model [25]:

dN
dt

¼ rN 1−
N
K

� �

where N is the population size, r is the growth rate and
K is the target size (also termed carrying capacity). We
can use the above parametric eSTG rule to model a
logistic population growth by solving:



Figure 2 An example of the Luria–Delbrück program execution. The program was executed from 1 WT to 100 cells. (A) Schematic
representation of the eSTG rules. (B) Typical lineage tree execution where mutations do not occur early. (C) Rare lineage tree execution where a
mutation occurs early. (D) Average population size over time (calculated from 1000 stochastic executions). (E) Clone size distribution (calculated from
1000 stochastic executions). In the rare events where the mutation happens early in the lineage, the clone size of the mutated population is large.
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dA
dt ¼ dN

dt (we use A as the population size of the species A)

dA
dt

¼ Arp−Ar 1− pð Þ ¼ rN 1−
N
K

� �

For simplicity, r in the eSTG rule is the same as the r
in the logistic model.
We then get:

2p− 1 ¼ 1−
N
K

p ¼ 1−
N
2K



Figure 3 An example of generation counter internal state. Each species of the type Diff holds an internal state called Gen which holds the
number of cell divisions since the differentiation event. The histogram of the Gen values over the entire population can be calculated at different
time points (e.g. after 10, 50 and 100 days, shown in (A), (B) and (C) respectively).
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Figure 4B and Figure 4C show the resulting dynamics
(population size and lineage tree) starting from a single
A of the following program (setting K = 100):

A→
r

A;Af gpj ϕf g1− p
p ¼ 1−

A
200

In a different scenario, the growth is also regulated by
the rate but is leading to the same steady state. Using
the following production-removal equation [26]:

dN
dt

¼ β− αN
we can model the dynamics using the parametric eSTG by
solving:

dA
dt

¼ Arp−Ar 1−pð Þ ¼ β− αN

r ¼ β− αA
2p− 1ð ÞA

The steady state of this system is β
α and for simplicity

we limit p to be either 0 or 1, and set α = 1, β = 100. We
thus define the following eSTG program:



Figure 4 An example of dynamic population growth. An example of a simple proliferation with fate probabilities and rates that are functions
of the population size. (A) Schematic representation of the eSTG rules. (B) Population size over time of a logistic growth starting from a single
instance. (C) The corresponding lineage representation of the specific execution. (D) Population size over time of a production-removal growth
starting from a single instance. (E) The corresponding lineage representation of the specific execution.
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A→
r

A;Af gpj ϕf g1− p
r ¼ 100−A

2p− 1ð ÞA

p ¼ 1 if A ≤ 100
0 if A > 100

	

Here, the rate is inversely dependent on the population
size and the population is growing until reaching the
steady state that is maintained by a feedback on p, which
causes either a proliferation (p = 1) or death (p = 0).
Figure 4D and Figure 4E show the resulting dynamics
starting from a single A.
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Another interesting scenario is described in [27], where
an optimal development of the intestinal crypts is ana-
lysed. In the first stage, stem-cells are quickly amplified
using self-replicating symmetric divisions, and after reach-
ing the target size they differentiate asymmetrically into
stem-cells and differentiated cells. We can describe this
scenario using the following rules:

SC→
r1 SC; SCf gp1 j SC;Difff gow

Diff →
r2 Diff ; Difff gp2 j ϕf gow

p1 ¼ 1 until jSCjTime¼t ¼ jSCjTarget
p1 ¼ 0 until jDiff jTime¼t ¼ Diffj jTarget

where |X|Time = t is the population size of species X at
time t and |X|Target is the target population size of X.
Although not described in [27], we continue the scenario
with homeostasis by solving:

