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ABSTRACT: The modified smooth exterior scaling (MSES)
method is applied for the first time to calculate the energy and the
width of the electron-molecule scattering. The isoelectronic 2Πg
N2− and 2Π CO− shape resonances have been studied as a test case
for the MSES method. The results obtained using this method are
in good agreement with experimental results. The conventional
smooth exterior scaling (SES) method with different paths has also
been applied for comparison purposes.

■ INTRODUCTION
Resonances are one of the most important phenomena in
electron-molecule scattering. These are exponentially decaying
long-lived metastable states of a system. These metastable
states with a finite lifetime can break up into two or more
subsystems.1 These states can be considered as discrete states
that are coupled to the continuum.2 The first and most famous
example, as well as application, was forwarded by Gamow3

when he studied the α-decay of heavy nuclei in 1928. The
resonances are complex eigenvalues of a Hamiltonian of the
Schrodinger equation, which are characterized by Eres = ε −
iΓ/2, where ε is the position of resonance and Γ is the width of
the resonance or decay rate and is related to the lifetime of the
metastable state (τ) by the relation τ = 1/Γ. The resonance
states in atomic and molecular systems are related to ionization
potential (IP) and electron affinity (EA), which are calculated
as the difference between the ground state total energies of the
(N ± 1) and the neutral target that can be calculated using
Koopman’s theorem.4

In general, IP = (Es(N − 1) − E0(N)) = −εs and EA =
(E0(N) − Es(N + 1)) = −εs, where s labels a stationary state
and E0(N) is the ground state total energy of the neutral N
electron target, and the resonance energy and width are
calculated as negative of IP and EA, i.e., εs, which are known as
Auger and shape resonances, respectively. The corresponding
resonance wave functions are not L2-integrable. These wave
functions diverge exponentially and therefore do not
correspond to the Hermitian domain of the Hamiltonian
owing to its asymptotic divergence behavior. Therefore, we
have to convert the resonance wave functions into square
integrable (part of Hilbert space) by using the proper
transformation method. By carrying out a dilation trans-
formation of the electronic coordinates, the resonance wave
functions become square integrable. Mathematically, this

transformation is the analytical continuation of Hamiltonian
in the complex plane. This kind of scaling is known as the
complex coordinate method or conventionally Complex
Scaling (CS).5−8

The CS method has been widely applied in electronic
resonances.9−13 The CS method requires the potential part of
the Hamiltonian to be an analytic function. Hence, this
method cannot be applied to molecular systems within the
Born−Oppenheimer approximation. Finally, Moiseyev and
Corcoran14 overcame such difficulty by carrying out analytical
continuation of the Hamiltonian matrix elements.
The use of complex absorbing potential (CAP) was first

introduced by Jolicard and co-workers.15,16 Riss and Meyer17,18

modified the basic concepts introduced by them. The
motivation of applying CAP is very simple and obvious due
to its simple implementation. Under the CAP method, the
divergent resonance wave functions are converged into the
physical domain of square integrable wave functions. When a
wavepacket approaches the edge of a numerical grid artificial
reflections occur and deteriorate the quality of the computed
solution. The CAP is assumed to be zero in the interaction
region and “turns on” where there are no interactions. In
practice, the CAP attenuates the asymptotic part of the
wavepacket and hence suppresses the artificial reflections. Due
to its nonphysical nature, it generates artificial perturbations of
the system which may cause a shift in the energy.19
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A better alternative method to the CAP method is the
smooth exterior scaling (SES) method.20−25 SES is an efficient
method based on the rigorous mathematical theory of CS to
generate the wave functions without any artificial reflections at
the grid boundary, and it does not disturb the interaction
region. Hence, by applying SES similarity transformations to
the Hamiltonian, a reflection-free complex absorbing potential
is generated. Basically, the SES shares the property of CAP
where the wavepacket is allowed to propagate along an
arbitrary smooth path in the complex coordinate plane, and the
wavepacket gets absorbed when the path leaves the real axis.
A modified smooth exterior scaling (MSES)26,27 has been

developed where the scaling path [F(x)] is defined as
F x x x x( ) e e ei i x i a x( ) ( )0= = = , where θ(x) goes smoothly
from 0 to θ0 as a(x) goes smoothly from 0 to 1. Instead, in
SES, the derivative of the scaling path [F(x)] is defined as
f x g x( ) 1 e 1 ( )F