SC þ dSC
dt

¼ SC þ r1 p1SC ¼ jSCjTarget

Diff þ dDiff
dt

¼ Diff þ r1 1−p1ð ÞSC þ r2p2Diff −r2 1−p2ð ÞDiff
¼ jDiff jTarget

We thus extend the program with the following:

p1 ¼
SC Target−

�� ��SC�� ��
SCj j⋅r1 after jDiff j ¼ jDiff jTarget

p2 ¼
Diff jTarget−jDiff −r1jSCj j 1−p1ð Þ þ r2jDiff
�� ��

2r2⋅ Diffj j after jDiff j ¼ Diffj jTarget

Figure 5 shows simulation results of a specific execution.
An example from a different regime is the predator/

prey model of Lotka-Volterra [8]. It describes the inter-
action dynamics between two species using two ODEs:

dPrey
dt

¼ Prey c1 − c2Predatorð Þ

dPredator
dt

¼ −Predator c3 − c2Preyð Þ

where ci are parameters. These equations are usually trans-
lated into the following mass action kinetic reactions:

Prey→
c1
2Prey;

Predator þ Prey→
c2 2Predator

Predator→
c3

ϕ

Since eSTG has only context-free transitions, we con-
vert the second reaction into two unimolecular reactions
while preserving the 2nd order rate (see Methods for a
general method to convert CRNs to unimolecular reac-
tions while preserving the same underlined ODEs). The
new reactions and their rates are described in Table 1.
We note that although these new reactions are not iden-
tical to the original ones, they are still in agreement with
the ODEs described above. The model can be described
using the following parameterized eSTG program:

Prey→
r1 Prey; Preyf gp1 j ϕf gow

Predator→
r2 Predator; Predatorf gp2 j ϕf gow

r1 ¼ c1 þ c2⋅ Predatorj j
r2 ¼ c2⋅ Preyj j þ c3

p1 ¼
c1
r1

p2 ¼
c2⋅ Preyj j

r2

Figure 6 shows an example execution of the program.
The role of different feedback strategies on the control

of organ and tissue growth can be investigated through
the rates and probabilities of cellular decisions. Lander
et al. [28] suggest two types of feedback strategies for the
Olfactory Epithelium, one on the rate of division and the
other on the probability of self-renewal (while keeping a
constant division rate). They show that a feedback control
onto the probability is a much more effective strategy for
steady-state robustness and rapid regeneration.
The two strategies can be described using the following

eSTG program (SC – Stem Cells, INP - Immediate Neur-
onal Precursor, ORN - Olfactory Receptor Neuron):

SC→
v0 SC; SCf gp0 j INP; INPf g1− p0

INP→
v1 INP; INPf gp1 j ORN ;ORNf g1− p1

ORN →
d

0f g1
and the two feedback strategies are implemented by up-
dating the INP parameters.
Strategy 1: Feedback onto the probability
p1 ¼ p1

1þg⋅ ORNj j where g is a constant.

Strategy 2: Feedback onto the rate:
v1 ¼ v1

1þh⋅ ORNj j where h is a constant

Figure 7 shows possible executions generated using
the two suggested strategies.

Possible extensions
Compartments
In many cases the population moves stochastically be-
tween different compartments, where each compartment
corresponds to a different environment and different
resources. Extending the language to include compart-
ments allows one to define the same transition rules
for species from the same type but different rates and
probabilities, depending on the physical location of the
individual. The system’s state is then extended to include
the population size in each compartment. In addition
to the regular transition rules, one also needs to define
rules for the migration of each species between each two
compartments.



Table 1 Lotka-Volterra unimolecular representation

Reaction Global rate

Prey→ 2Prey c1 ⋅ Prey

Prey→ ϕ c2 ⋅ Prey ⋅ Predator

Predator→ 2Predator c2 ⋅ Prey ⋅ Predator

Predator→ ϕ c3 ⋅ Predator

Figure 5 Rules for optimal development of the crypt. Simulation results of the rules for optimal development of the crypt (see main text).
The rules are executed with r1 = 1.07, r2 = 1, |SC|Time = 0 = 1, |Diff|Time = 0 = 0, |SC|Target = 10, |Diff|Target = 50 (values are taken from [27]). Shown are
execution results for two time windows starting with one SC. (A) Schematic representation of the eSTG rules. (B) Population size for simulation
time of 10 days. The beginning of the process is shown where the switch between p1 = 1 and p1 = 0 occurs at around time t = 3.6. (C) The
corresponding lineage representation of the specific execution. (D) Population size for simulation time of 50 days. Shown is the homeostatic
phase that occurs after |Diff|Time = t reaches |Diff|Target at around time t = 6. (E) The corresponding lineage representation of the specific execution.
It is interesting to observe the 10 clones that are maintained by the 10 SCs.