x
i 0= = + [ ] , where θ0 is the scaling

parameter and g(x) goes smoothly from 0 to 1, resulting in
f(x) going smoothly from 1 to ei 0. The scaling by the MSES
method has been reported to be much smoother and displays
efficient absorption during wavepacket propagation at the grid
boundary.
Bivariational self-consistent field (SCF),28,29 a complex

scaled version of conventional SCF, had been implemented
to study the resonance states in atomic10,12,30,31 and molecular
systems.32−34 In this work, an attempt has been made to study
the resonance states under the MSES. Hence, the method we
are using here to study will be referred as bivariational SCF−
MSES. The results obtained from bivariational SCF should
improve by incorporating relaxation and correlation effects. So,
to include these effects, the second order dilated (complex
scaled by MSES) electron propagator (SoDEP−MSES)
method is applied. The electron propagator theory35 is a
powerful tool in calculating electron detachment and attach-
ment energies and correlated treatment of electronic structure.
The dilated electron propagator28 is proved as an effective and
convenient method in characterizing Auger and shape
resonances in atomic10,30,36 and molecular systems.37−39 This
is the first time to use MSES method to study the shape
resonances of molecular systems.
The paper is organized such that the next first section

provides the theoretical background of MSES, bivariational
SCF and the electron propagator. Then, results are shown and
discussed along with two subsections, the 2Πg N2

− shape
resonance and the 2Π CO− shape resonance. Finally,
conclusions are made with some future prospects and endeavor
of the underlying methods.

■ THEORY
Modified Smooth Exterior Scaling (MSES). The SES

has been discussed in detail in various publications.20−25 For
completeness, a brief introduction is included here. In SES, the
scaling is done in the noninteraction region without affecting
the interaction region and, hence, no scaling is required for the
potential. The only difference between SES and MSES is that
the scaling parameter θ(x) is complex in SES but is chosen as
real in MSES.
The Moiseyev−Hirschfelder generalization40 of the complex

coordinate method associates the resonance poles of S-matrix,
E = Er − iEi, with the θ0 independent complex eigenvalues of
Ĥ:

H E= (1)

where

H
M z

V z
2

( )
2 2

2= +
(2)

Here, z = F(x) is a path in the complex coordinate plane z,
where

z F x x x( ) e asi 0= (3)

The smooth-exterior path is defined as

f x
F
x

g x( ) 1 e 1 ( )i 0= = + [ ]
(4)

where g(x) varies smoothly from 0 to 1 around the point x =
x0.
When V(x ≥ x0) = 0, then unscaled potential V(x) can be

used instead of complex potential V(z). The corresponding
transformed Hamiltonian (Ĥ) has been derived in various
publications.20,22,25 It has the following form:

H
M x

V F x V
2

( )
2 2

2 CAP= + [ ] +
(5)

where

V V x V x
x

V x
x

( ) ( ) ( )CAP 0 1 2

2

2= + +
(6)
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( )
4 ( )
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(7)

V x
Mf x

f x
x

( )
( )

( )
1

2

3=
(8)

V x
M

f x( )
2

(1 ( ))2

2
2=

(9)

Now, in the usual implementation of SES, the g(x) [in eq 4]
can be defined with the help of a certain family of integration
paths in a complex coordinate plane, e.g.:20,22

g x x x x x( ) 1 0.5(tanh( ( )) tanh( ( )))0 0= + +
(10)

SES following implementation using this method will be
termed as conventional SES (CSES). The F(x) can be derived
by carrying out the integration over g(x). Thus, the F(x) will
have the following form for the path given in the eq 10:

F x x x
x x
x x

( ) (e 1)
1

2
ln

cosh ( )
cosh ( )

i 0

0

Ä

Ç
ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑ

= + +
[ ]
[ + ]

(11)

In CSES method, g(x) is taken as real. Scaling function θ(x)
and path F(x) are related by the following relation:

F x x( ) ei x( )= (12)

As a result, θ(x) becomes complex.
In MSES, the scaling function θ(x) is chosen as real, which

makes the g(x) complex. The real function θ(x) is defined as
x a x( ) ( ) 0= = (13)

where θ0 is the scaling parameter and a(x) is chosen as follows:
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a x x x x x( ) 1 0.5(tanh( ( )) tanh( ( )))0 0= + +
(14)

The value of a(x) varies from 0 to 1 around the point x = x0.
The corresponding path will be defined as

F x x( ) ei x( )= (15)

and the g(x) related to MSES path will have the following
form:26

g x ix h x x

h x x

( )
e 1
e 1

e
e 1

0.5 sec ( ( ))

sec ( ( ))

i

i

i

i 0
2

0

2
0

0 0
= + [

+ ] (16)

There are several other existing paths that can be chosen for
the calculations. We are using the following paths in our
investigation along with MSES path:
Path-I20,25

g x x x x x( ) 1 0.5(tanh( ( )) tanh( ( )))0 0= + +
(17)

F x x x
x x
x x
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(18)

Path-II20,25

g x( ) (1 e ) (1 e )x x x x( ) 1 ( ) 10 0= + + + +
(19)
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Bivariational SCF. In the complex SCF method (also
known as bivariational SCF),28,29 the dilated Hamiltonian is
used along with real basis functions. Here, the complex scaled
Hamiltonian H(η), where η = xeiθ loses the properties of
Hermitian and becomes non-Hermitian, i.e., H†(η) = H*(η) ≠
H(η). Therefore, variational theorem becomes inapplicable.
However, a bivariational theorem is applicable for complex
symmetric operators. To apply the bivariational method, the
functional

E
H

( )
( )

0 0
0 0

0 0
= | |

| (23)

is extremized to obtain the bivariational SCF equations with
conditions Φ0 and Ψ0 should be single determinants

N x( ) det ( )i i0
1/2= ! { } (24)

N x( ) det ( )j j0
1/2= ! { } (25)

where i = j = 1, 2, ..., N and the constituent one-electron
orbitals ϕ and ψ should be biorthonormal

i j ij| = (26)

The following SCF equations can be obtained by extrem-
izing the functional eq 23

i i i= (27)

i i i= *+
(28)

where
Z
r

P
r

x x x

( , , )
1
2

1
( , ) d

x x

1
2

1
2

1

12

12
2 2 2

2 2

=

+
= (29)

with

i

occ

i i= *
(30)

The dilated Hamiltonian is complex symmetric, i.e, H†(η) =
H*(η). Since the choice of basis function has the property as Φ
= Ψ*, the many-electron wave function satisfies the same
relation. The detailed implementation and the advantages of
bivariational SCF is described in ref.29

However, in the case of SES, only the outer region is scaled,
and hence the Fock operator for a molecule takes the form as
follow:

Z
r

P
r

x x x V r

( , , )
1
2

(1 )
( , ) d ( )

A

A

A

x x

1 1
2

1

12

12
2 2 2 CAP 1

2 2

=

+ +
= (31)

where

V r V x V y V z( ) ( ) ( ) ( )CAP CAP CAP CAP= + + (32)

and V x( )CAP is defined in eq 6.
To evaluate

p x y z V x q x y z( , , ) ( ) ( , , )CAP (33)

where p(x, y, z) and q(x, y, z) are primitive Gaussian basis,
defined as

p x y z N x y z( , , ) ep
l m n r r( )0

2
= (34)

and centered at r0 = (x0, y0, z0).
p(x, y, z) can be written as

p x y z N p p p( , , ) p x y z= (35)

where p x ex
l x x( )0

2
= and similarly py and pz. Hence, the

expression (33) can be partitioned as

N N p p p V x q q q

N N p V x q p q p q

( )

( )

p q x y z x y z

p q x x y y z z

CAP

CAP

| |

= | | | | (36)

where ⟨py|qy⟩ and ⟨pz|qz⟩ are evaluated analytically and
p V x q( )x xCAP| | being a one-dimensional integral is evaluated
numerically.
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The Electron Propagator. The electron propagator
theory is considered an efficient method in improving the
electron affinities and ionization potentials that are calculated
from the bivariational SCF level. These improvements can be
done by introducing an effective potential, called self-energy,
which was formulated by Dyson.4 The Dyson equation for
dilated electron propagator G can be written as38

E E E E EG G G G( , ) ( , ) ( , ) ( , ) ( , )0 0= + (37)

where G0(η, E) is known as the zeroth order dilated electron
propagator and is a matrix of the electron propagator of
uncorrelated electron motion and Σ(η, E) is defined as

E E E( , ) ( , ) ( , ) ...(2) (3)= + + (38)