Spiro et al. BMC Bioinformatics 2014, 15:249 Page 9 of 15
http://www.biomedcentral.com/1471-2105/15/249
Individual’s probabilities and rates as functions
Defining probabilities and rates for each individual sep-
arately is not recommended due to heavy computational
requirements when implementing such a scenario, how-
ever, an extension of the language can support such a
definition. In this case we can allow the probabilities and
rates of each individual to be also dependent on its in-
ternal states. This allows each individual to have a dis-
tinct stochastic value of its probabilities and transition
rates. For example, we can define a more sophisticated



Figure 6 An example execution of the Lotka-Volterra scheme. An output example of the executed program using c1 = 2, c2 = 0.01, c3 = 5,
|Prey|Time = 0 = |Predator|Time = 0 = 900. (A) Population size as a function of time. (B) A lineage tree of one of the 900 originating preys. (C) A lineage
tree of one of the 900 originating predators. Both (B) and (C) exhibit the characteristic bottleneck phenomenon, where most lineages get extinct.
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predator/prey model where the probability of reproduc-
tion is dependent on the individual’s age (or weight) which
is represented as an internal state, or define the prolife-
ration dynamics of a cell based on its mutations (repre-
sented as internal states).

Conclusions
Stochastic simulation is a powerful tool to execute a
complicated modeling system for which a closed form
analytical solution is not possible. In addition, a simula-
tion can generate a sample of representative scenarios
that can be used for further analysis or as inputs to other
programs. The complexity of natural phenomena re-
quires a formal description framework which on one
hand should be rich enough to capture the complexity
and dynamics of the system and on the other hand will
be compact and simple so it can be widely used by a
broad community and could be implemented efficiently.
There are many systems that are purely generative and
derive their core results by ignoring interactions (e.g. L-
Systems [29] and branching processes [24]). Although
the assumption of independence enables certain analytical
techniques, it precludes the ability to model processes and
lineages that evolve through complex interactions between
individuals and their environment. In order to allow both
generativity and interaction, systems such as PA and CRN
are more suitable. As described in [3], the trend towards
individual-based stochastic models carries many advan-
tages; they are easier to construct, more intuitive and can
predict richer phenomena than population level models.
In addition, it is possible to deduce population level con-
clusions (such as the underlined ODEs, see Methods)
from the stochastic model. The presented formalism does
not offer a new modeling approach in the sense that eSTG
programs can be translated interchangeably into other
languages (see Methods). Instead, the suggested eSTG



Figure 7 (See legend on next page.)
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Figure 7 Scenarios for feedback regulation. (A) Schematic representation of the eSTG rules. Left plots - Feedback regulation onto the probability,
where population size of an example execution, average population size over 1000 executions and an example of a lineage tree starting from a single
SC are shown (B, C, and D respectively). Execution started with 10 SCs, r0 ¼ 0:506; p0 ¼ 0:5; r1 ¼ 1; p1t¼0

¼ 0:942; d ¼ 0:0138; g ¼ 0:0449;
simulation time: 10. Right plots - Feedback regulation onto the rate, where population size of an example execution, average population size
over 1000 executions and an example of a lineage tree starting from 10 SCs are shown (E, F, and G respectively). Execution started with 10
SCs and 200 INP; r0 ¼ 0:128; p0 ¼ 0:5; r1 ¼ 1; p1t¼0