Σ(η, E) is the matrix representation of the exact self-energy
in the basis of spin orbitals which is the sum of different orders
such as second order, Σ(2)(η, E), and third order, Σ(3)(η, E).
This self-energy matrix contains the relaxation and correlation
effects.
In particular, the elements of the second order self-energy

matrix are given as follows4,35

E
rs ia ja rs

E
ab ir jr ab

E

( , )
1
2 ( ) ( ) ( ) ( )

1
2 ( ) ( ) ( ) ( )

ij ars
a r s

abr
r a b

(2) =
+

+
+ (39)

where the indices a, b, ... represent occupied spin orbitals, r, s,
... represent unoccupied spin orbitals, and i, j, ... represent
unspecified orbitals, and the antisymmetric two-electron
integral is given by

ij kl
P

r
x x(1) (2)

(1 )
(1) (2) d di j k l

1 12

12
1 2=

(40)

To calculate the lowest order correction, we are ignoring the
off-diagonal elements of self-energy (Σ(η, E)).4,35 Conse-
quently, the associated pole search becomes easy just by
solving the following equation

E E( ) ( ) ( , )ii= + (41)

where E is an electron binding energy. The solution can be
done repeatedly starting with E = ϵi until the convergence
result is found. The lowest-order correction with second order
self-energy to ϵi is given by the following equation

( )i i ii i
(2)= + (42)

■ RESULTS AND DISCUSSION
The isoelectronic systems 2Πg N2

− and 2Π CO− have been the
prototypical systems used to test the effectiveness of new
theoretical methods to treat the molecular shape resonances.
We apply the bivariational SCF−MSES and SoDEP−MSES
methods to study the molecular shape resonances. We are
testing the efficacy of the MSES method using the mentioned
systems. Atomic units are used throughout unless otherwise
stated. The basis set we employed to study the 2Πg N2− and 2Π
CO− shape resonances is aug-cc-pCVDZ with augmentation.
The basis set for all the atoms are augmented for the
accommodation of an electron of the metastable state. The
most diffused functions of type s and p are augmented by
multiplying the factor of 1

2n for n = 1, 2, ..., 5. Hence, the

augmented basis functions will be referred to as aug-cc-
pCVDZ+5s5p(A).
Resonances are generally the stationary points obtained

through stable point search in θ0-trajectories of complex orbital
energies following the complex virial theorem.41 The stability
of the resonance energy is obtained through the relation

E
0=

(43)

where xei a x( )0= and a(x) is associated with parameters x0
and λ. Equivalently, the optimum approximate resonance
eigenvalue follows:

E
0

x0 ,optimum 0 optimum

i
k
jjjjj

y
{
zzzzz =

(44)

In practice, the above complex virial theorem leads to cusps,
loops, or kinks or slows down at the poles obtained in the θ0-
trajectories.
The MSES method generally depends on several parameters,

λ, x0, and θ0. Each one of these parameters is associated with a
stabilization point (cusp) in a plot when the resonance energy
is plotted as a function of θ0, keeping other parameters fixed.
The cusp so obtained represents a resonance state. We have
performed a series of calculations for various x0 and λ
parameters, and the value of parameter λ is chosen as 10.0 au
from the set of well-stabilized resonance θ0-trajectories. The
same value of λ is also applied by Y. Sajeev et al. to study the
Feshbach type autoionization resonance of a helium atom42

and hydrogen molecule.43 The corresponding θ0-trajectories
have been plotted using the respective x0 values for the 2Πg
N2

− and 2Π CO− shape resonances.
The 2Πg N2

− Shape Resonance. The 2Πg N2− shape
resonance is perhaps the most studied molecular resonance
among electron-molecule scattering problems studied so far.
The basis set aug-cc-pCVDZ+5s5p(A) is employed for each
nitrogen atom. The N2 molecule is placed along the x-axis
symmetrical to the origin considering the bond length of 1.09
Å. For the bivariational SCF−MSES method, the θ0-
trajectories using different complex scaling paths, i.e. MSES
Path, Path-I, Path-II and Path-III, are plotted in Figure 1. Same
values of different parameters are used for all the paths (λ =
10.0 and x0 = 4.5). We have not added any dc field

42,43 to the
Hamiltonian either in CSES or in MSES. In the figure, no clear
stationary points (i.e., cups or kinks) are observed except for
MSES path.
In Figure 1, in the case of MSES path, there are many closely

spaced curves which contain kinks or stationary points. Out of
many kinks shown in the figure, only one of them represents
the 2Πg N2