¼ 0:495; d ¼ 0:0372; h ¼ 0:0734, simulation time: 20 (values are taken from [28]).
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language formalism allows a simpler description and spe-
cification of complex stochastic dynamics of individual
entities. As demonstrated by the host of examples pro-
vided, these may include population level feedback from
the current system’s state (either population size, internal
or external factors) onto the rates and probabilities of the
different species. In addition, eSTG, as a lineage grammar
also enables the representation and analysis of historical
events including those of extinct sub-lineages and tran-
sitional time points. Derivation trees produced by simu-
lations can be examined for consistency with specific
biological hypotheses [22,30], so that eSTG models can be
validated or falsified on the basis of the trees that they
generate.
The language can also be used as a basis for inference

and learning of the system’s governing rules, described in
the eSTG formalism as the transition rules and the under-
lying rates and probabilities as functions of the system’s
state. The question of parameter inference from biological
data is an active area of study [31-34]. In our context, bio-
logical knowledge inferred from experimentally-obtained
trees [22,30,35-43] could be used in order to infer the
corresponding lineage grammars [17,44,45]. This will
allow the use of computers and computing resources in
order to gain new biological insights. This is a great chal-
lenge, especially given noise and hidden variables, and is a
subject of our future work. We hope that the development
of theoretical models and tools, such as the one presented
here, will facilitate research in this important direction.

Methods
Stochastic simulation
eSTG programs can be naturally simulated by the well-
known Gillespie stochastic simulation algorithm [6].
Gillespie's implementation uses the rates of all possible
reactions and chooses stochastically the next reaction by
assuming that the time to the next reaction is exponen-
tially distributed with rate parameters corresponding to
the reaction rates.
A rule of the form:

A→
r

S1f gp1 S2f gp2
��� ���… Sn−1f g pn−1

��� ��� Snf gpn

can be converted into n separated reaction rules:
A�! Si
r⋅pi

; ∀i ¼ 1 ::n

and thus existing implementations of the Gillespie algo-
rithm can be used to determine the next reaction and
the time interval. Applying these rules to build the
lineage tree is described in the Operational semantics
section.
The code that was used to generate the examples in

this paper will be made available as an open source tool
and is currently under preparation for publication.

Equivalence and conversion to other languages
In this section we compare the expressiveness of eSTG
to 4 other families:

1. maODE: Ordinary Differential Equations arising
from mass-action kinetics.

2. maCRN: Chemical Reaction Networks with
mass-action kinetics.

3. gCRN: Chemical Reaction Networks with
general rate kinetics.

4. U-gCRN: Unimolecular Chemical Reaction
Networks with general rate kinetics.

An maCRN is a chemical reaction network where each
reaction has an associated rate constant, and where the
instantaneous rate of a reaction is determined by the
product of the rate constant with the instantaneous con-
centrations of the reagents. It is known that an maCRN
under that mass-action law produces a system of ODEs
with a special structure, here called an maODE system.
In an maODE system each right-hand-side of each dif-
ferential equation for species s has the form of a polyno-
mial over the set of species, where each monomial with
a negative sign has s as a factor (raised to some non-
zero power). Conversely each maODE determines a ca-
nonical maCRN that has that maODE as its kinetics.
Therefore there are canonical translations back and forth
between maODEs and maCRNs [46].
A gCRN is instead a Chemical Reaction Network

where each reaction has an associated rate function from
current or past system states to changes of concentra-
tions. The instantaneous rate of a reaction is then given
immediately by its rate function without further consid-
erations; the class of ODEs that a gCRN may generate
depends on the class of rate functions that are available.
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A U-gCRN is a special case of a gCRN where all the
reactions are unimolecular. For sufficiently powerful rate
functions it is possible to have a (nominally) unimole-
cular reaction depend on the concentrations of other
species, so that U-gCRN is in fact as expressive as
gCRN. For example, an maCRN reaction A→

r
B can be

translated to the gCRN reaction A�!r� A½ �
B where [A] is the

instantaneous concentration of A, and an maCRN re-
action Aþ B→

r
C can be translated to a gCRN reaction

Aþ B�!r� A½ �� B½ �
C or to two U-gCRN reactions A�!r⋅ A½ �⋅ B½ �

C

and B�!r� A½ �� B½ �
0.