− shape resonance, which is shown by an arrow.
Others are artifacts due to an incomplete basis set. Whether a
state is a resonance or artifact can be identified by plotting the
orbital wave function.44 A resonance state is localized within
the interaction region, but a continuum or artifacts will be
localized outside the interaction region. As the SES does not
affect the interaction region, the shape of molecular orbitals in
the interaction region do not get distorted much. Therefore,
we have plotted the molecular orbitals at the stationary point
to check which curve belongs to the πg* state. The orbital
corresponding to that state is plotted in Figure 2, which shows
a typical πg* character of the lowest unoccupied molecular
orbital (LUMO). Only the real part of the orbital is plotted, as
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the imaginary part is an order smaller than the real part. If the
absolute value of the wave function is plotted, then the nodal
structure will be lost. The corresponding resonant-θ0-trajectory
is displayed in Figure 3. The optimal θ0 value at the stationary

point is 0.24. The values of energy and width obtained from
the real and imaginary part of the resonant pole are 2.14 and
0.39 eV, respectively.
The SoDEP−MSES method is employed to improve the

results obtained from the bivariational SCF level. The
resonant-θ0-trajectory for SoDEP−MSES is given in Figure 4.

The results obtained from both bivariational SCF−MSES and
SoDEP−MSES methods show no discernible difference. S.
Mahalakshmi et al.39 also reported no considerable change
while performing a higher-order dilated electron propagator to
the 2Πg N2

− shape resonance. The same conclusion can be
drawn from this work. McCurdy et al.44 also indicated that
some well-known molecular shape resonances (N2

−, CO−, F2−,
etc.) can be characterized at the bivariational SCF level itself.
The energy and width obtained from the bivariational SCF−
MSES and SoDEP−MSES methods along with other
theoretical methods and experiment results are collected in
Table 1. As compared to other theoretically calculated results,
the results obtained from bivariational SCF−MSES and
SoDEP−MSES methods are in good agreement with
experimental results.

The 2Π CO− Shape Resonance. The basis set employed
to investigate 2Π CO− shape resonance is aug-cc-pCVDZ
+5s5p(A) centered on C and another aug-cc-pCVDZ+5s5p(A)
centered on O. The CO molecule is set along the x-axis
symmetrical to the origin considering the bond length 1.128 Å.
For the bivariational SCF−MSES method, using the same
values of different parameters (λ = 10.0, x0 = 3.3), θ0-
trajectories for four different paths (i.e., MSES path, Path-I,
Path-II, and Path-III) are plotted as displayed in Figure 5
without adding any dc field to the Hamiltonian.
In Figure 5, no clear stationary points are observed except

for the MSES path. So, in the MSES path, to confirm which
curve belongs to the 2Π state, we have plotted the molecular
orbitals at the stationary points. The orbital corresponding to
that state is plotted in Figure 6, which is a π* LUMO with
greater amplitude on the carbon atom.39 As in the case of the
2Πg N2− shape resonance, we have plotted only the real parts of
the orbital. The corresponding resonant-θ0-trajectory has been
plotted in Figure 7. The value of the resonance energy and
width obtained from this work along with other theoretical
methods and experimental results are displayed in Table 2. We

Figure 1. θ0-trajectories of orbital energies of N2 for x0 = 4.5 using
MSES Path, Path-I, Path-II, and Path-III. Cusps are seen only for
MSES path. The arrow shows the position of the 2Πg N2− shape
resonance. Other cusps are artifacts as concluded after plotting
orbitals.

Figure 2. Resonance wave function of the 2Πg N2
− shape resonance.

The positions of two N atoms are at 0.545 and −0.545 along the x-
axis.

Figure 3. θ0-trajectory of the 2Πg N2− shape resonance at x0 = 4.5
using vivariational SCF−MSES.

Figure 4. θ0-trajectory of 2Πg N2
− shape resonance at x0 = 4.5 using

SoDEP−MSES.
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would like to mention that the energy and width that are
obtained in our calculation are 1.57 and 0.49 eV, respectively.
The reported optimal values of θ0 is 0.34 at the stationary
point. As in the case of the 2Πg N2− shape resonance, here also
SoDEP−MSES is applied. The resonant-θ0-trajectory for the
SoDEP−MSES method is displayed in Figure 8. The
resonance position obtained from the SoDEP−MSES method
shows improvement. However, the results obtained from both
the bivariational SCF−MSES and SoDEP−MSES methods are
very close to the experimental results and in good agreement
with the other results that are obtained from various theoretical
methods.