The family of population dynamics specifications that
can be described using basic eSTG is equivalent to
U-gCRN. A U-gCRN reaction A→

r
B1 þ…þ Bn can be

translated into an eSTG reaction A→
r

B1;…;Bnf g1:0 ,
and conversely an eSTG reaction A→

r
B1;1;…


 �
p1
…j j

Bn;1;…

 �

pn
can be translated into a set of U-gCRN

reactions A�!r⋅p1 B1;1 þ⋯;…;A�!r⋅pn Bn;1 þ⋯.
The U-gCRN form of eSTGs implies that one must

make choices in modelling: the main species that are the
focus of a model, and occur in the left-hand side of pro-
ductions, will be reflected in the generated lineage trees,
but auxiliary species that appear only in the rate laws
will not, even when those would be considered as equal
in a model based on bimolecular interactions.
Operational semantics
We will start with basic definitions for the semantics of
Lineage Trees. Paths in a tree are represented as finite
sequences of natural numbers π = n1,…, nm ∈ℕ* (star
means finite sequence, with nil as the empty sequence,
and ", " as sequence concatenation). Each number n in a
path represents the nth child of a node, starting from
the root. Nodes in a tree are labeled by an alphabet
S0 = S ∪ {0} consisting of species in S and a distinguished
symbol 0 ∉ S (the "dead" leaf).
Definition: a tree L is a partial function in ℕ*→ S0,

from paths in ℕ* to label nodes in S0, whose domain
is non-empty and prefix-closed (that is, L(π1, π2) de-
fined ⇒ L(π1) defined).
Definition: A leaf in a tree L is a maximal path π - one

such that L(π) is defined and there is no π ' ≠ nil where L
(π , π') is defined. We also say that π, B is a (B -labeled)
leaf in L if π is a leaf in L and L(π) = B.
Definition: A lineage tree L is a tree where each path π

such that L(π) = 0 is a leaf. L⊆ℕ� → S0 is the set of such
trees.
By these definitions, a tree is a non-empty set of paths

and each node has a "unique label" which is the path π
that leads to it. A root-only tree is a function from nil to
some species A.
Next, we use the λ -calculus notation for the defini-
tions of lineage tree operators (if f (x) = b then we write
f = λx. b). We use the element undef for partially defined
functions:

1. The lineage tree with just one dead leaf:

0 ¼ λx: if x ¼ nil then 0 else undef

2. The lineage tree with root A ∈ S and children Li, for
A ≠ 0 and n > = 0:

A L1;…; Lnð Þ ¼
λx: if x ¼ nil then A else if x ¼ 1;π then L1 πð Þ… else if x

¼ n;π then Ln πð Þ else undef
where for n = 0, A = A() is a "live" leaf.
3. The leaf-extension operator L, π, A ⊲ (B1,… Bn),
which is defined if π is an A -labeled live leaf in
L(L(π) =A ≠ 0), and n > 0, and B1… Bn ∈ S0:

L;π;A ⊲ B1;…Bnð Þ ¼ λx: if x ¼ π; 1 then B1; …; else if x
¼ π; n then Bn; else L xð Þ

For example, by the above definitions a tree with root
C and with n children B1,…, Bn which are all leaves can
be written as the expression C(B1(),…, Bn()), represent-
ing a function that given the sequence nil returns the
label C, given the sequence i, nil returns the label Bi, and
is otherwise undefined. Similarly, the expression C(), nil,
C ⊲ (B1,…, Bn) represents the tree C() where the leaf C is
extended into a node with children B1,…, Bn; this is then
the same as the tree C(B1(),…, Bn()).
A collection of eSTG reactions describes a way of gen-

erating and transforming lineage trees. We now describe
how each eSTG reaction transforms a lineage tree into
new lineage trees. More precisely, since eSTG reactions
are stochastic/probabilistic, how each reaction produces
a measure of new lineage trees, where each new lineage
tree is associated with its rate of occurrence.
Definition: A measure M ∈L�→ℝþ is a function from

finite tuples of lineage trees to non-negative reals, with
operators:

d r; L1;…; Lnð Þð Þ ¼ λx: if x ¼ L1;…; Lnð Þ then r else 0

the singleton measure, which measures L1;…; Lnð Þ ∈Ln

as r and everything else as 0;