Table 1. Energy and Width of the 2Πg N2
− Shape Resonance

Method
Energy
(eV)

Width
(eV)

Experiment45 2.32 0.41
Linear algebra method46 2.13 0.31
Static exchange R-matrix47 2.15 0.34
Stabilization method48 2.44 0.32
Boomerang model49 1.91 0.54
Complex SCF50 3.19 0.44
Second order dilated electron propagator (real SCF)51 2.14 0.26
CAP−FSMRCC52 2.52 0.39
dp−CAP−EOM−EA−CCSD (rjCAP ≠ 0)53 2.75 0.26
rm−CAP−EOM−EA−CCSD (rjCAP ≠ 0)54 2.50 0.35
rm−CAP−EOM−EA−CCSD (rjCAP = 0)

54 2.53 0.32
EOM−EA−CCSD55 2.54 0.52
MCSCF−CAP56 3.12 0.31
CAP/EA−ADC(3)57 2.54 0.40
CAP/PP−CASSCF58 3.83 0.25
Results from biorthogonal dilated electron propagator39

Zeroth order, quasi particle second order, and quasi
particle diagonal 2ph−TDA 2.12 0.19

Second order 2.11 0.18
Diagonal 2ph−TDA 2.12 0.18
Quasi-particle/OVGF third order 2.11 0.18
Third order 2.11 0.18
Bivariational SCF−MSES (This work) 2.14 0.39
SoDEP−MSES (This work) 2.14 0.39

Figure 5. θ0-trajectories of orbital energies of CO for x0 = 3.3 using
MSES Path, Path-I, Path-II, and Path-III. Cusps are seen only for
MSES path. The arrow shows the position of the 2Π CO− shape
resonance. Other cusps are artifacts as concluded after plotting
orbitals.

Figure 6. The resonance wave function of the 2Π CO− shape
resonance. The positions of C and O atoms are at 0.564 and −0.564
along x-axis, respectively.

Figure 7. θ0-trajectory of the 2Π CO− shape resonance at x0 = 3.3
using bivariational SCF−MSES.

Table 2. Energy and Width of the 2Π CO− Shape Resonance

Method
Energy
(eV)

Width
(eV)

Experiment59 1.50 0.40
Boomerang model60 1.52 0.80
Close coupling method61 1.75 0.28
Second order dilated electron propagator (real SCF)62 1.71 0.10
dp−CAP−EOM−EA−CCSD (rjCAP ≠ 0)53 1.98 0.59
rm−CAP−EOM−EA−CCSD (rjCAP ≠ 0)54 2.01 0.60
rm−CAP−EOM−EA−CCSD (rjCAP = 0)

54 2.09 0.61
EOM−EA−CCSD55 2.04 1.03
MCSCF−CAP56 1.28 0.32
CAP/EA−ADC(3)57 1.95 0.63
CAP/PP−CASSCF58 2.16 0.31
Results from biorthogonal dilated electron propagator39

Zeroth order, quasiparticle second order and
quasiparticle diagonal 2ph-TDA 1.71 0.10

Second order 1.68 0.09
Diagonal 2ph-TDA 1.69 0.08
Quasi-particle third order and OVGF third order 1.65 0.14
Third order 1.65 0.14
Bivariational SCF−MSES (This work) 1.57 0.49
SoDEP−MSES (This work) 1.49 0.50
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■ CONCLUSIONS
In this paper, the bivariational SCF−MSES and SoDEP−
MSES methods have been applied for the first time to study
the shape resonances in electron-molecule scattering. The 2Πg
N2− and 2Π CO− shape resonances have been studied. The
results obtained in this work using the MSES method compare
well with experimental results. Also, we perform a comparison
with different complex scaling paths. It is clear that
conventional SES can not be used as-is to study the shape
resonance. From this work, it is also observed that the
bivariational SCF−MSES and SoDEP−MSES methods give
better results than calculations done using other methods.
Therefore, we can conclude that the MSES method is quite
reliable and effective to investigate molecular shape resonances.
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