M1 þ…þMm ¼ λx:M1 xð Þ þ…þMm xð Þ
the sum measure, with m > 0;

L;π;B ⊲M ¼ λx: if x
¼ L;π;B ⊲ L1;…; Lnð Þ then M L1;…; Lnð Þ else 0

the leaf-extension measure, where π, B is a leaf in L; this
is a function in L1→ℝþ . This is the measure such that
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any extended tree of the form L, π, B ⊲ (L1,…, Ln) for some
L1,…, Ln receives the measure M(L1,…, Ln).
For example, C(), nil,C ⊲ (d(r, (D(), E())) + d(s, F())) = d

(r,C(D(), E())) + d(s,C(F())) because C(D(), E()) has the shape
C(), nil,C ⊲ (D(), E()) and so it receives measure r, and
C(F()) has shape C(), nil,C ⊲ (F()) and so it receives
measure s.
We are now ready to define the effect of a set of eSTG

reactions S on lineage trees. This is given as a reduction
relation R between lineage trees and measures. We write
L→M (L reduces to M) for (L,M) ∈R, where R is defined
as the smallest relation satisfying the following rule:

if L is a lineage tree and π;B is a leaf in L
and B→

r
M1f gp1 …j j Mmf gpm is a reaction in S the only one for Bð Þ

then L→L;π;B ⊲ d r⋅p1;M1ð Þ þ…þ d r⋅pm;Mmð Þð Þ

This rule prescribes, for example, how to carry out a
simulation of a set of eSTG reactions given an initial
lineage tree: at each step apply the rule above to all ap-
plicable reactions and tree leaves, sum all the measures
so obtained, and sample a new lineage tree according to
the resulting measure.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AS and ES conceived the project. AS carried out all the simulations and
wrote the manuscript. LC and ES provided project oversight, formal analyses,
and contributed to drafting of the manuscript and final approval. All the
authors read and approved the final manuscript.

Acknowledgements
This research was supported by The European Union FP7-ERC-AdG Foundation
and by the Kenneth and Sally Leafman Appelbaum Discovery Fund. Ehud
Shapiro is the Incumbent of The Harry Weinrebe Professorial Chair of Computer
Science and Biology.

Author details
1Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot, Israel. 2Microsoft Research, Cambridge, UK.
3Department of Biological Chemistry, Weizmann Institute of Science,
Rehovot, Israel.

Received: 10 January 2014 Accepted: 7 July 2014
Published: 21 July 2014

References
1. Wilkinson DJ: Stochastic modelling for systems biology. 2nd edition. London:

Chapman & Hall/CRC Press; 2011.
2. Wilkinson DJ: Stochastic modelling for quantitative description of

heterogeneous biological systems. Nat Rev Genet 2009, 10(2):122–133.
3. Black AJ, McKane AJ: Stochastic formulation of ecological models and

their applications. Trends Ecol Evol 2012, 27(6):337–345.
4. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP,

Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED,
Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH,
Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Novère NL,
Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, et al: The systems
biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics 2003,
19(4):524–531.

5. Henzinger T, Jobstmann B, Wolf V: Formalisms for Specifying Markovian
Population Models. Int J Found Comput Sci 2011, 22(04):823–841.
6. Gillespie DT: Stochastic Simulation of Chemical Kinetics. Annu Rev Phys
Chem 2007, 58(1):35–55.

7. Regev A, Silverman W, Shapiro E: Representation and simulation of
biochemical processes using the π-calculus process algebra.
Pac Symp Biocomput 2001, 6:459–470.

8. Fujii T, Rondelez Y: Predator–prey molecular ecosystems. ACS Nano 2012,
7(1):27–34.

9. Kholodenko BN: Negative feedback and ultrasensitivity can bring
about oscillations in the mitogen‐activated protein kinase cascades.
Eur J Biochem 2000, 267(6):1583–1588.

10. Boman BM, Wicha MS, Fields JZ, Runquist OA: Symmetric division of
cancer stem cells–a key mechanism in tumor growth that should be
targeted in future therapeutic approaches. Clin Pharmacol Ther 2007,
81(6):893–898.

11. Alonso D, McKane AJ, Pascual M: Stochastic amplification in epidemics.
J R Soc Interface 2007, 4(14):575–582.

12. Phillips A, Cardelli L: Efficient, Correct Simulation of Biological Processes
in the Stochastic Pi-calculus. In Computational Methods in Systems Biology,
Volume 4695. Edited by Calder M, Gilmore S. Berlin Heidelberg: Springer;
2007:184–199.

13. Regev A, Shapiro E: The π-calculus as an abstraction for biomolecular
systems. Modelling in Molecular Biology. Berlin-Heidelberg: Springer;
2004:219–266.

14. Ghosh S, Matsuoka Y, Asai Y, Hsin KY, Kitano H: Software for systems
biology: from tools to integrated platforms. Nat Rev Genet 2011,
12(12):821–832.

15. Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I: Modeling
formalisms in Systems Biology. AMB Express 2011, 1:45.

16. Vaughan TG, Drummond AJ: A stochastic simulator of birth-death master
equations with application to phylodynamics. Mol Biol Evol 2013,
30(6):1480–1493.

17. Gonzalez RC, Thomason MG: Syntactic pattern recognition: An introduction;
1978.

18. Potten CS: Stem cells. London, San Diego: Academic Press; 1997.
19. Luria SE, Delbrück M: Mutations of Bacteria from Virus Sensitivity to Virus

Resistance. Genetics 1943, 28(6):491–511.
20. Weber JL, Wong C: Mutation of human short tandem repeats. Hum Mol

Genet 1993, 2(8):1123–1128.
21. Valdes AM, Slatkin M, Freimer N: Allele frequencies at microsatellite

loci: the stepwise mutation model revisited. Genetics 1993,
133(3):737–749.

22. Shlush LI, Chapal-Ilani N, Adar R, Pery N, Maruvka Y, Spiro A, Shouval R,
Rowe JM, Tzukerman M, Bercovich D, Izraeli S, Marcucci G, Bloomfield CD,
Zuckerman T, Skorecki K, Shapiro E: Cell lineage analysis of acute
leukemia relapse uncovers the role of replication-rate heterogeneity
and miscrosatellite instability. Blood 2012, 120(3):603–12.

23. Chapal-Ilani N, Maruvka YE, Spiro A, Reizel Y, Adar R, Shlush LI, Shapiro E:
Comparing algorithms that reconstruct cell lineage trees utilizing
information on microsatellite mutations. PLoS Comput Biol 2013,
9(11):e1003297.

24. Haccou P, Jagers P, Vatutin VA: Branching Processes: Variation, Growth and
Extinction of Populations. Cambridge: Cambridge University Press; 2005.

25. Vandermeer J: How populations grow: the exponential and logistic
equations. Nat Educ Knowl 2010, 1(8):1.

26. Hart Y, Antebi YE, Mayo AE, Friedman N, Alon U: Design principles of cell
circuits with paradoxical components. Proc Natl Acad Sci U S A 2012,
109(21):8346–8351.

27. Itzkovitz S, Blat IC, Jacks T, Clevers H, van Oudenaarden A: Optimality in the
development of intestinal crypts. Cell 2012, 148(3):608–619.

28. Lander AD, Gokoffski KK, Wan FY, Nie Q, Calof AL: Cell lineages and the
logic of proliferative control. PLoS Biol 2009, 7(1):e15.

29. Lindenmayer A: Mathematical models for cellular interactions in
development. I. Filaments with one-sided inputs. J Theor Biol 1968,
18(3):280–299.

30. Reizel Y, Chapal-Ilani N, Adar R, Itzkovitz S, Elbaz J, Maruvka YE, Segev E,
Shlush LI, Dekel N, Shapiro E: Colon stem cell and crypt dynamics exposed
by cell lineage reconstruction. PLoS Genet 2011, 7(7):e1002192.

31. Drummond AJ, Rambaut A, Shapiro B, Pybus OG: Bayesian coalescent
inference of past population dynamics from molecular sequences.
Mol Biol Evol 2005, 22(5):1185–1192.

32. Ellison AM: Bayesian inference in ecology. Ecol Lett 2004, 7(6):509–520.



Spiro et al. BMC Bioinformatics 2014, 15:249 Page 15 of 15
http://www.biomedcentral.com/1471-2105/15/249
33. Buckland ST, Newman KB, Fernández C, Thomas L, Harwood J: Embedding
population dynamics models in inference. Statistical Science 2007,
22:44–58.

34. Reinker S, Altman R, Timmer J: Parameter estimation in stochastic
biochemical reactions. IEE Proc-Syst Biol 2006, 153(4):168–178.

35. Carlson CA, Kas A, Kirkwood R, Hays LE, Preston BD, Salipante SJ,
Horwitz MS: Decoding cell lineage from acquired mutations using
arbitrary deep sequencing. Nat Methods 2012, 9(1):78–80.

36. Reizel Y, Itzkovitz S, Adar R, Elbaz J, Jinich A, Chapal-Ilani N, Maruvka YE,
Nevo N, Marx Z, Horovitz I, Wasserstrom A, Mayo A, Shur I, Benayahu D,
Skorecki K, Segal E, Dekel N, Shapiro E: Cell lineage analysis of the
mammalian female germline. PLoS Genet 2012, 8(2):e1002477.

37. Segev E, Shefer G, Adar R, Chapal-Ilani N, Itzkovitz S, Horovitz I, Reizel Y,
Benayahu D, Shapiro E: Muscle-bound primordial stem cells give rise to
myofiber-associated myogenic and non-myogenic progenitors.
PLoS One 2011, 6(10):e25605.

38. Siegmund KD, Marjoram P, Woo YJ, Tavaré S, Shibata D: Inferring clonal
expansion and cancer stem cell dynamics from DNA methylation
patterns in colorectal cancers. Proc Natl Acad Sci U S A 2009,
106(12):4828–4833.

39. Frumkin D, Wasserstrom A, Itzkovitz S, Stern T, Harmelin A, Eilam R,
Rechavi G, Shapiro E: Cell lineage analysis of a mouse tumor.
Cancer Res 2008, 68(14):5924–5931.

40. Salipante SJ, Thompson JM, Horwitz MS: Phylogenetic fate mapping:
theoretical and experimental studies applied to the development of
mouse fibroblasts. Genetics 2008, 178(2):967–977.

41. Wasserstrom A, Adar R, Shefer G, Frumkin D, Itzkovitz S, Stern T, Shur I,
Zangi L, Kaplan S, Harmelin A, Reisner Y, Benayahu D, Tzahor E, Segal E,
Shapiro E: Reconstruction of cell lineage trees in mice. PLoS One 2008,
3(4):e1939.

42. Salipante SJ, Horwitz MS: Phylogenetic fate mapping. Proc Natl Acad Sci U S A
2006, 103(14):5448–5453.

43. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K,
Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR,
Hicks J, Wigler M: Tumour evolution inferred by single-cell sequencing.
Nature 2011, 472(7341):90–94.

44. Carrasco RC, Oncina J, Calera-Rubio J: Stochastic inference of regular tree
languages. Mach Learning 2001, 44(1–2):185–197.

45. Sakakibara Y: Grammatical inference in bioinformatics. IEEE Trans Pattern
Anal Mach Intell 2005, 27(7):1051–1062.

46. Hárs V, Tóth J: On the inverse problem of reaction kinetics. In Colloquia
Mathematica Societatis János Bolyai, (Szeged, Hungary, 1979) Qualitative
Theory of Differential Equations. Edited by Farkas M; 1981:363–379.

doi:10.1186/1471-2105-15-249
Cite this article as: Spiro et al.: Lineage grammars: describing, simulating
and analyzing population dynamics. BMC Bioinformatics 2014 15:249.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	eSTG programs
	Internal states
	Probabilities and rates as functions
	Possible extensions
	Compartments
	Individual’s probabilities and rates as functions


	Conclusions
	Methods
	Stochastic simulation
	Equivalence and conversion to other languages
	Operational semantics

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

